top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
1930.1-2022 - IEEE Recommended Practice for Software-Defined Networking (SDN) Based Middleware for Control and Management of Wireless Networks / / Institute of Electrical and Electronics Engineers
1930.1-2022 - IEEE Recommended Practice for Software-Defined Networking (SDN) Based Middleware for Control and Management of Wireless Networks / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa [Place of publication not identified] : , : IEEE, , 2022
Descrizione fisica 1 online resource (119 pages)
Disciplina 621.38456
Soggetto topico 5G mobile communication systems
ISBN 1-5044-8868-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 1930.1-2022 - IEEE Recommended Practice for Software-Defined Networking
Record Nr. UNISA-996575017003316
[Place of publication not identified] : , : IEEE, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
2019 IEEE 2nd 5G World Forum (5GWF) : 30 September to 2 October 2019, Dresden, Germany / / Kate Easton, editor
2019 IEEE 2nd 5G World Forum (5GWF) : 30 September to 2 October 2019, Dresden, Germany / / Kate Easton, editor
Pubbl/distr/stampa Pistacaway, New Jersey : , : IEEE, , [2019]
Descrizione fisica 1 online resource : illustrations
Disciplina 621.382
Soggetto topico Mobile communication systems
5G mobile communication systems
Computer networks
ISBN 1-7281-3627-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2019 IEEE 2nd 5G World Forum
Record Nr. UNINA-9910389509203321
Pistacaway, New Jersey : , : IEEE, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
2019 IEEE 2nd 5G World Forum (5GWF) : 30 September to 2 October 2019, Dresden, Germany / / Kate Easton, editor
2019 IEEE 2nd 5G World Forum (5GWF) : 30 September to 2 October 2019, Dresden, Germany / / Kate Easton, editor
Pubbl/distr/stampa Pistacaway, New Jersey : , : IEEE, , [2019]
Descrizione fisica 1 online resource : illustrations
Disciplina 621.382
Soggetto topico Mobile communication systems
5G mobile communication systems
Computer networks
ISBN 1-7281-3627-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2019 IEEE 2nd 5G World Forum
Record Nr. UNISA-996574596403316
Pistacaway, New Jersey : , : IEEE, , [2019]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
2021 IEEE 4th 5G World Forum (5GWF) / / Institute of Electrical and Electronics Engineers
2021 IEEE 4th 5G World Forum (5GWF) / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2021
Descrizione fisica 1 online resource (xxxii, 533 pages)
Disciplina 621.38456
Soggetto topico 5G mobile communication systems
ISBN 1-66544-308-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2021 IEEE 4th 5G World Forum
Record Nr. UNINA-9910554054703321
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
2021 IEEE 4th 5G World Forum (5GWF) / / Institute of Electrical and Electronics Engineers
2021 IEEE 4th 5G World Forum (5GWF) / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2021
Descrizione fisica 1 online resource (xxxii, 533 pages)
Disciplina 621.38456
Soggetto topico 5G mobile communication systems
ISBN 1-66544-308-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2021 IEEE 4th 5G World Forum
Record Nr. UNISA-996574848203316
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
2939-2023 - IEEE Guide for Joint Use of Utility Poles with Wireline and/or Wireless Facilities / / IEEE
2939-2023 - IEEE Guide for Joint Use of Utility Poles with Wireline and/or Wireless Facilities / / IEEE
Pubbl/distr/stampa New York, USA : , : IEEE, , 2023
Descrizione fisica 1 online resource (163 pages) : illustrations
Disciplina 621.3
Soggetto topico 5G mobile communication systems
Wireless communication systems
ISBN 979-88-557-0037-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996559964603316
New York, USA : , : IEEE, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
5G and Beyond Wireless Communication Networks
5G and Beyond Wireless Communication Networks
Autore Sun Haijian
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (211 pages)
Disciplina 621.38456
Altri autori (Persone) HuRose Qingyang
QianYi
Collana IEEE Press Series
Soggetto topico 5G mobile communication systems
Wireless communication systems
ISBN 9781119089490
1119089492
9781119089469
1119089468
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Chapter 1 Introduction to 5G and Beyond Network -- 1.1 5G and Beyond System Requirements -- 1.1.1 Technical Challenges -- 1.2 Enabling Technologies -- 1.2.1 5G New Radio -- 1.2.1.1 Non‐orthogonal Multiple Access (NOMA) -- 1.2.1.2 Channel Codes -- 1.2.1.3 Massive MIMO -- 1.2.1.4 Other 5G NR Techniques -- 1.2.2 Mobile Edge Computing (MEC) -- 1.2.3 Hybrid and Heterogeneous Communication Architecture for Pervasive IoTs -- 1.3 Book Outline -- Chapter 2 5G Wireless Networks with Underlaid D2D Communications -- 2.1 Background -- 2.1.1 MU‐MIMO -- 2.1.2 D2D Communication -- 2.1.3 MU‐MIMO and D2D in 5G -- 2.2 NOMA‐Aided Network with Underlaid D2D -- 2.3 NOMA with SIC and Problem Formation -- 2.3.1 NOMA with SIC -- 2.3.2 Problem Formation -- 2.4 Precoding and User Grouping Algorithm -- 2.4.1 Zero‐Forcing Beamforming -- 2.4.1.1 First ZF Precoding -- 2.4.1.2 Second ZF Precoding -- 2.4.2 User Grouping and Optimal Power Allocation -- 2.4.2.1 First ZF Precoding -- 2.4.2.2 Second ZF Precoding -- 2.5 Numerical Results -- 2.6 Summary -- Chapter 3 5G NOMA‐Enabled Wireless Networks -- 3.1 Background -- 3.2 Error Propagation in NOMA -- 3.3 SIC and Problem Formulation -- 3.3.1 SIC with Error Propagation -- 3.3.2 Problem Formation -- 3.4 Precoding and Power Allocation -- 3.4.1 Precoding Design -- 3.4.2 Case Studies for Power Allocation -- 3.4.2.1 Case I -- 3.4.2.2 Case II -- 3.5 Numerical Results -- 3.6 Summary -- Chapter 4 NOMA in Relay and IoT for 5G Wireless Networks -- 4.1 Outage Probability Study in a NOMA Relay System -- 4.1.1 Background -- 4.1.2 System Model -- 4.1.2.1 NOMA Cooperative Scheme -- 4.1.2.2 NOMA TDMA Scheme -- 4.1.3 Outage Probability Analysis -- 4.1.3.1 Outage Probability in NOMA Cooperative Scheme -- 4.1.4 Outage Probability in NOMA TDMA Scheme.
4.1.5 Outage Probability with Error Propagation in SIC -- 4.1.5.1 Outage Probability in NOMA Cooperative Scheme with EP -- 4.1.5.2 Outage Probability in NOMA TDMA Scheme with EP -- 4.1.6 Numerical Results -- 4.2 NOMA in a mmWave‐Based IoT Wireless System with SWIPT -- 4.2.1 Introduction -- 4.2.2 System Model -- 4.2.2.1 Phase 1 Transmission -- 4.2.2.2 Phase 2 Transmission -- 4.2.3 Outage Analysis -- 4.2.3.1 UE 1 Outage Probability -- 4.2.3.2 UE 2 Outage Probability -- 4.2.3.3 Outage at High SNR -- 4.2.3.4 Diversity Analysis for UE 2 -- 4.2.4 Numerical Results -- 4.2.5 Summary -- Chapter 5 Robust Beamforming in NOMA Cognitive Radio Networks: Bounded CSI -- 5.1 Background -- 5.1.1 Related Work and Motivation -- 5.1.1.1 Linear EH Model -- 5.1.1.2 Non‐linear EH Model -- 5.1.2 Contributions -- 5.2 System and Energy Harvesting Models -- 5.2.1 System Model -- 5.2.2 Non‐linear EH Model -- 5.2.3 Bounded CSI Error Model -- 5.2.3.1 NOMA Transmission -- 5.3 Power Minimization‐Based Problem Formulation -- 5.3.1 Problem Formulation -- 5.3.2 Matrix Decomposition -- 5.4 Maximum Harvested Energy Problem Formulation -- 5.4.1 Complexity Analysis -- 5.5 Numerical Results -- 5.5.1 Power Minimization Problem -- 5.5.2 Energy Harvesting Maximization Problem -- 5.6 Summary -- Chapter 6 Robust Beamforming in NOMA Cognitive Radio Networks: Gaussian CSI -- 6.1 Gaussian CSI Error Model -- 6.2 Power Minimization‐Based Problem Formulation -- 6.2.1 Bernstein‐Type Inequality I -- 6.2.2 Bernstein‐Type Inequality II -- 6.3 Maximum Harvested Energy Problem Formulation -- 6.3.1 Complexity Analysis -- 6.4 Numerical Results -- 6.4.1 Power Minimization Problem -- 6.4.2 Energy Harvesting Maximization Problem -- 6.5 Summary -- Chapter 7 Mobile Edge Computing in 5G Wireless Networks -- 7.1 Background -- 7.2 System Model -- 7.2.1 Data Offloading -- 7.2.2 Local Computing.
7.3 Problem Formulation -- 7.3.1 Update pk, tk, and fk -- 7.3.2 Update Lagrange Multipliers -- 7.3.3 Update Auxiliary Variables -- 7.3.4 Complexity Analysis -- 7.4 Numerical Results -- 7.5 Summary -- Chapter 8 Toward Green MEC Offloading with Security Enhancement -- 8.1 Background -- 8.2 System Model -- 8.2.1 Secure Offloading -- 8.2.2 Local Computing -- 8.2.3 Receiving Computed Results -- 8.2.4 Computation Efficiency in MEC Systems -- 8.3 Computation Efficiency Maximization with Active Eavesdropper -- 8.3.1 SCA‐Based Optimization Algorithm -- 8.3.2 Objective Function -- 8.3.3 Proposed Solution to P4 with given (λk,βk) -- 8.3.4 Update (λk,βk) -- 8.4 Numerical Results -- 8.5 Summary -- Chapter 9 Wireless Systems for Distributed Machine Learning -- 9.1 Background -- 9.2 System Model -- 9.2.1 FL Model Update -- 9.2.2 Gradient Quantization -- 9.2.3 Gradient Sparsification -- 9.3 FL Model Update with Adaptive NOMA Transmission -- 9.3.1 Uplink NOMA Transmission -- 9.3.2 NOMA Scheduling -- 9.3.3 Adaptive Transmission -- 9.4 Scheduling and Power Optimization -- 9.4.1 Problem Formulation -- 9.5 Scheduling Algorithm and Power Allocation -- 9.5.1 Scheduling Graph Construction -- 9.5.2 Optimal scheduling Pattern -- 9.5.3 Power Allocation -- 9.6 Numerical Results -- 9.7 Summary -- Chapter 10 Secure Spectrum Sharing with Machine Learning: An Overview -- 10.1 Background -- 10.1.1 SS: A Brief History -- 10.1.2 Security Issues in SS -- 10.2 ML‐Based Methodologies for SS -- 10.2.1 ML‐Based CRN -- 10.2.1.1 Spectrum Sensing -- 10.2.1.2 Spectrum Selection -- 10.2.1.3 Spectrum Access -- 10.2.1.4 Spectrum Handoff -- 10.2.2 Database‐Assisted SS -- 10.2.2.1 ML‐Based EZ Optimization -- 10.2.2.2 Incumbent Detection -- 10.2.2.3 Channel Selection and Transaction -- 10.2.3 ML‐Based LTE‐U/LTE‐LAA -- 10.2.3.1 ML‐Based LBT Methods -- 10.2.3.2 ML‐Based Duty Cycle Methods.
10.2.3.3 Game‐Theory‐Based Methods -- 10.2.3.4 Distributed‐Algorithm‐Based Methods -- 10.2.4 Ambient Backscatter Networks -- 10.2.4.1 Information Extraction -- 10.2.4.2 Operating Mode Selection and User Coordination -- 10.2.4.3 AmBC‐CR Methods -- 10.3 Summary -- Chapter 11 Secure Spectrum Sharing with Machine Learning: Methodologies -- 11.1 Security Concerns in SS -- 11.1.1 Primary User Emulation Attack -- 11.1.2 Spectrum Sensing Data Falsification Attack -- 11.1.3 Jamming Attacks -- 11.1.4 Intercept/Eavesdrop -- 11.1.5 Privacy Issues in Database‐Assisted SS Systems -- 11.2 ML‐Assisted Secure SS -- 11.2.1 State‐of‐the‐Art Methods of Defense Against PUE Attack -- 11.2.1.1 ML‐Based Detection Methods -- 11.2.1.2 Robust Detection Methods -- 11.2.1.3 ML‐Based Attack Methods -- 11.2.2 State‐of‐the‐Art Methods of Defense Against SSDF Attack -- 11.2.2.1 Outlier Detection Methods -- 11.2.2.2 Reputation‐Based Detection Methods -- 11.2.2.3 SSDF and PUE Combination Attacks -- 11.2.3 State‐of‐the‐Art Methods of Defense Against Jamming Attacks -- 11.2.3.1 ML‐Based Anti‐Jamming Methods -- 11.2.3.2 Attacker Enhanced Anti‐Jamming Methods -- 11.2.3.3 AmBC Empowered Anti‐Jamming Methods -- 11.2.4 State‐of‐the‐Art Methods of Defense Against Intercept/Eavesdrop -- 11.2.4.1 RL‐Based Anti‐Eavesdropping Methods -- 11.2.5 State‐of‐the‐Art ML‐Based Privacy Protection Methods -- 11.2.5.1 Privacy Protection for PUs in SS Networks -- 11.2.5.2 Privacy Protection for SUs in SS Networks -- 11.2.5.3 Privacy Protection for ML Algorithms -- 11.3 Summary -- Chapter 12 Open Issues and Future Directions for 5G and Beyond Wireless Networks -- 12.1 Joint Communication and Sensing -- 12.2 Space‐Air‐Ground Communication -- 12.3 Semantic Communication -- 12.4 Data‐Driven Communication System Design -- Appendix A Proof of Theorem 5.1 -- Bibliography -- Index -- EULA.
Record Nr. UNINA-9911019090903321
Sun Haijian  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
5G and beyond wireless transport technologies : enabling backhaul, midhaul, and fronthaul / / Douglas H. Morais
5G and beyond wireless transport technologies : enabling backhaul, midhaul, and fronthaul / / Douglas H. Morais
Autore Morais Douglas H.
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (249 pages)
Disciplina 621.38456
Soggetto topico 5G mobile communication systems
ISBN 3-030-74080-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Abbreviations and Acronyms -- Contents -- About the Author -- Chapter 1: 5G Architecture and the Roll of Wireless Transport -- 1.1 Introduction -- 1.2 5G Usage Scenarios and Top-Level Requirements -- 1.3 5G Network Overview -- 1.4 5G Transport Network Components (Backhaul, Midhaul, Fronthaul) -- 1.5 Transport Realization Options -- 1.5.1 Fiber -- 1.5.2 Free Space Optics -- 1.5.3 Wireless -- 1.5.3.1 Wireless Transport Evolution -- 1.5.3.2 Traditional Bands -- 1.5.3.3 Nontraditional Millimeter-Wave Bands -- 1.5.3.4 Integrated Access and Backhaul -- 1.6 Key Wireless Transport Technologies in Support of 5G Networks -- 1.7 Summary -- References -- Chapter 2: 5G Transport Payload: Ethernet-Based Packet-Switched Data -- 2.1 Introduction -- 2.2 TCP/IP -- 2.2.1 Application Layer Protocol -- 2.2.2 Transport Layer Transmission Control Protocol -- 2.2.3 Transport Layer User Datagram Protocol -- 2.2.4 Internet Layer Protocol -- 2.2.5 Data Link Layer Ethernet Protocol -- 2.2.6 Multi-Protocol Label Switching (MPLS) -- 2.3 Voice over IP (VoIP) -- 2.4 Video over IP -- 2.5 Header Compression -- 2.6 Payload Compression -- 2.7 Summary -- References -- Chapter 3: The Fixed Wireless Path -- 3.1 Introduction -- 3.2 Antennas -- 3.2.1 Introduction -- 3.2.2 Antenna Characteristics -- 3.2.3 Typical Point-to-Point Wireless Antennas -- 3.3 Free Space Propagation -- 3.4 Line-of-Sight Non-Faded Received Signal Level -- 3.5 Fading Phenomena -- 3.5.1 Atmospheric Effects -- 3.5.1.1 Refraction -- 3.5.1.2 Reflection -- 3.5.1.3 Rain Attenuation and Atmospheric Absorption -- 3.5.2 Terrain Effects -- 3.5.2.1 Terrain Reflection -- 3.5.2.2 Fresnel Zones -- 3.5.2.3 Diffraction -- 3.5.2.4 Path Clearance Criteria -- 3.5.3 Signal Strength Versus Frequency Effects -- 3.5.3.1 Flat Fading -- 3.5.3.2 Frequency Selective Fading -- 3.5.3.3 Multipath Fading Channel Model.
