top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
6G-Enabled Technologies for Next Generation : Fundamentals, Applications, Analysis and Challenges
6G-Enabled Technologies for Next Generation : Fundamentals, Applications, Analysis and Challenges
Autore Tyagi Amit Kumar
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (459 pages)
Disciplina 621.3845/6
Altri autori (Persone) TiwariShrikant
GuptaShivani
MishraAnand Kumar
Soggetto topico 6G mobile communication systems
ISBN 9781394258369
1394258364
9781394258345
1394258348
9781394258352
1394258356
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911019979603321
Tyagi Amit Kumar  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Metaverse Wireless Communication Systems
Advanced Metaverse Wireless Communication Systems
Autore Imoize Agbotiname Lucky
Edizione [1st ed.]
Pubbl/distr/stampa Stevenage : , : Institution of Engineering & Technology, , 2025
Descrizione fisica 1 online resource (581 pages)
Disciplina 621.384
Altri autori (Persone) MontlouisWebert
SongHoubing Herbert
Collana Telecommunications Series
Soggetto topico Wireless communication systems
6G mobile communication systems
ISBN 1-83724-388-3
1-83953-908-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents -- Preface -- About the editors -- 1. Advanced wireless communication techniques and the metaverse | Webert Montlouis, Ashish Goswami and Agbotiname Lucky Imoize -- 2. Key enablers of metaverse wireless communication | Webert Montlouis, Ashish Goswami and Agbotiname Lucky Imoize -- 3. Enhancing machine learning accuracy in the metaverse: overcoming noise and error in object counting systems | Yuichi Sei, Keiichiro Oishi, Yasuyuki Tahara, Akihiko Ohsuga and Agbotiname Lucky Imoize -- 4. Communication-control co-design for closed-loop metaverse | Qinqin Xiong, Jiaying Zhou, Jie Cao, Xu Zhu and Zeping Sui -- 5. Location-based real-time utilization of reconfigurable intelligent surfaces for mmWave integrated communication and sensing in full-immersive multiuser Metaverse scenarios | Filip Lemic, Jalal Jalali, Gerard Calvo Bartra, Alejandro Amat, Jakob Struye, Jeroen Famaey and Xavier Costa Perez -- 6. Preamble parallelization-based random access management for heterogeneous IoT system in metaverse | Ziming Guo, Xu Zhu, Jie Cao, Dazhuo Wang and Agbotiname Lucky Imoize -- 7. Scalable metaverse-based wireless ecosystem: networked economic valuations | Roberto Moro-Visconti -- 8. Toward a secure metaverse: crafting cutting-edge algorithm for protected data analysis | Keiichiro Oishi, Yasuyuki Tahara, Akihiko Ohsuga, J. Andrew, Agbotiname Lucky Imoize and Yuichi Sei -- 9. Exploring zero-knowledge proofs in the metaverse: applications and challenges | Oleksandr Kuznetsov, Alex Rusnak, Anton Yezhov, Kateryna Kuznetsova, Dzianis Kanonik and Oleksandr Domin -- 10. Blockchain applications in metaverse environments: new horizons | Oleksandr Kuznetsov, Emanuele Frontoni, Kateryna Kuznetsova, Oleksii Smirnov and Victoria Kostenko -- 11. Blockchain-based security and privacy solutions for metaverseassisted wireless communication systems | Elsir Ali Saad Mohamed and Agbotiname Lucky Imoize -- 12. Federated learning for the metaverse: leveraging artificial intelligence for enhanced data privacy and efficiency | Zhihao Dong, Jie Cao, Xu Zhu, HaiYong Zeng and Agbotiname Lucky Imoize -- 13. Advancing metaverse security with cryptographic innovations | Oleksandr Kuznetsov, Emanuele Frontoni, Vladyslav Chevardin, Oleksii Smirnov and Agbotiname Lucky Imoize -- 14. Cryptography in the metaverse: advanced protocols for secure communication | Oleksandr Kuznetsov, Emanuele Frontoni, Volodymyr Zvieriev, Olha Bulhakova and Vladyslav Riabovolenko -- 15. Differentially private human interactions for the real world and the metaverse | Yuichi Sei, Keiichiro Oishi, Yasuyuki Tahara, Akihiko Ohsuga and Agbotiname Lucky Imoize -- 16. Transforming ageing in the metaverse: embracing virtual communities for enhanced well-being and empowerment | Andreas Andreou, Constandinos X. Mavromoustakis, Houbing Herbert Song, German Peinado Gomez and Jordi Mongay Batalla -- 17. Wireless tools for neuromarketing and neuromanagement in the metaverse | Antonio Gonzalez-Morales, Ma Milagro Martin Lopez and Alejandro Talaminos-Barroso -- 18. Legal perspectives of the International Scientific Sandbox Metaverse: technologies and foresights for digital transformation | V. Kostenko Oleksii, A. Volkova Yuliia, P. Ustynova Iryna, O. Shapenko Liudmyla and V. Usenko Yana -- 19. Societal impacts of advanced metaverse wireless communication systems | Mikail Batu, Onur Tos and Agbotiname Lucky Imoize -- 20. Advanced metaverse wireless communications: future perspectives and research directions | Agbotiname Lucky Imoize, Emmanuel Alozie, Nasir Faruk, Webert Montlouis and Houbing Herbert Song -- Index
Record Nr. UNINA-9911006730203321
Imoize Agbotiname Lucky  
Stevenage : , : Institution of Engineering & Technology, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep Reinforcement Learning for Reconfigurable Intelligent Surfaces and UAV Empowered Smart 6G Communications
Deep Reinforcement Learning for Reconfigurable Intelligent Surfaces and UAV Empowered Smart 6G Communications
Autore Masaracchia Antonino
Edizione [1st ed.]
Pubbl/distr/stampa Stevenage : , : Institution of Engineering & Technology, , 2024
Descrizione fisica 1 online resource (270 pages)
Disciplina 621.38456
Altri autori (Persone) NguyenKhoi Khac
DuongTrung Q
SharmaVishal
Collana Telecommunications Series
Soggetto topico 6G mobile communication systems
Artificial intelligence
ISBN 1-83724-384-0
1-83953-642-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents -- Preface -- About the authors -- Part I. Introduction to machine learning and neural networks -- 1. Artificial intelligence, machine learning, and deep learning -- 2. Deep neural networks -- Part II. Deep reinforcement learning -- 3. Markov decision process -- 4. Value function approximation for continuous state-action space -- 5. Policy search methods for reinforcement learning -- 6. Actor-critic learning -- Part III. Deep reinforcement learning in UAV-assisted 6G communication -- 7. UAV-assisted 6G communications -- 8. Distributed deep deterministic policy gradient for power allocation control in UAV-to-UAV-based communications -- 9. Non-cooperative energy-efficient power allocation game in UAV-to-UAV communication: a multi-agent deep reinforcement learning approach -- 10. Real-time energy harvesting-aided scheduling in UAV-assisted D2D networks -- 11. 3D trajectory design and data collection in UAV-assisted networks -- Part IV. Deep reinforcement learning in reconfigurable intelligent surface-empowered 6G communications -- 12. RIS-assisted 6G communications -- 13. Real-time optimisation in RIS-assisted D2D communications -- 14. RIS-assisted UAV communications for IoT with wireless power transfer using deep reinforcement learning -- 15. Multi-agent learning in networks supported by RIS and multi-UAVs -- Index
Record Nr. UNINA-9911006720403321
Masaracchia Antonino  
Stevenage : , : Institution of Engineering & Technology, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Development of 6G Networks and Technology
Development of 6G Networks and Technology
Autore Tripathi Suman Lata
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (476 pages)
Disciplina 621.3845/6
Altri autori (Persone) MahmudMufti
NarmadhaC
AlexanderS. Albert
Collana Next Generation Computing and Communication Engineering Series
Soggetto topico 6G mobile communication systems
ISBN 9781394230662
1394230664
9781394230686
1394230680
9781394230679
1394230672
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- Chapter 1 Introduction to AI Techniques for 6G Application -- 1.1 Introduction -- 1.2 Different Generation of Communication: From 1G to 6G -- 1.2.1 First Generation (1G) -- 1.2.2 Second Generation (2G) -- 1.2.3 Third Generation (3G) -- 1.2.4 Fourth Generation (4G) -- 1.2.5 Fifth Generation (5G) -- 1.2.6 Sixth Generation (6G) -- 1.3 Key Features and Requirements of 6G Networks -- 1.3.1 Faster Data Speeds -- 1.3.2 Ultra-Low Latency -- 1.3.3 Massive Capacity -- 1.3.4 Energy Efficiency -- 1.3.5 Seamless Connectivity -- 1.3.6 Advanced Spectrum Management -- 1.3.7 Enhanced Security and Privacy -- 1.3.8 Artificial Intelligence Integration -- 1.3.9 Heterogeneous Network Architecture -- 1.4 Role of Artificial Intelligence in 6G -- 1.4.1 Intelligent Radio Resource Management -- 1.4.2 Beamforming and MIMO -- 1.4.3 Intelligent Network Slicing
Record Nr. UNINA-9911019597103321
Tripathi Suman Lata  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Digital Twins For 6G : Fundamental Theory, Technology and Applications
Digital Twins For 6G : Fundamental Theory, Technology and Applications
Autore Ahmadi Hamed
Edizione [1st ed.]
Pubbl/distr/stampa Stevenage : , : Institution of Engineering & Technology, , 2024
Descrizione fisica 1 online resource (321 pages)
Disciplina 621.38456
Altri autori (Persone) DuongTrung Q
NagAvishek
SharmaVishal
CanberkBerk
DobreOctavia A
Collana Telecommunications Series
Soggetto topico Digital twins (Computer simulation)
6G mobile communication systems
ISBN 9781523163120
1523163127
9781839537462
1839537469
9781839537455
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents -- About the editors -- Preface -- 1. Digital twins for resilient and reliable 6G networks | Fahad Alaklabi, Ahmed Al-Tahmeesschi, Avishek Nag and Hamed Ahmadi -- 2. Digital twin-enabled aerial edge networks with ultra-reliable low-latency communications | Dang Van Huynh, Yijiu Li, Tan Do-Duy, Emi Garcia-Palacios and Trung Q. Duong -- 3. AI-enabled data management for digital twin networks | Elif Ak, Gökhan Yurdakul, Ahmed Al-Dubai and Berk Canberk -- 4. AI-based traffic analysis in digital twin networks | Sarah Al-Shareeda, Khayal Huseynov, Lal Verda Cakir, Craig Thomson, Mehmet Ozdem and Berk Canberk -- 5. Digital twin empowered Open RAN of 6G networks | Antonino Masaracchia, Vishal Sharma, Muhammad Fahim, Octavia A. Dobre and Trung Q. Duong -- 6. Potentials of the digital twin in 6G communication systems | Bin Han, Mohammad Asif Habibi, Nandish Kuruvatti, Sanket Partani, Amina Fellan and Hans D. Schotten -- 7. Digital twins for optical networks | Agastya Raj, Dan Kilper and Marco Ruffini -- 8. Dynamic decomposition of service function chain using a deep reinforcement learning approach | Swarna B. Chetty, Hamed Ahmadi, Massimo Tornatore and Avishek Nag -- 9. An Optimization-as-a-Service platform for 6G exploiting network digital twins | Oriol Sallent, José-Manuel Martínez-Caro, Javier Baliosian, Luis Diez, Luis M. Contreras, Jordi Pérez-Romero, Juan Luis Gorricho, Matías Richart, Ramón Agüero, Joan Serrat, Pablo Pavón-Mariño and Irene Vilà -- 10. Robotics digital twin for 6G | Milan Groshev, Carlos Guimarães and Antonio de la Oliva -- Index
Record Nr. UNINA-9911006666903321
Ahmadi Hamed  
Stevenage : , : Institution of Engineering & Technology, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Edge Computing Acceleration : From 5G to 6G and Beyond
Edge Computing Acceleration : From 5G to 6G and Beyond
Autore Hung Patrick
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (273 pages)
Disciplina 004.6/5
Altri autori (Persone) KanHongwei
KnopfGreg
Collana The ComSoc Guides to Communications Technologies Series
Soggetto topico Computer architecture
5G mobile communication systems
6G mobile communication systems
ISBN 9781119813859
1119813859
9781119813866
1119813867
9781119813873
1119813875
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Foreword (Professor Ray Cheung) -- Foreword (Raghu Nambiar) -- Preface -- Acknowledgment (Patrick Hung) -- Acknowledgment (Greg Knopf) -- Part I Introduction -- Chapter 1 Introduction -- 1.1 Introducing 5G and Internet of Everything -- 1.2 Edge Computing Architecture -- 1.2.1 Edge Versus Cloud Computing -- 1.2.2 Edge Design Options -- 1.2.3 Key Benefits of Edge Computing -- 1.3 Custom Computing -- 1.3.1 Introduction to Custom Computing -- 1.3.2 5G/6G Security Concerns -- 1.3.3 Custom Edge Computing Cards -- 1.4 Deployment Considerations -- 1.4.1 5G/6G Cell Architecture -- 1.4.2 5G/6G Private Network -- 1.4.3 Infrastructure Sharing -- References -- Chapter 2 Overview of 5G and 6G -- 2.1 5G Timeline -- 2.2 5G Spectrum -- 2.3 Characteristics of 5G -- 2.4 5G New Radio -- 2.4.1 Orthogonal Frequency‐Division Multiplexing -- 2.4.2 Massive MIMO -- 2.4.3 Beamforming -- 2.4.4 Multiuser MIMO -- 2.5 Data Plane and Control Plane Separation -- 2.6 5G Applications -- 2.7 Smooth Transition to 6G -- 2.8 6G Expected Timeline, Spectrum, and Characteristics -- 2.9 6G Potential Applications -- 2.10 Edge, Fog, and Cloud Computing in Relation to 5G and 6G -- 2.10.1 Edge Computing in Relation to 5G and 6G -- 2.10.2 Fog Computing in Relation to 5G and 6G -- 2.10.3 Cloud Computing in Relation to 5G and 6G -- References -- Part II Theory -- Chapter 3 High‐Level Synthesis (HLS) -- 3.1 Why Use High‐Level Synthesis? -- 3.1.1 Hardware Acceleration with High‐Level Synthesis -- 3.2 Common HLS Languages and Platforms -- 3.2.1 Compute Unified Device Architecture (CUDA) -- 3.2.1.1 CUDA and HLS for Hardware Acceleration -- 3.2.1.2 Advantage of Using CUDA and HLS for Hardware Acceleration -- 3.2.2 OpenCL -- 3.2.2.1 OpenCL and HLS for Hardware Acceleration.
3.2.2.2 Advantages of Using OpenCL with HLS Tools for Hardware Acceleration -- 3.2.3 Maxeler MaxJ -- 3.2.3.1 Using Maxeler MaxJ with HLS for Hardware Acceleration -- 3.2.3.2 Advantages of Using Maxeler MaxJ with HLS for Hardware Acceleration -- 3.3 Limitations and Challenges of HLS -- 3.4 Using HLS in 5G Edge Computing -- 3.4.1 User (Data) Plane Acceleration -- 3.4.2 Control Plane Acceleration -- 3.4.3 Advantages of Using HLS for User Plane and Control Plane Acceleration -- References -- Chapter 4 Coding Design -- 4.1 Overview -- 4.2 Error Correction Codes (ECCs) -- 4.2.1 Turbo, Low‐Density Parity‐Check, and Polar Codes -- 4.2.1.1 Turbo Codes -- 4.2.1.2 LDPC Codes -- 4.2.1.3 Polar Codes -- 4.3 Security Codes -- 4.3.1 Public Key Infrastructure -- 4.3.2 Symmetric and Asymmetric Cryptography Concepts -- 4.3.2.1 Symmetric Key Cryptography -- 4.3.2.2 Asymmetric Key Cryptography -- 4.3.3 Existing Algorithms and Standards -- 4.3.3.1 Advanced Encryption Standard -- 4.3.3.2 RSA Algorithm -- 4.3.3.3 Elliptic Curve Cryptography -- 4.4 Emerging 5G Security Design Acceleration -- 4.4.1 Blockchain -- 4.4.2 Lightweight Encryption Algorithms -- 4.4.2.1 SIMON and SPECK Algorithms -- 4.4.2.2 PRESENT Algorithm -- 4.4.2.3 GIFT Algorithm -- 4.4.3 Network Codes -- 4.4.4 Post‐Quantum Cryptography -- 4.4.5 Homomorphic Encryption -- 4.4.6 Zero‐Knowledge Proof -- References -- Part III Architecture -- Chapter 5 Hardware Architecture -- 5.1 Development Timeline -- 5.2 Operating Spectrum -- 5.3 Core Requirements -- 5.4 New Radio Access Technology -- 5.4.1 Orthogonal Frequency‐Division Multiplexing -- 5.4.2 Massive MIMO (Multiple‐Input Multiple‐Output) -- 5.4.3 Beamforming -- 5.4.4 Multiuser MIMO -- 5.5 Network Architecture -- 5.5.1 Next Generation Radio Access Network -- 5.5.2 5G Core -- 5.5.2.1 Control and User Plane Separation (CUPS).
5.5.2.2 Service‐Based Architecture (SBA) -- 5.6 Performance Improvement -- 5.6.1 Computing and Network Convergence -- 5.6.2 Related Works -- 5.6.3 Smart& -- uscore -- xPU Design Methodology -- 5.6.3.1 Data Flow Optimization -- 5.6.3.2 Distributed System Optimization -- 5.6.3.3 Core Microarchitecture Optimization -- 5.6.3.4 Software/Hardware Interface Optimization -- 5.6.3.5 Analyzing the Smart& -- uscore -- xPU Architecture -- 5.6.4 Summary of the Smart& -- uscore -- xPU Architecture -- References -- Chapter 6 Software Architecture -- 6.1 End‐to‐End Example of 5G System -- 6.1.1 High‐Level Description -- 6.1.1.1 5G Radio Access Network -- 6.1.1.2 Edge -- 6.1.1.3 5G Core -- 6.1.1.4 Application and Services -- 6.1.2 Interfaces -- 6.1.2.1 N1: Between 5G Core and User Equipment -- 6.1.2.2 N2: Between 5G Core and Base Station -- 6.1.2.3 N3: Between RAN and User Plane Function -- 6.1.2.4 Other Interfaces Include the Following -- 6.2 Network Slicing Architecture, Software‐Defined Network, and Network Function Virtualization -- 6.2.1 Network Slicing Architecture -- 6.2.1.1 Software‐Defined Network (SDN) -- 6.2.1.2 Network Function Virtualization (NFV) -- 6.3 Software Acceleration -- 6.3.1 User Space Approach -- 6.3.1.1 Data Plane Development Kit (DPDK) -- 6.3.2 Other Approaches -- 6.3.2.1 Remote Direct Memory Access (RDMA) -- 6.3.2.2 Compute Express Link (CXL) -- 6.3.2.3 Data Processing Unit (DPU) -- References -- Part IV Applications -- Chapter 7 Killer Applications -- 7.1 Metaverse and Its Trends -- 7.2 Technologies Behind Metaverse -- 7.2.1 Artificial Intelligence -- 7.2.1.1 AI‐Based Non‐player Character -- 7.2.1.2 Sensory Capabilities with AI -- 7.2.2 Blockchain -- 7.2.2.1 Power Consumption -- 7.2.3 AR and VR -- 7.2.4 Internet of Things -- 7.3 Applications of Metaverse -- 7.3.1 Gaming -- 7.3.2 Education -- 7.3.3 Commerce.
7.3.4 Social Networking -- 7.3.5 Healthcare -- 7.3.6 Industrial Use -- 7.3.7 Entertainment -- 7.4 Accelerating Killer Apps -- 7.4.1 Edge Computing -- 7.4.2 Acceleration by Specialized Hardware -- References -- Chapter 8 From Concept to Production -- 8.1 System Design Process -- 8.2 Some Examples -- 8.3 Standards Compliance -- 8.4 Other Design Metrics -- 8.5 Summary -- References -- Part V Future Roadmap -- Chapter 9 The Road Ahead -- 9.1 Spatial Computing and Networking -- 9.2 Supporting 5G/6G Spatial Computing and Networking -- 9.3 Migrating to 6G -- 9.3.1 Cutting Edge 6G Research -- 9.4 Enabling Technologies for 5G and Beyond -- 9.4.1 Processing‐in‐Memory Architecture -- 9.4.2 New Packaging Architecture -- 9.4.3 New Memory Architecture -- 9.4.4 Artificial Intelligence‐Driven Architectures -- 9.5 Some Final Thoughts -- References -- Index -- The ComSoc Guides to Communications Technologies -- EULA.
Record Nr. UNINA-9911019503203321
Hung Patrick  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hybrid Communication Systems for Future 6G and Beyond : Visible Light Communication and Radio over Fiber Technology
Hybrid Communication Systems for Future 6G and Beyond : Visible Light Communication and Radio over Fiber Technology
Autore Kashif Rao
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (160 pages)
Disciplina 621.382/7
Soggetto topico Optical communications
FiWi access networks
6G mobile communication systems
ISBN 9781394230310
1394230311
9781394230303
1394230303
9781394230297
139423029X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Author -- Acknowledgments -- Introduction -- Chapter 1 Introduction -- 1.1 Overview -- 1.2 Radio Frequency Communication -- 1.2.1 Limitations for Future RF Communication -- 1.2.1.1 Spectrum Congestion -- 1.2.1.2 Limited Bandwidth -- 1.2.1.3 Line‐of‐Sight Requirements -- 1.2.1.4 Signal Attenuation and Interference -- 1.2.1.5 Security Concerns -- 1.2.1.6 Energy Efficiency -- 1.3 Optical Communication -- 1.3.1 Future Opportunities for Optical Communication -- 1.3.1.1 High Data Rates -- 1.3.1.2 Low Latency -- 1.3.1.3 Large Bandwidth -- 1.3.1.4 Immunity to Electromagnetic Interference -- 1.3.1.5 Secure Communication -- 1.3.1.6 Energy Efficiency -- 1.4 Hybrid System -- 1.4.1 Scope of Hybrid Communication -- 1.4.1.1 Seamless Connectivity -- 1.4.1.2 Enhanced Reliability -- 1.4.1.3 Improved Performance -- 1.4.1.4 Flexibility and Scalability -- 1.4.1.5 Multimodal Communication -- 1.4.1.6 Advanced Applications -- 1.5 History of Visible Light Communication -- 1.5.1 Ancient Signaling Methods -- 1.5.2 Optical Telegraphs -- 1.5.3 Alexander Graham Bell's Photophone (1880) -- 1.5.4 Invention of Light Emitting Diodes (LEDs) -- 1.5.5 Early Research into VLC (1990s-2000s) -- 1.5.6 Harald Haas and Li‐Fi (2011) -- 1.5.7 Technological Advancements -- 1.5.8 Standardization Efforts -- 1.5.9 Integration with Modern Communication Systems -- 1.5.10 Current Trends and Future Prospects -- 1.6 Visible Light Communication -- 1.6.1 Problem 1 -- 1.6.1.1 Current Industry Trend -- 1.6.1.2 Possible Solution -- 1.6.2 Problem 2 -- 1.6.2.1 Current Industry Trend -- 1.6.2.2 Possible Solution -- 1.6.3 Opti Wave System Tool -- References -- Chapter 2 Visible Light Communication -- 2.1 Overview -- 2.2 Background -- 2.3 VLC for Indoor Communication -- 2.4 Opportunities and Limitations -- 2.4.1 Applications.
2.5 Modulation Techniques -- 2.5.1 On-Off Keying -- 2.5.2 Pulse Width Modulation -- 2.5.3 Pulse Position Modulation (PPM) -- 2.5.4 Orthogonal Frequency Division Multiplexing -- 2.5.5 Color Shift Keying -- 2.5.6 Optical Asymmetric Modulation -- 2.5.7 Discrete Multi‐Tone (DMT) -- 2.6 Light Fidelity and Wireless Fidelity Comparison -- 2.7 VLC Transmitter and Receiver -- 2.7.1 VLC Transmitter -- 2.7.2 VLC Receiver -- References -- Chapter 3 Radio over Fiber System -- 3.1 Overview -- 3.1.1 Direct Modulation -- 3.1.2 External Modulation -- 3.2 Radio over Fiber Link Configuration -- 3.2.1 Radio Frequency over Fiber -- 3.2.2 Intermediate Frequency over Fiber -- 3.2.3 Baseband over Fiber -- 3.2.4 Millimeter‐Wave Signal Generation -- 3.2.5 Applications -- 3.2.5.1 Satellite Communication -- 3.2.5.2 Cellular Networks -- 3.2.5.3 Transportation and Vehicles -- 3.2.5.4 Visible Light Communication -- 3.3 Radio over Fiber System‐Level Analysis -- 3.3.1 Encoding Formats -- 3.3.2 PIN and APD Photodiodes -- 3.4 Simulation -- 3.4.1 Result -- 3.5 Future Multifunctional RoF Home Network -- 3.5.1 Fiber to the Home (FTTH) -- 3.5.2 Multifrequency RoF System Design -- References -- Chapter 4 Digital Coherent Integration with Radio over Fiber -- 4.1 Digital Coherent System Analysis -- 4.1.1 DP‐QPSK Transmitter -- 4.1.2 Digital Coherent Optical Receiver -- 4.1.3 Optical Integration Technology -- 4.1.3.1 PLC Technology -- 4.1.3.2 Optical Semiconductor -- 4.1.3.3 High‐Speed Electronic Devices -- 4.1.4 Digital Signal Processing in a Coherent Receiver -- 4.2 Software Implementation -- 4.3 Digital Coherent RoF System Analysis -- 4.3.1 Proposed System Design and Analysis -- 4.3.2 Simulation -- References -- Chapter 5 Proposed Hybrid System for Indoor VLC -- 5.1 Overview -- 5.1.1 Backhaul Connection -- 5.1.2 Uplink Connectivity -- 5.2 Proposed System Design -- 5.2.1 OFDM Coherent RoF.
5.2.1.1 Architecture Design -- 5.2.2 Modeling in OptiSystem 15 -- 5.3 Proposed Auto Channel Switching Unit (ACSU) -- 5.3.1 Modeling of the Auto Channel Switching Unit (ACSU) -- 5.4 Feasibility Analysis -- 5.4.1 Technical Feasibility -- 5.4.2 Cost‐Benefits Analysis -- References -- Chapter 6 Proposed Indoor Hybrid System Modeling -- 6.1 Modeling of Indoor Hybrid System for VLC -- 6.2 VLC and RoF Indoor Downloading -- 6.3 Wi‐Fi and RoF for Indoor Purposes -- Chapter 7 Conclusion and Future Work -- 7.1 Conclusion -- 7.2 Future Work -- 7.3 Applications of VLC in 6G and Above Communication -- 7.3.1 High‐Speed Data Transfer -- 7.3.1.1 High Bandwidth -- 7.3.1.2 Spectral Efficiency -- 7.3.1.3 Short‐Range Communication -- 7.3.1.4 Low Latency -- 7.3.1.5 Integration with Existing Infrastructure -- 7.3.1.6 Security and Privacy -- 7.3.1.7 Complementary to RF Technologies -- 7.3.2 Indoor Localization and Navigation -- 7.3.2.1 Precise Positioning -- 7.3.2.2 Multilayered Positioning -- 7.3.2.3 Low Latency -- 7.3.2.4 High‐Density Deployment -- 7.3.2.5 Complementary to GPS -- 7.3.2.6 Integration with Smart Lighting -- 7.3.2.7 Privacy and Security -- 7.3.3 Augmented Reality (AR) and Virtual Reality (VR) -- 7.3.3.1 Low Latency Communication -- 7.3.3.2 High Bandwidth -- 7.3.3.3 Indoor Localization and Positioning -- 7.3.3.4 Interactive Projection Mapping -- 7.3.3.5 Gesture Recognition -- 7.3.3.6 Privacy and Security -- 7.3.3.7 Multiuser Collaboration -- 7.3.4 Smart Infrastructure and Internet of Things (IoT) -- 7.3.4.1 Smart Lighting Systems -- 7.3.4.2 Indoor Positioning and Navigation -- 7.3.4.3 Environmental Monitoring -- 7.3.4.4 Smart Retail and Hospitality -- 7.3.4.5 Smart Transportation -- 7.3.4.6 Industrial Automation -- 7.3.4.7 Energy Harvesting -- 7.3.5 Telecommunication/Wireless -- 7.3.5.1 Indoor Wireless Networking -- 7.3.5.2 Li‐Fi.
7.3.5.3 Last‐Mile Connectivity -- 7.3.5.4 Secure Communications -- 7.3.5.5 Smart Cities -- 7.3.5.6 Augmented Reality (AR) and Location‐Based Services -- 7.3.5.7 Vehicle‐to‐Infrastructure (V2I) Communication -- Chapter 8 The Role of AI and Machine Learning in 6G -- 8.1 Overview of AI and ML Concepts -- 8.1.1 Key AI and ML Concepts -- 8.2 Evolution of AI in Telecommunications -- 8.2.1 Early Adoption (1980s-1990s) -- 8.2.2 Growth Phase (2000s) -- 8.2.3 Modern Era (2010s) -- 8.2.4 Current Trends (2020s) -- 8.2.5 Future Directions (2030s and beyond) -- 8.3 Why AI and ML are Critical for 6G -- 8.4 Applications of AI and ML in Wireless Networks -- 8.4.1 Network Management and Optimization -- 8.4.2 Enhanced User Experience -- 8.4.3 Security and Fraud Detection -- 8.4.4 Predictive Maintenance and Fault Management -- 8.4.5 Advanced Communication Techniques -- 8.4.6 Edge Computing and IoT -- 8.5 6G and Visible Light Communication (VLC) -- 8.5.1 Ultrahigh‐Speed Data Transmission -- 8.5.2 Enhanced Indoor Localization and Positioning -- 8.5.3 Secure and Resilient Communication -- 8.5.4 Energy‐Efficient Networking -- 8.5.5 Overcoming RF Limitations and Interference -- Chapter 9 Future Research Directions for Visible Light Communication (VLC) in 6G Networks -- 9.1 VLC with Terahertz -- 9.1.1 Research Focus: Investigate Seamless Integration of VLC with Terahertz (THz) Communication Technologies -- 9.1.1.1 Complementary Strengths -- 9.1.1.2 Applications -- 9.1.1.3 Research Directions -- 9.2 Enhanced Modulation and Coding Schemes -- 9.2.1 Research Focus: Develop Advanced Modulation and Coding Techniques Tailored for VLC in 6G Networks -- 9.2.1.1 Key Areas of Research -- 9.3 Hybrid VLC‐RF Networks -- 9.3.1 Research Focus: Explore Hybrid Visible Light Communication (VLC) and Radio Frequency (RF) Network Architectures to Enhance Both Coverage and Reliability.
9.3.1.1 Key Points -- 9.3.1.2 Challenges -- 9.3.1.3 Potential Solutions and Approaches -- 9.3.1.4 Collaborative Communication Strategies -- 9.4 Massive MIMO and Beamforming Techniques -- 9.4.1 Research Focus: Investigate the Integration of Massive Multiple‐Input Multiple‐Output (MIMO) and Beamforming Techniques Within Visible Light Communication (VLC)‐Enabled 6G Networks -- 9.4.1.1 Key Points -- 9.4.1.2 Challenges -- 9.4.1.3 Potential Solutions and Approaches -- 9.5 Network Slicing and Service Differentiation -- 9.5.1 Research Focus: Explore Network Slicing and Service Differentiation Mechanisms Tailored for Visible Light Communication (VLC) Networks Within the Context of 6G -- 9.5.1.1 Key Points -- 9.5.1.2 Challenges -- 9.5.1.3 Potential Solutions and Approaches -- 9.5.1.4 Application Scenarios -- 9.6 Energy‐Efficient VLC Systems -- 9.6.1 Research Focus: Develop Energy‐Efficient Visible Light Communication (VLC) Systems Tailored for Sustainable 6G Networks -- 9.6.1.1 Key Points -- 9.6.1.2 Challenges -- 9.6.1.3 Potential Solutions and Approaches -- 9.6.1.4 Application Scenarios -- 9.7 Security and Privacy Enhancements -- 9.7.1 Research Focus: Investigate Advanced Security and Privacy Mechanisms Specifically Designed for Visible Light Communication (VLC) in 6G Networks -- 9.7.1.1 Key Points -- 9.7.1.2 Challenges -- 9.7.1.3 Potential Solutions and Approaches -- 9.7.1.4 Application Scenarios -- Index -- EULA.
Record Nr. UNINA-9911020332703321
Kashif Rao  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent Spectrum Management : Towards 6G
Intelligent Spectrum Management : Towards 6G
Autore Iyer Sridhar
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (307 pages)
Disciplina 621.3845/6
Altri autori (Persone) KallaAnshuman
LopezOnel Alcaraz
De AlwisChamitha
Soggetto topico Radio frequency allocation - Management
6G mobile communication systems
Mobile communication systems
Artificial intelligence
ISBN 9781394201228
1394201222
9781394201211
1394201214
9781394201235
1394201230
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911018942203321
Iyer Sridhar  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent Surfaces Empowered 6G Wireless Network / / edited by Qingqing Wu [and four others]
Intelligent Surfaces Empowered 6G Wireless Network / / edited by Qingqing Wu [and four others]
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2024]
Descrizione fisica 1 online resource (365 pages)
Disciplina 621.38456
Soggetto topico 6G mobile communication systems
Smart materials
Surfaces (Technology)
ISBN 1-119-91310-1
1-119-91312-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgement -- Part I Fundamentals of IRS -- Chapter 1 Introduction to Intelligent Surfaces -- 1.1 Background -- 1.2 Concept of Intelligent Surfaces -- 1.3 Advantages of Intelligence Surface -- 1.4 Potential Applications -- 1.5 Conclusion -- Bibliography -- Chapter 2 IRS Architecture and Hardware Design -- 2.1 Metamaterials: Basics of IRS -- 2.2 Programmable Metasurfaces -- 2.3 IRS Hardware Design -- 2.3.1 IRS System Architecture -- 2.3.2 IRS Element Design -- 2.3.3 IRS Array Design -- 2.3.4 IRS Controller Design -- 2.3.5 Full‐Wave Simulation and Field Test -- 2.4 State‐of‐the‐Art IRS Prototype -- 2.4.1 Passive IRS Prototype by Tsinghua -- 2.4.2 Active IRS Prototype by Tsinghua -- 2.4.3 IRS Modulation Prototype by SEU -- 2.4.3.1 Transmitter Design -- 2.4.3.2 Frame Structure Design -- 2.4.3.3 Receiver Design -- 2.4.3.4 System Design -- 2.4.4 Transmissive IRS Prototype by MIT -- 2.4.5 IRS Prototype by China Mobile -- 2.4.6 IRS Prototype by DOCOMO -- Bibliography -- Chapter 3 On Path Loss and Channel Reciprocity of RIS‐Assisted Wireless Communications -- 3.1 Introduction -- 3.2 Path Loss Modeling and Channel Reciprocity Analysis -- 3.2.1 System Description -- 3.2.2 General Path Loss Model -- 3.2.3 Path Loss Models for Typical Scenarios -- 3.2.4 Discussion on RIS Path Loss and Channel Reciprocity -- 3.3 Path Loss Measurement and Channel Reciprocity Validation -- 3.3.1 Two Fabricated RISs -- 3.3.2 Two Measurement Systems -- 3.3.3 Validation of RIS Path Loss Models -- 3.3.4 Validation of RIS Channel Reciprocity -- 3.4 Conclusion -- 3.A Appendix -- 3.A.1 Proof of Theorem 3.1 -- Bibliography -- Chapter 4 Intelligent Surface Communication Design: Main Challenges and Solutions -- 4.1 Introduction -- 4.2 Channel Estimation.
4.2.1 Problem Description and Challenges -- 4.2.2 Semi‐Passive IRS Channel Estimation -- 4.2.3 Fully‐Passive IRS Channel Estimation -- 4.3 Passive Beamforming Optimization -- 4.3.1 IRS‐aided SISO System: Passive Beamforming Basics and Power Scaling Order -- 4.3.2 IRS‐aided MISO System: Joint Active and Passive Beamforming -- 4.3.3 IRS‐Aided MIMO System -- 4.3.4 IRS‐Aided OFDM System -- 4.3.5 Passive Beamforming with Discrete Reflection Amplitude and Phase Shift -- 4.3.6 Other Related Works and Future Directions -- 4.4 IRS Deployment -- 4.4.1 IRS Deployment Optimization at the Link Level -- 4.4.1.1 Optimal Deployment of Single IRS -- 4.4.1.2 Single IRS versus Multiple Cooperative IRSs -- 4.4.1.3 LoS versus Non‐LoS (NLoS) -- 4.4.2 IRS Deployment at the Network Level: Distributed or Centralized? -- 4.4.3 Other Related Work and Future Direction -- 4.5 Conclusion -- Bibliography -- Part II IRS for 6G Wireless Systems -- Chapter 5 Overview of IRS for 6G and Industry Advance -- 5.1 IRS for 6G -- 5.1.1 Potential Use Cases -- 5.1.1.1 Indoor Use Cases -- 5.1.1.2 Outdoor Use Cases -- 5.1.2 Deployment Scenarios -- 5.2 Industrial Progresses -- 5.2.1 Funded Projects -- 5.2.2 White Papers -- 5.2.3 Prototyping and Testing -- 5.2.4 Standardization Progress -- Bibliography -- Chapter 6 RIS‐Aided Massive MIMO Antennas* -- 6.1 Introduction -- 6.1.0 Notation -- 6.2 System Model -- 6.2.1 Channel Model -- 6.2.2 Active Antenna Configuration -- 6.3 Uplink/Downlink Signal Processing -- 6.3.1 Uplink Channel Estimation -- 6.3.2 Downlink Data Transmission -- 6.4 Performance Measures -- 6.4.1 SINR and Spectral Efficiency under Perfect Channel State Information (CSI) -- 6.4.2 SINR and Spectral Efficiency under Imperfect Channel State Information (CSI) -- 6.4.2.1 The Upper‐Bound (UB) to the System Performance -- 6.4.2.2 The Hardening Lower‐Bound (LB) to System Performance.
6.5 Optimization of the RIS Phase Shifts -- 6.6 Numerical Results -- 6.7 Conclusions -- 6.A Appendix -- Bibliography -- Chapter 7 Localization, Sensing, and Their Integration with RISs -- 7.1 Introduction -- 7.1.1 Localization in 5G -- 7.1.2 RIS Key Advantages -- 7.1.2.1 Localization -- 7.1.2.2 Sensing -- 7.2 RIS Types and Channel Modeling -- 7.2.1 RIS Hardware Architectures -- 7.2.2 RIS‐Parameterized Channel Models -- 7.2.2.1 Geometric Channel Model -- 7.2.2.2 Stochastic Channel Modeling -- 7.3 Localization with RISs -- 7.3.1 Fundamentals on Localization -- 7.3.2 Localization with Reflective RISs -- 7.3.3 Localization with a Single STAR‐RIS -- 7.3.4 Localization with Multiple Receiving RISs -- 7.4 Sensing with RISs -- 7.4.1 Link Budget Analysis -- 7.4.1.1 Monostatic Radar Sensing -- 7.4.1.2 Bistatic Radar Sensing -- 7.4.2 Joint Sensing and Localization with a Single RIS -- 7.4.2.0 UE and Landmark Estimates -- 7.5 Conclusion and Open Challenges -- Bibliography -- Chapter 8 IRS‐Aided THz Communications -- 8.1 IRS‐Aided THz MIMO System Model -- 8.2 Beam Training Protocol -- 8.3 IRS Prototyping -- 8.3.1 Active Beam Steering at THz transceivers -- 8.3.2 Passive Beam Steering on THz IRS -- 8.3.3 Codebook Design for Beam Scanning -- 8.3.4 Beam‐Scanning Reflectarray -- 8.4 IRS‐THz Communication Applications -- 8.4.1 High Speed Fronthaul/Backhaul -- 8.4.2 Cellular Connected Drones -- 8.4.3 Wireless Data Center -- 8.4.4 Enhanced Indoor Coverage -- 8.4.5 Vehicular Communications -- 8.4.6 Physical‐Layer Security -- Bibliography -- Chapter 9 Joint Design of Beamforming, Phase Shifting, and Power Allocation in a Multi‐cluster IRS‐NOMA Network -- 9.1 Introduction -- 9.1.1 Previous Works -- 9.1.2 Motivation and Challenge -- 9.2 System Model and Problem Formulation -- 9.2.1 System Model -- 9.2.2 Problem Formulation -- 9.3 Alternating Algorithm.
9.3.1 Beamforming Optimization -- 9.3.2 Phase‐Shift Feasibility -- 9.3.3 Algorithm Design -- 9.4 Simulation Result -- 9.5 Conclusion -- Bibliography -- Chapter 10 IRS‐Aided Mobile Edge Computing: From Optimization to Learning -- 10.1 Introduction -- 10.2 System Model and Objective -- 10.3 Optimization‐Based Approaches to IRS‐Aided MEC -- 10.3.1 IRS Reflecting Coefficients Design -- 10.3.2 Receive Beamforming Design -- 10.3.3 Energy Partition Optimization -- 10.3.4 Convergence and Complexity -- 10.4 Deep Learning Approaches to IRS‐Aided MEC -- 10.4.1 CSI‐Based Learning Architecture -- 10.4.2 Location‐Only Learning Architecture -- 10.4.3 Input Feature Uncertainty -- 10.4.4 Comparison Between the CSI‐Based and CSI‐Free Learning Architectures -- 10.4.5 Complexity Reduction via Learning -- 10.5 Comparative Evaluation Results -- 10.5.1 Scenario Without LoS Direct Links -- 10.5.2 Scenario with Strong LoS Direct Links -- 10.6 Conclusions -- Bibliography -- Chapter 11 Interference Nulling Using Reconfigurable Intelligent Surface -- 11.1 Introduction -- 11.2 System Model -- 11.3 Interference Nulling via RIS -- 11.3.1 Feasibility of Interference Nulling -- 11.3.2 Alternating Projection Algorithm -- 11.3.3 Simulation Results -- 11.4 Learning to Minimize Interference -- 11.4.1 Learning to Initialize -- 11.4.2 Simulation Results -- 11.5 Conclusions -- Bibliography -- Chapter 12 Blind Beamforming for IRS Without Channel Estimation -- 12.1 Introduction -- 12.2 System Model -- 12.3 Random‐Max Sampling (RMS) -- 12.4 Conditional Sample Mean (CSM) -- 12.5 Some Comments on CSM -- 12.5.1 Connection to Closest Point Projection -- 12.5.2 Connection to Phase Retrieval -- 12.5.3 CSM for General Utility Functions -- 12.6 Field Tests -- 12.7 Conclusion -- Bibliography -- Chapter 13 RIS in Wireless Information and Power Transfer -- 13.1 Introduction -- 13.1.1 WPT and WIPT.
13.1.2 RIS -- 13.1.3 RIS in WPT and WIPT -- 13.2 RIS‐Aided WPT -- 13.2.1 WPT Architecture -- 13.2.2 Waveform and Beamforming -- 13.2.3 Channel Acquisition -- 13.2.3.1 Direct Channel -- 13.2.3.2 RIS‐Related Channels -- 13.2.4 Prototype and Experiments -- 13.3 RIS‐Aided WIPT -- 13.3.1 WIPT Categories -- 13.3.2 RIS‐Aided SWIPT -- 13.3.2.1 SWIPT Architecture -- 13.3.2.2 Waveform and Beamforming -- 13.3.2.3 Channel Acquisition -- 13.3.3 RIS‐Aided WPCN and WPBC -- 13.4 Conclusion -- Bibliography -- Chapter 14 Beamforming Design for Self‐Sustainable IRS‐Assisted MISO Downlink Systems -- 14.1 Introduction -- 14.2 System Model -- 14.2.1 Self‐Sustainable IRS Model -- 14.2.2 Channel and Signal Models -- 14.2.3 Power Harvesting Model at the IRS -- 14.3 Problem Formulation -- 14.4 Solution -- 14.4.1 Problem Transformation -- 14.4.2 Address the Coupling Variables and Binary Variables -- 14.4.3 Successive Convex Approximation -- 14.5 Numerical Results -- 14.6 Summary -- 14.7 Further Extension -- Bibliography -- Chapter 15 Optical Intelligent Reflecting Surfaces -- 15.1 Introduction -- 15.2 System and Channel Model -- 15.2.1 IRS Model -- 15.2.2 Transmitter and Receiver Model -- 15.2.3 Channel Model -- 15.3 Communication Theoretical Modeling of Optical IRSs -- 15.3.1 Scattering Theory -- 15.3.1.1 Incident Beam on the IRS -- 15.3.1.2 Huygens-Fresnel Principle -- 15.3.1.3 Intermediate‐Field Versus Far‐Field -- 15.3.1.4 Received Power Density -- 15.3.2 Geometric Optics -- 15.3.2.1 Equivalent Mirror‐Assisted Analysis -- 15.3.2.2 Received Power Density -- 15.4 Design of Optical IRSs for FSO Systems -- 15.4.1 IRS‐Assisted Point‐to‐Point System -- 15.4.1.1 IRS Phase‐Shift Profile Φ(r,rt) -- 15.4.1.2 IRS Efficiency ζ -- 15.4.2 IRS‐Assisted Multi‐Link System -- 15.4.2.1 Time Division Protocol -- 15.4.2.2 IRS Division Protocol -- 15.4.2.3 IRS Homogenization Protocol.
15.5 Simulation Results.
Record Nr. UNINA-9910830726203321
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2024]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Next Generation Multiple Access
Next Generation Multiple Access
Autore Liu Yuanwei
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (624 pages)
Disciplina 004.62
Altri autori (Persone) LiuLiang
DingZhiguo
ShenXuemin
Soggetto topico 6G mobile communication systems
Multiple access protocols (Computer network protocols)
ISBN 9781394180523
1394180527
9781394180509
1394180500
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Next Generation Multiple Access Toward 6G -- 1.1 The Road to NGMA -- 1.2 Non‐Orthogonal Multiple Access -- 1.3 Massive Access -- 1.4 Book Outline -- Part I Evolution of NOMA Towards NGMA -- Chapter 2 Modulation Techniques for NGMA/NOMA -- 2.1 Introduction -- 2.2 Space‐Domain IM for NGMA -- 2.2.1 SM‐Based NOMA -- 2.2.1.1 Multi‐RF Schemes -- 2.2.1.2 Single‐RF Schemes -- 2.2.1.3 Recent Developments in SM‐NOMA -- 2.2.2 RSM‐Based NOMA -- 2.2.3 SM‐Aided SCMA -- 2.3 Frequency‐Domain IM for NGMA -- 2.3.1 NOMA with Frequency‐Domain IM -- 2.3.1.1 OFDM‐IM NOMA -- 2.3.1.2 DM‐OFDM NOMA -- 2.3.2 C‐NOMA with Frequency‐Domain IM -- 2.3.2.1 Broadcast Phase -- 2.3.2.2 Cooperative Phase -- 2.4 Code‐Domain IM for NGMA -- 2.4.1 CIM‐SCMA -- 2.4.2 CIM‐MC‐CDMA -- 2.5 Power‐Domain IM for NGMA -- 2.5.1 Transmission Model -- 2.5.1.1 Two‐User Case -- 2.5.1.2 Multiuser Case -- 2.5.2 Signal Decoding -- 2.5.3 Performance Analysis -- 2.6 Summary -- References -- Chapter 3 NOMA Transmission Design with Practical Modulations -- 3.1 Introduction -- 3.2 Fundamentals -- 3.2.1 Multichannel Downlink NOMA -- 3.2.2 Practical Modulations in NOMA -- 3.3 Effective Throughput Analysis -- 3.3.1 Effective Throughput of the Single‐User Channels -- 3.3.2 Effective Throughput of the Two‐User Channels -- 3.4 NOMA Transmission Design -- 3.4.1 Problem Formulation -- 3.4.2 Power Allocation -- 3.4.2.1 Power Allocation within Channels -- 3.4.2.2 Power Budget Allocation Among Channels -- 3.4.3 Joint Resource Allocation -- 3.5 Numerical Results -- 3.6 Conclusion -- References -- Chapter 4 Optimal Resource Allocation for NGMA -- 4.1 Introduction -- 4.2 Single‐Cell Single‐Carrier NOMA -- 4.2.1 Total Power Minimization Problem -- 4.2.2 Sum‐Rate Maximization Problem.
4.2.3 Energy‐Efficiency Maximization Problem -- 4.2.4 Key Features and Implementation Issues -- 4.2.4.1 CSI Insensitivity -- 4.2.4.2 Rate Fairness -- 4.3 Single‐Cell Multicarrier NOMA -- 4.3.1 Total Power Minimization Problem -- 4.3.2 Sum‐Rate Maximization Problem -- 4.3.3 Energy‐Efficiency Maximization Problem -- 4.3.4 Key Features and Implementation Issues -- 4.4 Multi‐cell NOMA with Single‐Cell Processing -- 4.4.1 Dynamic Decoding Order -- 4.4.1.1 Optimal JSPA for Total Power Minimization Problem -- 4.4.1.2 Optimal JSPA for Sum‐Rate Maximization Problem -- 4.4.1.3 Optimal JSPA for EE Maximization Problem -- 4.4.2 Static Decoding Order -- 4.4.2.1 Optimal FRPA for Total Power Minimization Problem -- 4.4.2.2 Optimal FRPA for Sum‐Rate Maximization Problem -- 4.4.2.3 Optimal FRPA for EE Maximization Problem -- 4.4.2.4 Optimal JRPA for Total Power Minimization Problem -- 4.4.2.5 Suboptimal JRPA for Sum‐Rate Maximization Problem -- 4.4.2.6 Suboptimal JRPA for EE Maximization Problem -- 4.5 Numerical Results -- 4.5.1 Approximated Optimal Powers -- 4.5.2 SC‐NOMA versus FDMA-NOMA versus FDMA -- 4.5.3 Multi‐cell NOMA: JSPA versus JRPA versus FRPA -- 4.6 Conclusions -- Acknowledgments -- References -- Chapter 5 Cooperative NOMA -- 5.1 Introduction -- 5.2 System Model for D2MD‐CNOMA -- 5.2.1 System Configuration -- 5.2.2 Channel Model -- 5.3 Adaptive Aggregate Transmission -- 5.3.1 First Phase -- 5.3.2 Second Phase -- 5.4 Performance Analysis -- 5.4.1 Outage Probability -- 5.4.2 Ergodic Sum Capacity -- 5.5 Numerical Results and Discussion -- 5.5.1 Outage Probability -- 5.5.2 Ergodic Sum Capacity -- 5.A.1 Proof of Theorem 5.1 -- References -- Chapter 6 Multi‐scale‐NOMA: An Effective Support to Future Communication-Positioning Integration System -- 6.1 Introduction -- 6.2 Positioning in Cellular Networks -- 6.3 MS‐NOMA Architecture -- 6.4 Interference Analysis.
