12. Symposium of Probability and Stochastic Processes : Merida, Mexico, November 16–20, 2015 / Daniel Hernández-Hernández, Juan Carlos Pardo, Victor Rivero editors
| 12. Symposium of Probability and Stochastic Processes : Merida, Mexico, November 16–20, 2015 / Daniel Hernández-Hernández, Juan Carlos Pardo, Victor Rivero editors |
| Edizione | [Cham : Springer, 2018] |
| Pubbl/distr/stampa | xi, 234 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
60Jxx - Markov processes [MSC 2020]
93E20 - Optimal stochastic control [MSC 2020] 91B05 - Risk models (general) [MSC 2020] 60G51 - Processes with independent increments; Lévy processes [MSC 2020] 60F17 - Functional limit theorems; invariance principles [MSC 2020] 91A15 - Stochastic games, stochastic differential games [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0125079 |
| xi, 234 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Approximation Theory in the Central Limit Theorem : Exact Results in Banach Spaces / V. Paulauskas, A. Račkauskas ; Translated by B. Svecevicius and V. Paulauskas
| Approximation Theory in the Central Limit Theorem : Exact Results in Banach Spaces / V. Paulauskas, A. Račkauskas ; Translated by B. Svecevicius and V. Paulauskas |
| Autore | Paulauskas, Vygantas I. |
| Pubbl/distr/stampa | Dordrecht, : Kluwer, 1989 |
| Descrizione fisica | xviii, 176 p. ; 24 cm |
| Altri autori (Persone) | Račkauskas, Alfredas Y. |
| Soggetto topico |
60-XX - Probability theory and stochastic processes [MSC 2020]
60B12 - Limit theorems for vector-valued random variables (infinite-dimensional case) [MSC 2020] 60F05 - Central limit and other weak theorems [MSC 2020] 60F17 - Functional limit theorems; invariance principles [MSC 2020] |
| Soggetto non controllato |
Approximation theory
Banach spaces Boundary Element Methods Category Theory Convergence Differential equations Discard Gaussian measures Logic Mathematica Term rewriting Tools Topology |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00266690 |
Paulauskas, Vygantas I.
|
||
| Dordrecht, : Kluwer, 1989 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Convergence of Stochastic Processes / David Pollard
| Convergence of Stochastic Processes / David Pollard |
| Autore | Pollard, David |
| Pubbl/distr/stampa | New York, : Springer-Verlag, 1984 |
| Descrizione fisica | xiv, 215 p. : ill. ; 24 cm |
| Soggetto topico |
60-XX - Probability theory and stochastic processes [MSC 2020]
60G07 - General theory of stochastic processes [MSC 2020] 60G17 - Sample path properties [MSC 2020] 60F15 - Strong limit theorems [MSC 2020] 60F17 - Functional limit theorems; invariance principles [MSC 2020] 62E20 - Asymptotic distribution theory in statistics [MSC 2020] |
| Soggetto non controllato |
Brownian Motion
Brownian bridge Convergence Gaussian processes Martingales Mathematical statistics Maxima Random functions Statistics Stochastic processes |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0268654 |
Pollard, David
|
||
| New York, : Springer-Verlag, 1984 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Convergence of Stochastic Processes / David Pollard
| Convergence of Stochastic Processes / David Pollard |
| Autore | Pollard, David |
| Pubbl/distr/stampa | New York, : Springer-Verlag, 1984 |
| Descrizione fisica | xiv, 215 p. : ill. ; 24 cm |
| Soggetto topico |
60-XX - Probability theory and stochastic processes [MSC 2020]
60F15 - Strong limit theorems [MSC 2020] 60F17 - Functional limit theorems; invariance principles [MSC 2020] 60G07 - General theory of stochastic processes [MSC 2020] 60G17 - Sample path properties [MSC 2020] 62E20 - Asymptotic distribution theory in statistics [MSC 2020] |
| Soggetto non controllato |
Brownian Motion
Brownian bridge Convergence Gaussian processes Martingales Mathematical statistics Maxima Random functions Statistics Stochastic processes |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00268654 |
Pollard, David
|
||
| New York, : Springer-Verlag, 1984 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
From particle systems to partial differential equations : PSPDE IV, Braga, Portugal, December 2015 / Patricia Gonçalves, Ana Jacinta Soares editors
| From particle systems to partial differential equations : PSPDE IV, Braga, Portugal, December 2015 / Patricia Gonçalves, Ana Jacinta Soares editors |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | viii, 308 p. : ill. ; 24 cm |
| Soggetto topico |
60K35 - Interacting random processes; statistical mechanics type models; percolation theory [MSC 2020]
35Qxx - Partial differential equations of mathematical physics and other areas of application [MSC 2020] 82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020] 60G60 - Random fields [MSC 2020] 35L67 - Shocks and singularities for hyperbolic equations [MSC 2020] 35R60 - PDEs with randomness, stochastic partial differential equations [MSC 2020] 60F17 - Functional limit theorems; invariance principles [MSC 2020] |
| Soggetto non controllato |
Interacting particle systems
Kinetic Theory Modelling Partial differential equations Stochastic Analysis |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0124138 |
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
From particle systems to partial differential equations : PSPDE V, Braga, Portugal, November 2016 / Patricia Gonçalves, Ana Jacinta Soares editors
| From particle systems to partial differential equations : PSPDE V, Braga, Portugal, November 2016 / Patricia Gonçalves, Ana Jacinta Soares editors |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | vii, 167 p. : ill. ; 24 cm |
| Soggetto topico |
60K35 - Interacting random processes; statistical mechanics type models; percolation theory [MSC 2020]
35Qxx - Partial differential equations of mathematical physics and other areas of application [MSC 2020] 82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020] 60G60 - Random fields [MSC 2020] 35L67 - Shocks and singularities for hyperbolic equations [MSC 2020] 35R60 - PDEs with randomness, stochastic partial differential equations [MSC 2020] 60F17 - Functional limit theorems; invariance principles [MSC 2020] |
| Soggetto non controllato |
Interacting particle systems
Kinetic Theory Modelling Partial differential equations Stochastic Analysis |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0124689 |
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
From particle systems to partial differential equations : PSPDE V, Braga, Portugal, November 2016 / Patricia Gonçalves, Ana Jacinta Soares editors
| From particle systems to partial differential equations : PSPDE V, Braga, Portugal, November 2016 / Patricia Gonçalves, Ana Jacinta Soares editors |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | vii, 167 p. : ill. ; 24 cm |
| Soggetto topico |
35L67 - Shocks and singularities for hyperbolic equations [MSC 2020]
35Qxx - Partial differential equations of mathematical physics and other areas of application [MSC 2020] 35R60 - PDEs with randomness, stochastic partial differential equations [MSC 2020] 60F17 - Functional limit theorems; invariance principles [MSC 2020] 60G60 - Random fields [MSC 2020] 60K35 - Interacting random processes; statistical mechanics type models; percolation theory [MSC 2020] 82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020] |
| Soggetto non controllato |
Interacting particle systems
Kinetic Theory Modelling Partial Differential Equations Stochastic Analysis |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00124689 |
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
From particle systems to partial differential equations : PSPDE IV, Braga, Portugal, December 2015 / Patricia Gonçalves, Ana Jacinta Soares editors
| From particle systems to partial differential equations : PSPDE IV, Braga, Portugal, December 2015 / Patricia Gonçalves, Ana Jacinta Soares editors |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | viii, 308 p. : ill. ; 24 cm |
| Soggetto topico |
35L67 - Shocks and singularities for hyperbolic equations [MSC 2020]
35Qxx - Partial differential equations of mathematical physics and other areas of application [MSC 2020] 35R60 - PDEs with randomness, stochastic partial differential equations [MSC 2020] 60F17 - Functional limit theorems; invariance principles [MSC 2020] 60G60 - Random fields [MSC 2020] 60K35 - Interacting random processes; statistical mechanics type models; percolation theory [MSC 2020] 82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020] |
| Soggetto non controllato |
Interacting particle systems
Kinetic Theory Modelling Partial Differential Equations Stochastic Analysis |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00124138 |
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
From particle systems to partial differential equations : PSPDE IV, Braga, Portugal, December 2015 / Patricia Gonçalves, Ana Jacinta Soares editors
| From particle systems to partial differential equations : PSPDE IV, Braga, Portugal, December 2015 / Patricia Gonçalves, Ana Jacinta Soares editors |
| Edizione | [Cham : Springer, 2017] |
| Pubbl/distr/stampa | viii, 308 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
60K35 - Interacting random processes; statistical mechanics type models; percolation theory [MSC 2020]
35Qxx - Partial differential equations of mathematical physics and other areas of application [MSC 2020] 82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020] 60G60 - Random fields [MSC 2020] 35L67 - Shocks and singularities for hyperbolic equations [MSC 2020] 35R60 - PDEs with randomness, stochastic partial differential equations [MSC 2020] 60F17 - Functional limit theorems; invariance principles [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0124138 |
| viii, 308 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
From particle systems to partial differential equations : PSPDE V, Braga, Portugal, November 2016 / Patricia Gonçalves, Ana Jacinta Soares editors
| From particle systems to partial differential equations : PSPDE V, Braga, Portugal, November 2016 / Patricia Gonçalves, Ana Jacinta Soares editors |
| Edizione | [Cham : Springer, 2017] |
| Pubbl/distr/stampa | vii, 167 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
60K35 - Interacting random processes; statistical mechanics type models; percolation theory [MSC 2020]
35Qxx - Partial differential equations of mathematical physics and other areas of application [MSC 2020] 82C40 - Kinetic theory of gases in time-dependent statistical mechanics [MSC 2020] 60G60 - Random fields [MSC 2020] 35L67 - Shocks and singularities for hyperbolic equations [MSC 2020] 35R60 - PDEs with randomness, stochastic partial differential equations [MSC 2020] 60F17 - Functional limit theorems; invariance principles [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0124689 |
| vii, 167 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||