1.: From classical probability to quantum stochastic calculus / David Applebaum ... [et al.] ; Michael Schürmann, Uwe Franz editors
| 1.: From classical probability to quantum stochastic calculus / David Applebaum ... [et al.] ; Michael Schürmann, Uwe Franz editors |
| Pubbl/distr/stampa | Berlin, : Springer, 2005 |
| Descrizione fisica | XVIII, 299 p. ; 24 cm |
| Soggetto topico |
60G51 - Processes with independent increments; Lévy processes [MSC 2020]
81S25 - Quantum stochastic calculus [MSC 2020] 46L60 - Applications of selfadjoint operator algebras to physics [MSC 2020] 58B32 - Geometry of quantum groups [MSC 2020] 47A20 - Dilations, extensions, compressions of linear operators [MSC 2020] 16Txx - Hopf algebras, quantum groups and related topics [MSC 2020] |
| Soggetto non controllato |
Compressions and dilations
Lévy processes Mathematical physics Quantum dynamical semigroups Quantum groups Quantum stochastic calculus Stochastic Calculus |
| ISBN | 978-35-402-4406-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0059176 |
| Berlin, : Springer, 2005 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
1.: From classical probability to quantum stochastic calculus / David Applebaum ... [et al.] ; Michael Schürmann, Uwe Franz editors
| 1.: From classical probability to quantum stochastic calculus / David Applebaum ... [et al.] ; Michael Schürmann, Uwe Franz editors |
| Pubbl/distr/stampa | Berlin, : Springer, 2005 |
| Descrizione fisica | XVIII, 299 p. ; 24 cm |
| Soggetto topico |
16Txx - Hopf algebras, quantum groups and related topics [MSC 2020]
46L60 - Applications of selfadjoint operator algebras to physics [MSC 2020] 47A20 - Dilations, extensions, compressions of linear operators [MSC 2020] 58B32 - Geometry of quantum groups [MSC 2020] 60G51 - Processes with independent increments; Lévy processes [MSC 2020] 81S25 - Quantum stochastic calculus [MSC 2020] |
| Soggetto non controllato |
Compressions and dilations
Lévy processes Mathematical physics Quantum dynamical semigroups Quantum groups Quantum stochastic calculus Stochastic Calculus |
| ISBN | 978-35-402-4406-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00059176 |
| Berlin, : Springer, 2005 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
1.: The Hamiltonian approach / S. Attal, A. Joye, C.-A. Pillet (Eds.)
| 1.: The Hamiltonian approach / S. Attal, A. Joye, C.-A. Pillet (Eds.) |
| Pubbl/distr/stampa | Berlin, : Springer, 2006 |
| Descrizione fisica | XVI, 329 p. ; 24 cm |
| Soggetto topico |
60J25 - Continuous-time Markov processes on general state spaces [MSC 2020]
47D06 - One-parameter semigroups and linear evolution equations [MSC 2020] 81S25 - Quantum stochastic calculus [MSC 2020] 37A60 - Dynamical aspects of statistical mechanics [MSC 2020] 37A30 - Ergodic theorems, spectral theory, Markov operators [MSC 2020] 47L30 - Abstract operator algebras on Hilbert spaces [MSC 2020] 60H10 - Stochastic ordinary differential equations [MSC 2020] 81Q10 - Selfadjoint operator theory in quantum theory, including spectral analysis [MSC 2020] 47L90 - Applications of operator algebras to the sciences [MSC 2020] 82C70 - Transport processes in time-dependent statistical mechanics [MSC 2020] 82C10 - Quantum dynamics and nonequilibrium statistical mechanics (general) [MSC 2020] 47A05 - General (adjoints, conjugates, products, inverses, domains, ranges, etc.) [MSC 2020] |
| Soggetto non controllato |
Algebra
Dynamical systems Equation Markov Processes Mathematical physics Non-Equilibrium Statistical Mechanics Operator algebras Quantum dynamical systems Quantum noises Spectral Theory Stochastic differential equations |
| ISBN | 978-35-403-0991-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0059191 |
| Berlin, : Springer, 2006 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
1.: The Hamiltonian approach / S. Attal, A. Joye, C.-A. Pillet (Eds.)
