top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
12. Symposium of Probability and Stochastic Processes : Merida, Mexico, November 16–20, 2015 / Daniel Hernández-Hernández, Juan Carlos Pardo, Victor Rivero editors
12. Symposium of Probability and Stochastic Processes : Merida, Mexico, November 16–20, 2015 / Daniel Hernández-Hernández, Juan Carlos Pardo, Victor Rivero editors
Edizione [Cham : Springer, 2018]
Pubbl/distr/stampa xi, 234 p., : ill. ; 24 cm
Descrizione fisica Pubblicazione in formato elettronico
Soggetto topico 60Jxx - Markov processes [MSC 2020]
93E20 - Optimal stochastic control [MSC 2020]
91B05 - Risk models (general) [MSC 2020]
60G51 - Processes with independent increments; Lévy processes [MSC 2020]
60F17 - Functional limit theorems; invariance principles [MSC 2020]
91A15 - Stochastic games, stochastic differential games [MSC 2020]
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0125079
xi, 234 p., : ill. ; 24 cm
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Approximation Theory in the Central Limit Theorem : Exact Results in Banach Spaces / V. Paulauskas, A. Račkauskas ; Translated by B. Svecevicius and V. Paulauskas
Approximation Theory in the Central Limit Theorem : Exact Results in Banach Spaces / V. Paulauskas, A. Račkauskas ; Translated by B. Svecevicius and V. Paulauskas
Autore Paulauskas, Vygantas I.
Pubbl/distr/stampa Dordrecht, : Kluwer, 1989
Descrizione fisica xviii, 176 p. ; 24 cm
Altri autori (Persone) Račkauskas, Alfredas Y.
Soggetto topico 60-XX - Probability theory and stochastic processes [MSC 2020]
60B12 - Limit theorems for vector-valued random variables (infinite-dimensional case) [MSC 2020]
60F05 - Central limit and other weak theorems [MSC 2020]
60F17 - Functional limit theorems; invariance principles [MSC 2020]
Soggetto non controllato Approximation theory
Banach spaces
Boundary Element Methods
Category Theory
Convergence
Differential equations
Discard
Gaussian measures
Logic
Mathematica
Term rewriting
Tools
Topology
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00266690
Paulauskas, Vygantas I.  
Dordrecht, : Kluwer, 1989
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Convergence of Stochastic Processes / David Pollard
Convergence of Stochastic Processes / David Pollard
Autore Pollard, David
Pubbl/distr/stampa New York, : Springer-Verlag, 1984
Descrizione fisica xiv, 215 p. : ill. ; 24 cm
Soggetto topico 60-XX - Probability theory and stochastic processes [MSC 2020]
60G07 - General theory of stochastic processes [MSC 2020]
60G17 - Sample path properties [MSC 2020]
60F15 - Strong limit theorems [MSC 2020]
60F17 - Functional limit theorems; invariance principles [MSC 2020]
62E20 - Asymptotic distribution theory in statistics [MSC 2020]
Soggetto non controllato Brownian Motion
Brownian bridge
Convergence
Gaussian processes
Martingales
Mathematical statistics
Maxima
Random functions
Statistics
Stochastic processes
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0268654
Pollard, David  
New York, : Springer-Verlag, 1984
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Convergence of Stochastic Processes / David Pollard
Convergence of Stochastic Processes / David Pollard
Autore Pollard, David
Pubbl/distr/stampa New York, : Springer-Verlag, 1984
Descrizione fisica xiv, 215 p. : ill. ; 24 cm
Soggetto topico 60-XX - Probability theory and stochastic processes [MSC 2020]
60F15 - Strong limit theorems [MSC 2020]
60F17 - Functional limit theorems; invariance principles [MSC 2020]
60G07 - General theory of stochastic processes [MSC 2020]
60G17 - Sample path properties [MSC 2020]
62E20 - Asymptotic distribution theory in statistics [MSC 2020]
Soggetto non controllato Brownian Motion
Brownian bridge
Convergence
Gaussian processes
Martingales
Mathematical statistics
Maxima
Random functions
Statistics
Stochastic processes
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00268654
Pollard, David  
New York, : Springer-Verlag, 1984
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
From particle systems to partial differential equations : PSPDE IV, Braga, Portugal, December 2015 / Patricia Gonçalves, Ana Jacinta Soares editors
From particle systems to partial differential equations : PSPDE IV, Braga, Portugal, December 2015 / Patricia Gonçalves, Ana Jacinta Soares editors
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica viii, 308 p. : ill. ; 24 cm
Soggetto topico 60K35 - Interacting random processes; statistical mechanics type models; percolation theory [MSC 2020]
35Qxx - Partial differential equations of mathematical physics and other areas of application [MSC 2020]
82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020]
60G60 - Random fields [MSC 2020]
35L67 - Shocks and singularities for hyperbolic equations [MSC 2020]
35R60 - PDEs with randomness, stochastic partial differential equations [MSC 2020]
60F17 - Functional limit theorems; invariance principles [MSC 2020]
Soggetto non controllato Interacting particle systems
Kinetic Theory
Modelling
Partial differential equations
Stochastic Analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0124138
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
From particle systems to partial differential equations : PSPDE V, Braga, Portugal, November 2016 / Patricia Gonçalves, Ana Jacinta Soares editors
From particle systems to partial differential equations : PSPDE V, Braga, Portugal, November 2016 / Patricia Gonçalves, Ana Jacinta Soares editors
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica vii, 167 p. : ill. ; 24 cm
Soggetto topico 60K35 - Interacting random processes; statistical mechanics type models; percolation theory [MSC 2020]
35Qxx - Partial differential equations of mathematical physics and other areas of application [MSC 2020]
82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020]
60G60 - Random fields [MSC 2020]
35L67 - Shocks and singularities for hyperbolic equations [MSC 2020]
35R60 - PDEs with randomness, stochastic partial differential equations [MSC 2020]
60F17 - Functional limit theorems; invariance principles [MSC 2020]
Soggetto non controllato Interacting particle systems
Kinetic Theory
Modelling
Partial differential equations
Stochastic Analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0124689
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
From particle systems to partial differential equations : PSPDE V, Braga, Portugal, November 2016 / Patricia Gonçalves, Ana Jacinta Soares editors
From particle systems to partial differential equations : PSPDE V, Braga, Portugal, November 2016 / Patricia Gonçalves, Ana Jacinta Soares editors
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica vii, 167 p. : ill. ; 24 cm
Soggetto topico 35L67 - Shocks and singularities for hyperbolic equations [MSC 2020]
35Qxx - Partial differential equations of mathematical physics and other areas of application [MSC 2020]
35R60 - PDEs with randomness, stochastic partial differential equations [MSC 2020]
60F17 - Functional limit theorems; invariance principles [MSC 2020]
60G60 - Random fields [MSC 2020]
60K35 - Interacting random processes; statistical mechanics type models; percolation theory [MSC 2020]
82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020]
Soggetto non controllato Interacting particle systems
Kinetic Theory
Modelling
Partial Differential Equations
Stochastic Analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00124689
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
From particle systems to partial differential equations : PSPDE IV, Braga, Portugal, December 2015 / Patricia Gonçalves, Ana Jacinta Soares editors
From particle systems to partial differential equations : PSPDE IV, Braga, Portugal, December 2015 / Patricia Gonçalves, Ana Jacinta Soares editors
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica viii, 308 p. : ill. ; 24 cm
Soggetto topico 35L67 - Shocks and singularities for hyperbolic equations [MSC 2020]
35Qxx - Partial differential equations of mathematical physics and other areas of application [MSC 2020]
35R60 - PDEs with randomness, stochastic partial differential equations [MSC 2020]
60F17 - Functional limit theorems; invariance principles [MSC 2020]
60G60 - Random fields [MSC 2020]
60K35 - Interacting random processes; statistical mechanics type models; percolation theory [MSC 2020]
82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020]
Soggetto non controllato Interacting particle systems
Kinetic Theory
Modelling
Partial Differential Equations
Stochastic Analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00124138
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
From particle systems to partial differential equations : PSPDE IV, Braga, Portugal, December 2015 / Patricia Gonçalves, Ana Jacinta Soares editors
From particle systems to partial differential equations : PSPDE IV, Braga, Portugal, December 2015 / Patricia Gonçalves, Ana Jacinta Soares editors
Edizione [Cham : Springer, 2017]
Pubbl/distr/stampa viii, 308 p., : ill. ; 24 cm
Descrizione fisica Pubblicazione in formato elettronico
Soggetto topico 60K35 - Interacting random processes; statistical mechanics type models; percolation theory [MSC 2020]
35Qxx - Partial differential equations of mathematical physics and other areas of application [MSC 2020]
82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020]
60G60 - Random fields [MSC 2020]
35L67 - Shocks and singularities for hyperbolic equations [MSC 2020]
35R60 - PDEs with randomness, stochastic partial differential equations [MSC 2020]
60F17 - Functional limit theorems; invariance principles [MSC 2020]
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0124138
viii, 308 p., : ill. ; 24 cm
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
From particle systems to partial differential equations : PSPDE V, Braga, Portugal, November 2016 / Patricia Gonçalves, Ana Jacinta Soares editors
From particle systems to partial differential equations : PSPDE V, Braga, Portugal, November 2016 / Patricia Gonçalves, Ana Jacinta Soares editors
Edizione [Cham : Springer, 2017]
Pubbl/distr/stampa vii, 167 p., : ill. ; 24 cm
Descrizione fisica Pubblicazione in formato elettronico
Soggetto topico 60K35 - Interacting random processes; statistical mechanics type models; percolation theory [MSC 2020]
35Qxx - Partial differential equations of mathematical physics and other areas of application [MSC 2020]
82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020]
60G60 - Random fields [MSC 2020]
35L67 - Shocks and singularities for hyperbolic equations [MSC 2020]
35R60 - PDEs with randomness, stochastic partial differential equations [MSC 2020]
60F17 - Functional limit theorems; invariance principles [MSC 2020]
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0124689
vii, 167 p., : ill. ; 24 cm
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui