top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Data Science for Public Policy / Jeffrey C. Chen, Edward A. Rubin, Gary J. Cornwall
Data Science for Public Policy / Jeffrey C. Chen, Edward A. Rubin, Gary J. Cornwall
Autore Chen, Jeffrey C.
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xiv, 363 p. : ill. ; 24 cm
Altri autori (Persone) Cornwall, Gary J.
Rubin, Edward A.
Soggetto topico 68-XX - Computer science [MSC 2020]
62H12 - Estimation in multivariate analysis [MSC 2020]
62-XX - Statistics [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
62H11 - Directional data; spatial statistics [MSC 2020]
68N15 - Theory of programming languages [MSC 2020]
91-XX - Game theory, economics, finance, and other social and behavioral sciences [MSC 2020]
62P20 - Applications of statistics to economics [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62P25 - Applications of statistics to social sciences [MSC 2020]
62P12 - Applications of statistics to environmental and related topics [MSC 2020]
68T50 - Natural language processing [MSC 2020]
91C20 - Clustering in the social and behavioral sciences [MSC 2020]
68N01 - General topics in the theory of software [MSC 2020]
Soggetto non controllato Data Sciences
Econometrics
Programming
Public policy
Statistics
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0274696
Chen, Jeffrey C.  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Data Science for Public Policy / Jeffrey C. Chen, Edward A. Rubin, Gary J. Cornwall
Data Science for Public Policy / Jeffrey C. Chen, Edward A. Rubin, Gary J. Cornwall
Autore Chen, Jeffrey C.
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xiv, 363 p. : ill. ; 24 cm
Altri autori (Persone) Cornwall, Gary J.
Rubin, Edward A.
Soggetto topico 62-XX - Statistics [MSC 2020]
62H11 - Directional data; spatial statistics [MSC 2020]
62H12 - Estimation in multivariate analysis [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62P12 - Applications of statistics to environmental and related topics [MSC 2020]
62P20 - Applications of statistics to economics [MSC 2020]
62P25 - Applications of statistics to social sciences [MSC 2020]
68-XX - Computer science [MSC 2020]
68N01 - General topics in the theory of software [MSC 2020]
68N15 - Theory of programming languages [MSC 2020]
68T50 - Natural language processing [MSC 2020]
91-XX - Game theory, economics, finance, and other social and behavioral sciences [MSC 2020]
91C20 - Clustering in the social and behavioral sciences [MSC 2020]
Soggetto non controllato Data Sciences
Econometrics
Programming
Public policy
Statistics
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00274696
Chen, Jeffrey C.  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer
Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer
Autore Lederer, Johannes
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xiv, 355 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62H22 - Probabilistic graphical models [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62R07 - Statistical aspects of big data and data science [MSC 2020]
Soggetto non controllato Calibration
Estimation
Graphical Models
High dimensional inference
High-Dimensional Data
High-dimensional statistics
Lasso
Linear regression
Prediction
R labs
Regularization
Sparsity
Statistical inference
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0277448
Lederer, Johannes  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer
Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer
Autore Lederer, Johannes
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xiv, 355 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62H22 - Probabilistic graphical models [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62R07 - Statistical aspects of big data and data science [MSC 2020]
Soggetto non controllato Calibration
Estimation
Graphical Models
High dimensional inference
High-Dimensional Data
High-dimensional statistics
Lasso
Linear regression
Prediction
R labs
Regularization
Sparsity
Statistical inference
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00277448
Lederer, Johannes  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Autore Vidal, René
Pubbl/distr/stampa New York, : Springer, 2016
Descrizione fisica XXXII, 566 p. : ill. ; 24 cm
Altri autori (Persone) Ma, Yi
Sastry, S. Shankar
Soggetto topico 14-XX - Algebraic geometry [MSC 2020]
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
62B10 - Statistical aspects of information-theoretic topics [MSC 2020]
62H12 - Estimation in multivariate analysis [MSC 2020]
62-XX - Statistics [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
30C10 - Polynomials and rational functions of one complex variable [MSC 2020]
62H35 - Image analysis in multivariate analysis [MSC 2020]
62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62Jxx - Linear inference, regression [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62Fxx - Parametric inference [MSC 2020]
30C40 - Kernel functions in one complex variable and applications [MSC 2020]
14N20 - Configurations and arrangements of linear subspaces [MSC 2020]
Soggetto non controllato Hybrid system identification
Image and video segmentation
Linear subspace models
Low-rank matrix theory
Manifold learning
Principal component analysis
Robust principal component analysis
Sparse representation theory
Spectral clustering
Subspace arrangements
Subspace clustering
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0114796
Vidal, René  
New York, : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Autore Vidal, René
Pubbl/distr/stampa New York, : Springer, 2016
Descrizione fisica XXXII, 566 p. : ill. ; 24 cm
Altri autori (Persone) Ma, Yi
Sastry, S. Shankar
Soggetto topico 14-XX - Algebraic geometry [MSC 2020]
14N20 - Configurations and arrangements of linear subspaces [MSC 2020]
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
30C10 - Polynomials and rational functions of one complex variable [MSC 2020]
30C40 - Kernel functions in one complex variable and applications [MSC 2020]
62-XX - Statistics [MSC 2020]
62B10 - Statistical aspects of information-theoretic topics [MSC 2020]
62Fxx - Parametric inference [MSC 2020]
62H12 - Estimation in multivariate analysis [MSC 2020]
62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62H35 - Image analysis in multivariate analysis [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62Jxx - Linear inference, regression [MSC 2020]
Soggetto non controllato Hybrid system identification
Image and video segmentation
Linear subspace models
Low-rank matrix theory
Manifold learning
Principal component analysis
Robust principal component analysis
Sparse representation theory
Spectral clustering
Subspace arrangements
Subspace clustering
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00114796
Vidal, René  
New York, : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Generalized principal component analysis / René Vidal, Yi Ma, S. Shankar Sastry
Autore Vidal, René
Edizione [New York : Springer, 2016]
Pubbl/distr/stampa XXXII, 566 p., : ill. ; 24 cm
Descrizione fisica Pubblicazione in formato elettronico
Altri autori (Persone) Ma, Yi
Sastry, S. Shankar
Soggetto topico 14-XX - Algebraic geometry [MSC 2020]
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
62B10 - Statistical aspects of information-theoretic topics [MSC 2020]
62H12 - Estimation in multivariate analysis [MSC 2020]
62-XX - Statistics [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
30C10 - Polynomials and rational functions of one complex variable [MSC 2020]
62H35 - Image analysis in multivariate analysis [MSC 2020]
62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62Jxx - Linear inference, regression [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62Fxx - Parametric inference [MSC 2020]
30C40 - Kernel functions in one complex variable and applications [MSC 2020]
14N20 - Configurations and arrangements of linear subspaces [MSC 2020]
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0114796
Vidal, René  
XXXII, 566 p., : ill. ; 24 cm
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Machine Learning Algorithms : Adversarial Robustness in Signal Processing / Fuwei Li, Lifeng Lai, Shuguang Cui
Machine Learning Algorithms : Adversarial Robustness in Signal Processing / Fuwei Li, Lifeng Lai, Shuguang Cui
Autore Li, Fuwei
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica ix, 104 p. : ill. ; 24 cm
Altri autori (Persone) Cui, Shuguang
Lai, Lifeng
Soggetto topico 62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
68-XX - Computer science [MSC 2020]
68M18 - Wireless sensor networks as related to computer science [MSC 2020]
68M25 - Computer security [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
94A12 - Signal theory (characterization, reconstruction, filtering, etc.) [MSC 2020]
Soggetto non controllato Adversarial attack
Adversarial machine learning
Adversarial robustness
Alternating optimization
Bi-level optimization
Interpretable machine learning
Linear regression
Machine learning
Non-convex optimization
Principal component analysis
Security-critical machine learning
Signal processing
Subspace learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0277808
Li, Fuwei  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Machine Learning Algorithms : Adversarial Robustness in Signal Processing / Fuwei Li, Lifeng Lai, Shuguang Cui
Machine Learning Algorithms : Adversarial Robustness in Signal Processing / Fuwei Li, Lifeng Lai, Shuguang Cui
Autore Li, Fuwei
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica ix, 104 p. : ill. ; 24 cm
Altri autori (Persone) Cui, Shuguang
Lai, Lifeng
Soggetto topico 62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
68-XX - Computer science [MSC 2020]
68M18 - Wireless sensor networks as related to computer science [MSC 2020]
68M25 - Computer security [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
94A12 - Signal theory (characterization, reconstruction, filtering, etc.) [MSC 2020]
Soggetto non controllato Adversarial attack
Adversarial machine learning
Adversarial robustness
Alternating optimization
Bi-level optimization
Interpretable machine learning
Linear regression
Machine learning
Non-convex optimization
Principal component analysis
Security-critical machine learning
Signal processing
Subspace learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00277808
Li, Fuwei  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Penalty, shrinkage and pretest strategies : variable selection and estimation / S. Ejaz Ahmed
Penalty, shrinkage and pretest strategies : variable selection and estimation / S. Ejaz Ahmed
Autore Ahmed, Syed Ejaz
Pubbl/distr/stampa Cham, : Springer, 2014
Descrizione fisica IX, 115 p. : ill. ; 24 cm
Soggetto topico 62F10 - Point estimation [MSC 2020]
62J05 - Linear regression; mixed models [MSC 2020]
62F12 - Asymptotic properties of parametric estimators [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
Soggetto non controllato Penalty estimation
Pooling data
Pretest and shrinkage estimation
Regression models
Variable Selection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0103264
Ahmed, Syed Ejaz  
Cham, : Springer, 2014
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui