An Introduction to the Topological Derivative Method / Antonio André Novotny, Jan Sokołowski |
Autore | Novotny, Antonio André |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | x, 114 p. : ill. ; 24 cm |
Altri autori (Persone) | Sokołowski, Jan |
Soggetto topico |
49-XX - Calculus of variations and optimal control; optimization [MSC 2020]
65-XX - Numerical analysis [MSC 2020] 65K10 - Numerical optimization and variational techniques [MSC 2020] 49J20 - Existence theories for optimal control problems involving partial differential equations [MSC 2020] 90-XX - Operations research, mathematical programming [MSC 2020] 49Q10 - Optimization of shapes other than minimal surfaces [MSC 2020] 94A08 - Image processing (compression, reconstruction, etc.) in information and communication theory [MSC 2020] 35J20 - Variational methods for second-order elliptic equations [MSC 2020] 49Q12 - Sensitivity analysis for optimization problems on manifolds [MSC 2020] 74A45 - Theories of fracture and damage [MSC 2020] 54C56 - Shape theory in general topology [MSC 2020] |
Soggetto non controllato |
Asymptotic analysis
Necessary optimality condition Nonconvex optimization Partial differential equations Sensitivity analysis Shape Optimization Topological derivatives Topology optimization |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0248682 |
Novotny, Antonio André | ||
Cham, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
An Introduction to the Topological Derivative Method / Antonio André Novotny, Jan Sokołowski |
Autore | Novotny, Antonio André |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | x, 114 p. : ill. ; 24 cm |
Altri autori (Persone) | Sokołowski, Jan |
Soggetto topico |
35J20 - Variational methods for second-order elliptic equations [MSC 2020]
49-XX - Calculus of variations and optimal control; optimization [MSC 2020] 49J20 - Existence theories for optimal control problems involving partial differential equations [MSC 2020] 49Q10 - Optimization of shapes other than minimal surfaces [MSC 2020] 49Q12 - Sensitivity analysis for optimization problems on manifolds [MSC 2020] 54C56 - Shape theory in general topology [MSC 2020] 65-XX - Numerical analysis [MSC 2020] 65K10 - Numerical optimization and variational techniques [MSC 2020] 74A45 - Theories of fracture and damage [MSC 2020] 90-XX - Operations research, mathematical programming [MSC 2020] 94A08 - Image processing (compression, reconstruction, etc.) in information and communication theory [MSC 2020] |
Soggetto non controllato |
Asymptotic analysis
Necessary optimality condition Nonconvex optimization Partial differential equations Sensitivity analysis Shape Optimization Topological derivatives Topology optimization |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00248682 |
Novotny, Antonio André | ||
Cham, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Geometric Control of Fracture and Topological Metamaterials : Doctoral Thesis accepted by the University of Chicago, IL, USA / Noah Mitchell |
Autore | Mitchell, Noah |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | xix, 121 p. : ill. ; 24 cm |
Soggetto topico |
74-XX - Mechanics of deformable solids [MSC 2020]
74Rxx - Fracture and damage [MSC 2020] 74P20 - Geometrical methods for optimization problems in solid mechanics [MSC 2020] 74A45 - Theories of fracture and damage [MSC 2020] |
Soggetto non controllato |
Berry curvature
Crack kinking Crack propagation Elastic quasi-2D materials Gaussian curvature of metamaterials Gyroscopic metamaterials Topological mechanics Topological order in amorphous materials |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0226929 |
Mitchell, Noah | ||
Cham, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Geometric Control of Fracture and Topological Metamaterials : Doctoral Thesis accepted by the University of Chicago, IL, USA / Noah Mitchell |
Autore | Mitchell, Noah |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | xix, 121 p. : ill. ; 24 cm |
Soggetto topico |
74-XX - Mechanics of deformable solids [MSC 2020]
74A45 - Theories of fracture and damage [MSC 2020] 74P20 - Geometrical methods for optimization problems in solid mechanics [MSC 2020] 74Rxx - Fracture and damage [MSC 2020] |
Soggetto non controllato |
Berry curvature
Crack kinking Crack propagation Elastic quasi-2D materials Gaussian curvature of metamaterials Gyroscopic metamaterials Topological mechanics Topological order in amorphous materials |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00226929 |
Mitchell, Noah | ||
Cham, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Mathematical Theory of Elasticity of Quasicrystals and Its Applications / Tian-You Fan |
Autore | Fan, Tian-You |
Edizione | [2. ed] |
Pubbl/distr/stampa | Singapore, : Springer ; Beijing, : Science press, 2016 |
Descrizione fisica | xvi, 452 p. : ill. ; 24 cm |
Soggetto topico |
74-XX - Mechanics of deformable solids [MSC 2020]
82D25 - Statistical mechanical studies of crystals [MSC 2020] 74E15 - Crystalline structure [MSC 2020] 74A45 - Theories of fracture and damage [MSC 2020] |
Soggetto non controllato |
Displacement potential function formulation
Mathematical elasticity of quasicrystals Mechanical behaviour of quasicrystalline materials Phonon-phason dynamics Plastic deformation of quasicrystals Soft-matter quasicrystals Solid quasicrystals Stress potential function formulation |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0178785 |
Fan, Tian-You | ||
Singapore, : Springer ; Beijing, : Science press, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Mathematical Theory of Elasticity of Quasicrystals and Its Applications / Tian-You Fan |
Autore | Fan, Tian-You |
Edizione | [2. ed] |
Pubbl/distr/stampa | Singapore, : Springer ; Beijing, : Science press, 2016 |
Descrizione fisica | xvi, 452 p. : ill. ; 24 cm |
Soggetto topico |
74-XX - Mechanics of deformable solids [MSC 2020]
74A45 - Theories of fracture and damage [MSC 2020] 74E15 - Crystalline structure [MSC 2020] 82D25 - Statistical mechanical studies of crystals [MSC 2020] |
Soggetto non controllato |
Displacement potential function formulation
Mathematical elasticity of quasicrystals Mechanical behaviour of quasicrystalline materials Phonon-phason dynamics Plastic deformation of quasicrystals Soft-matter quasicrystals Solid quasicrystals Stress potential function formulation |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00178785 |
Fan, Tian-You | ||
Singapore, : Springer ; Beijing, : Science press, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|