6.4.1 Single‐Cell Network -- 6.4.1.1 Interference of Positioning to Communication -- 6.4.1.2 Interference of Communication to Positioning -- 6.4.2 Multicell Networks -- 6.4.2.1 Interference of Positioning to Communication -- 6.4.2.2 Interference of Communication to Positioning -- 6.5 Resource Allocation -- 6.5.1 The Constraints -- 6.5.1.1 The BER Threshold Under QoS Constraint -- 6.5.1.2 The Total Power Limitation -- 6.5.1.3 The Elimination of Near‐Far Effect -- 6.5.2 The Proposed Joint Power Allocation Model -- 6.5.3 The Positioning-Communication Joint Power Allocation Scheme -- 6.5.4 Remarks -- 6.6 Performance Evaluation -- 6.6.1 Communication Performance -- 6.6.2 Ranging Performance -- 6.6.3 Resource Consumption of Positioning -- 6.6.3.1 Achievable Positioning Measurement Frequency -- 6.6.3.2 The Resource Element Consumption -- 6.6.3.3 The Power Consumption -- 6.6.4 Positioning Performance -- 6.6.4.1 Comparison by Using CP4A and the Traditional Method -- 6.6.4.2 Comparision Between MS‐NOMA and PRS -- References -- Chapter 7 NOMA‐Aware Wireless Content Caching Networks -- 7.1 Introduction -- 7.2 System Model -- 7.2.1 System Description -- 7.2.2 Content Request Model -- 7.2.3 Random System State -- 7.2.4 System Latency Under Each Random State -- 7.2.5 System's Average Latency -- 7.3 Algorithm Design -- 7.3.1 User Pairing and Power Control Optimization -- 7.3.2 Cache Placement -- 7.3.3 Recommendation Algorithm -- 7.3.4 Joint Optimization Algorithm and Property Analysis -- 7.4 Numerical Simulation -- 7.4.1 Convergence Performance -- 7.4.2 System's Average Latency -- 7.4.3 Cache Hit Ratio -- 7.5 Conclusion -- References -- Chapter 8 NOMA Empowered Multi‐Access Edge Computing and Edge Intelligence -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 System Model and Formulation -- 8.3.1 Modeling of Two‐Sided Dual Offloading.
8.3.2 Overall Latency Minimization -- 8.4 Algorithms for Optimal Offloading -- 8.5 Numerical Results -- 8.6 Conclusion -- Acknowledgments -- References -- Chapter 9 Exploiting Non‐orthogonal Multiple Access in Integrated Sensing and Communications -- 9.1 Introduction -- 9.2 Developing Trends and Fundamental Models of ISAC -- 9.2.1 ISAC: From Orthogonality to Non‐orthogonality -- 9.2.2 Downlink ISAC -- 9.2.3 Uplink ISAC -- 9.3 Novel NOMA Designs in Downlink and Uplink ISAC -- 9.3.1 NOMA‐Empowered Downlink ISAC Design -- 9.3.2 Semi‐NOMA‐Based Uplink ISAC Design -- 9.4 Case Study: System Model and Problem Formulation -- 9.4.1 System Model -- 9.4.1.1 Communication Model -- 9.4.1.2 Sensing Model -- 9.4.2 Problem Formulation -- 9.5 Case Study: Proposed Solutions -- 9.6 Case Study: Numerical Results -- 9.6.1 Convergence of Algorithm 9.1 -- 9.6.2 Baseline -- 9.6.3 Transmit Beampattern -- 9.7 Conclusions -- References -- Part II Massive Access for NGMA -- Chapter 10 Capacity of Many‐Access Channels -- 10.1 Introduction -- 10.2 The Many‐Access Channel Model -- 10.3 Capacity of the MnAC -- 10.3.1 The Equal‐Power Case -- 10.3.2 Heterogeneous Powers and Fading -- 10.4 Energy Efficiency of the MnAC -- 10.4.1 Minimum Energy per Bit for Given PUPE -- 10.4.2 Capacity per Unit‐Energy Under Different Error Criteria -- 10.5 Discussion and Open Problems -- 10.5.1 Scaling Regime -- 10.5.2 Some Practical Issues -- Acknowledgments -- References -- Chapter 11 Random Access Techniques for Machine‐Type Communication -- 11.1 Fundamentals of Random Access -- 11.1.1 Coordinated Versus Uncoordinated Transmissions -- 11.1.2 Random Access Techniques -- 11.1.2.1 ALOHA Protocols -- 11.1.2.2 CSMA -- 11.1.3 Re‐transmission Strategies -- 11.2 A Game Theoretic View -- 11.2.1 A Model -- 11.2.2 Fictitious Play -- 11.3 Random Access Protocols for MTC -- 11.3.1 4‐Step Random Access.
11.3.2 2‐Step Random Access -- 11.3.3 Analysis of 2‐Step Random Access -- 11.3.4 Fast Retrial -- 11.4 Variants of 2‐Step Random Access -- 11.4.1 2‐Step Random Access with MIMO -- 11.4.2 Sequential Transmission of Multiple Preambles -- 11.4.3 Simultaneous Transmission of Multiple Preambles -- 11.4.4 Preambles for Exploration -- 11.5 Application of NOMA to Random Access -- 11.5.1 Power‐Domain NOMA -- 11.5.2 S‐ALOHA with NOMA -- 11.5.3 A Generalization with Multiple Channels -- 11.5.4 NOMA‐ALOHA Game -- 11.6 Low‐Latency Access for MTC -- 11.6.1 Long Propagation Delay -- 11.6.2 Repetition Diversity -- 11.6.3 Channel Coding‐Based Random Access -- References -- Chapter 12 Grant‐Free Random Access via Compressed Sensing: Algorithm and Performance -- 12.1 Introduction -- 12.2 Joint Device Detection, Channel Estimation, and Data Decoding with Collision Resolution for MIMO Massive Unsourced Random Access -- 12.2.1 System Model and Encoding Scheme -- 12.2.1.1 System Model -- 12.2.1.2 Encoding Scheme -- 12.2.2 Collision Resolution Protocol -- 12.2.3 Decoding Scheme -- 12.2.3.1 Joint DAD‐CE Algorithm -- 12.2.3.2 MIMO‐LDPC‐SIC Decoder -- 12.2.4 Experimental Results -- 12.3 Exploiting Angular Domain Sparsity for Grant‐Free Random Access: A Hybrid AMP Approach -- 12.3.1 Sparse Modeling of Massive Access -- 12.3.2 Recovery Algorithm -- 12.3.2.1 Application to Unsourced Random Access -- 12.3.3 Experimental Results -- 12.4 LEO Satellite‐Enabled Grant‐Free Random Access -- 12.4.1 System Model -- 12.4.1.1 Channel Model -- 12.4.1.2 Signal Modulation -- 12.4.1.3 Problem Formulation -- 12.4.2 Pattern Coupled SBL Framework -- 12.4.2.1 The Pattern‐Coupled Hierarchical Prior -- 12.4.2.2 SBL Framework -- 12.4.3 Experimental Results -- 12.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 13 Algorithm Unrolling for Massive Connectivity in IoT Networks.
13.1 Introduction.
Record Nr. UNINA-9911020068103321
Liu Yuanwei  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...