| 1.: The Hamiltonian approach / S. Attal, A. Joye, C.-A. Pillet (Eds.) |
| Pubbl/distr/stampa | Berlin, : Springer, 2006 |
| Descrizione fisica | XVI, 329 p. ; 24 cm |
| Soggetto topico |
37A30 - Ergodic theorems, spectral theory, Markov operators [MSC 2020]
37A60 - Dynamical aspects of statistical mechanics [MSC 2020] 47A05 - General (adjoints, conjugates, products, inverses, domains, ranges, etc.) [MSC 2020] 47D06 - One-parameter semigroups and linear evolution equations [MSC 2020] 47L30 - Abstract operator algebras on Hilbert spaces [MSC 2020] 47L90 - Applications of operator algebras to the sciences [MSC 2020] 60H10 - Stochastic ordinary differential equations [MSC 2020] 60J25 - Continuous-time Markov processes on general state spaces [MSC 2020] 81Q10 - Selfadjoint operator theory in quantum theory, including spectral analysis [MSC 2020] 81S25 - Quantum stochastic calculus [MSC 2020] 82C10 - Quantum dynamics and nonequilibrium statistical mechanics (general) [MSC 2020] 82C70 - Transport processes in time-dependent statistical mechanics [MSC 2020] |
| Soggetto non controllato |
Algebra
Dynamical systems Equations Markov Processes Mathematical physics Non-Equilibrium Statistical Mechanics Operator algebras Quantum dynamical systems Quantum noises Spectral Theory Stochastic differential equations |
| ISBN | 978-35-403-0991-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00059191 |
| Berlin, : Springer, 2006 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
1: From classical probability to quantum stochastic calculus / David Applebaum ... [et al.] ; editors, Michael Schürmann, Uwe Franz
| 1: From classical probability to quantum stochastic calculus / David Applebaum ... [et al.] ; editors, Michael Schürmann, Uwe Franz |
| Autore | Applebaum, David |
| Edizione | [Berlin : Springer] |
| Descrizione fisica | Pubblicazione disponibile anche in formato elettronico. |
| Soggetto topico |
60G51 - Processes with independent increments; Lévy processes [MSC 2020]
81S25 - Quantum stochastic calculus [MSC 2020] 46L60 - Applications of selfadjoint operator algebras to physics [MSC 2020] 58B32 - Geometry of quantum groups [MSC 2020] 47A20 - Dilations, extensions, compressions of linear operators [MSC 2020] 16Txx - Hopf algebras, quantum groups and related topics [MSC 2020] |
| ISBN | 35-402-4406-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0059176 |
Applebaum, David
|
||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
1: The Hamiltonian approach / S. Attal, A. Joye, C.-A. Pillet (Eds.)
| 1: The Hamiltonian approach / S. Attal, A. Joye, C.-A. Pillet (Eds.) |
| Edizione | [Berlin : Springer] |
| Descrizione fisica | Pubblicazione disponibile anche in formato elettronico. |
| Soggetto topico |
60J25 - Continuous-time Markov processes on general state spaces [MSC 2020]
47D06 - One-parameter semigroups and linear evolution equations [MSC 2020] 81S25 - Quantum stochastic calculus [MSC 2020] 37A60 - Dynamical aspects of statistical mechanics [MSC 2020] 37A30 - Ergodic theorems, spectral theory, Markov operators [MSC 2020] 47L30 - Abstract operator algebras on Hilbert spaces [MSC 2020] 60H10 - Stochastic ordinary differential equations [MSC 2020] 81Q10 - Selfadjoint operator theory in quantum theory, including spectral analysis [MSC 2020] 47L90 - Applications of operator algebras to the sciences [MSC 2020] 82C70 - Transport processes in time-dependent statistical mechanics [MSC 2020] 82C10 - Quantum dynamics and nonequilibrium statistical mechanics (general) [MSC 2020] 47A05 - General (adjoints, conjugates, products, inverses, domains, ranges, etc.) [MSC 2020] |
| ISBN | 35-403-0991-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0059191 |
| Lo trovi qui: Univ. Vanvitelli | ||
|
2.: Structure of quantum Lévy processes, classical probability, and physics / Ole E. Barndorff-Nielsen ... [et al.] ; editors: Michael Schürmann, Uwe Franz
| 2.: Structure of quantum Lévy processes, classical probability, and physics / Ole E. Barndorff-Nielsen ... [et al.] ; editors: Michael Schürmann, Uwe Franz |
| Pubbl/distr/stampa | Berlin, : Springer, 2006 |
| Descrizione fisica | XV, 340 p. ; 24 cm |
| Soggetto topico |
60G51 - Processes with independent increments; Lévy processes [MSC 2020]
81S25 - Quantum stochastic calculus [MSC 2020] 46L60 - Applications of selfadjoint operator algebras to physics [MSC 2020] 58B32 - Geometry of quantum groups [MSC 2020] 47A20 - Dilations, extensions, compressions of linear operators [MSC 2020] 16Txx - Hopf algebras, quantum groups and related topics [MSC 2020] |
| Soggetto non controllato |
Algebra
Calculus Compressions and dilations Lévy processes Markov Processes Mathematical physics Quantum dynamical semigroups Quantum groups Quantum stochastic calculus Random Walks Stochastic Calculus |
| ISBN | 978-35-402-4407-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0059181 |
| Berlin, : Springer, 2006 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
2.: Structure of quantum Lévy processes, classical probability, and physics / Ole E. Barndorff-Nielsen ... [et al.] ; editors: Michael Schürmann, Uwe Franz
| 2.: Structure of quantum Lévy processes, classical probability, and physics / Ole E. Barndorff-Nielsen ... [et al.] ; editors: Michael Schürmann, Uwe Franz |
| Pubbl/distr/stampa | Berlin, : Springer, 2006 |
| Descrizione fisica | XV, 340 p. ; 24 cm |
| Soggetto topico |
16Txx - Hopf algebras, quantum groups and related topics [MSC 2020]
46L60 - Applications of selfadjoint operator algebras to physics [MSC 2020] 47A20 - Dilations, extensions, compressions of linear operators [MSC 2020] 58B32 - Geometry of quantum groups [MSC 2020] 60G51 - Processes with independent increments; Lévy processes [MSC 2020] 81S25 - Quantum stochastic calculus [MSC 2020] |
| Soggetto non controllato |
Algebra
Calculus Compressions and dilations Lévy processes Markov Processes Mathematical physics Quantum dynamical semigroups Quantum groups Quantum stochastic calculus Random Walks Stochastic Calculus |
| ISBN | 978-35-402-4407-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00059181 |
| Berlin, : Springer, 2006 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
2.: The Markovian approach / S. Attal, A. Joye, C.-A. Pillet (Eds.)
| 2.: The Markovian approach / S. Attal, A. Joye, C.-A. Pillet (Eds.) |
| Pubbl/distr/stampa | Berlin, : Springer, 2006 |
| Descrizione fisica | XIII, 239 p. ; 24 cm |
| Soggetto topico |
60J25 - Continuous-time Markov processes on general state spaces [MSC 2020]
47D06 - One-parameter semigroups and linear evolution equations [MSC 2020] 81S25 - Quantum stochastic calculus [MSC 2020] 37A60 - Dynamical aspects of statistical mechanics [MSC 2020] 37A30 - Ergodic theorems, spectral theory, Markov operators [MSC 2020] 47L30 - Abstract operator algebras on Hilbert spaces [MSC 2020] 60H10 - Stochastic ordinary differential equations [MSC 2020] 81Q10 - Selfadjoint operator theory in quantum theory, including spectral analysis [MSC 2020] 47L90 - Applications of operator algebras to the sciences [MSC 2020] 82C70 - Transport processes in time-dependent statistical mechanics [MSC 2020] 82C10 - Quantum dynamics and nonequilibrium statistical mechanics (general) [MSC 2020] 47A05 - General (adjoints, conjugates, products, inverses, domains, ranges, etc.) [MSC 2020] |
| Soggetto non controllato |
Algebra
Dynamical systems Equation Markov Processes Mathematical physics Non-Equilibrium Statistical Mechanics Operator algebras Quantum dynamical systems Quantum noises Spectral Theory Stochastic differential equations |
| ISBN | 978-35-403-0992-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0059194 |
| Berlin, : Springer, 2006 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
2.: The Markovian approach / S. Attal, A. Joye, C.-A. Pillet (Eds.)
| 2.: The Markovian approach / S. Attal, A. Joye, C.-A. Pillet (Eds.) |
| Pubbl/distr/stampa | Berlin, : Springer, 2006 |
| Descrizione fisica | XIII, 239 p. ; 24 cm |
| Soggetto topico |
37A30 - Ergodic theorems, spectral theory, Markov operators [MSC 2020]
37A60 - Dynamical aspects of statistical mechanics [MSC 2020] 47A05 - General (adjoints, conjugates, products, inverses, domains, ranges, etc.) [MSC 2020] 47D06 - One-parameter semigroups and linear evolution equations [MSC 2020] 47L30 - Abstract operator algebras on Hilbert spaces [MSC 2020] 47L90 - Applications of operator algebras to the sciences [MSC 2020] 60H10 - Stochastic ordinary differential equations [MSC 2020] 60J25 - Continuous-time Markov processes on general state spaces [MSC 2020] 81Q10 - Selfadjoint operator theory in quantum theory, including spectral analysis [MSC 2020] 81S25 - Quantum stochastic calculus [MSC 2020] 82C10 - Quantum dynamics and nonequilibrium statistical mechanics (general) [MSC 2020] 82C70 - Transport processes in time-dependent statistical mechanics [MSC 2020] |
| Soggetto non controllato |
Algebra
Dynamical systems Equations Markov Processes Mathematical physics Non-Equilibrium Statistical Mechanics Operator algebras Quantum dynamical systems Quantum noises Spectral Theory Stochastic differential equations |
| ISBN | 978-35-403-0992-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00059194 |
| Berlin, : Springer, 2006 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||