3.5.4 Cross-Polarization Discrimination Degradation due to Fading -- 3.6 External Interference -- 3.7 Outage and Unavailability -- 3.8 Diversity Techniques for Improved Reliability -- 3.8.1 Space Diversity -- 3.8.2 Angle Diversity -- 3.9 Summary -- References -- Chapter 4: Digital Modulation: The Basic Principles -- 4.1 Introduction -- 4.2 Baseband Data Transmission -- 4.3 Linear Modulation Systems -- 4.3.1 Double-Sideband Suppressed Carrier (DSBSC) Modulation -- 4.3.2 Binary Phase-Shift Keying (BPSK) -- 4.3.3 Quadrature Amplitude Modulation (QAM) -- 4.3.4 Quadrature Phase-Shift Keying (QPSK) -- 4.3.5 High-Order 22n-QAM -- 4.3.6 High-Order 22n+1-QAM -- 4.3.7 Peak-to-Average Power Ratio -- 4.4 Transmission IF and RF Components -- 4.4.1 Transmitter Upconverter and Receiver Downconverter -- 4.4.2 Transmitter RF Power Amplifier and Output Bandpass Filter -- 4.4.3 The Receiver ``Front End´´ -- 4.5 Modem Realization Techniques -- 4.5.1 Scrambling/Descrambling -- 4.5.2 Carrier Recovery -- 4.5.3 Timing Recovery -- 4.6 Summary -- References -- Chapter 5: Performance Optimization Techniques -- 5.1 Introduction -- 5.2 Forward Error Correction Coding -- 5.2.1 Introduction -- 5.2.2 Block Codes -- 5.2.3 Classical Parity-Check Block Codes -- 5.2.4 Low-Density Parity-Check (LDPC) Codes -- 5.2.4.1 Encoding of Quasi-Cyclic LDPC Codes -- 5.2.4.2 Decoding of LDPC Codes -- 5.2.5 Reed-Solomon (RS) Codes -- 5.2.6 LDPC and RS Codes in Wireless Transport -- 5.2.7 Polar Codes -- 5.2.7.1 Channel Polarization -- 5.2.7.2 Encoding of Polar Codes -- 5.2.7.3 Decoding of Polar Codes -- 5.3 Block Interleaving -- 5.4 Puncturing -- 5.5 Adaptive Modulation and Coding (AMC) -- 5.6 Power Amplifier Linearization Via Predistortion -- 5.7 Phase Noise Suppression -- 5.8 Quadrature Modulation/Demodulation Imperfections Mitigation -- 5.8.1 Transmitter Quadrature Error Mitigation.
5.8.2 Transmitter I/Q Balance Error Mitigation -- 5.8.3 Transmitter Residual Error Mitigation -- 5.8.4 Receiver Quadrature Imperfections Mitigation -- 5.9 Adaptive Equalization -- 5.9.1 Introduction -- 5.9.2 Time-Domain Equalization -- 5.9.2.1 Introduction -- 5.9.2.2 Adaptive Baseband Equalization Fundamentals -- 5.9.2.3 QAM Adaptive Baseband Equalization -- 5.9.2.4 Initialization Methods -- 5.10 Summary -- References -- Chapter 6: Non-Modulation-Based Capacity Improvement Techniques -- 6.1 Introduction -- 6.2 Co-Channel Dual Polarization (CCDP) Transmission -- 6.3 Line-of-Sight Multiple-input Multiple-output (LoS MIMO) -- 6.3.1 Introduction -- 6.3.2 LoS MIMO Fundamentals -- 6.3.3 Optimal Antenna Separation -- 6.3.4 Non-optimal Antenna Separation -- 6.3.5 LoS MIMO Equalization -- 6.3.6 Increasing Channel Capacity Via the Simultaneous Use of CCDP/XPIC and LoS MIMO -- 6.4 Orbital Angular Momentum Multiplexing -- 6.4.1 Introduction -- 6.4.2 OAM Structure and Characteristics -- 6.4.3 OAM Mode Generation and Multiplexing/Demultiplexing -- 6.5 Band and Carrier Aggregation -- 6.6 Summary -- References -- Chapter 7: Transceiver Architecture, Link Capacity, and Example Specifications -- 7.1 Introduction -- 7.2 Basic Transceiver Architecture and Structural Options -- 7.2.1 The Baseband Processor -- 7.2.2 The IF Processor -- 7.2.3 The Direct Conversion RF Front End -- 7.2.4 The Heterodyne RF Front End -- 7.2.5 Antenna Coupling -- 7.2.6 The Antenna -- 7.3 Link Capacity Capability -- 7.4 Example Specifications and Typical Path Performance of an 80 GHz (E-Band) Link -- 7.5 Example Specifications and Typical Path Performance of a 32 GHz Link -- 7.6 Conclusion -- References -- Appendices -- Appendix A -- Helpful Mathematical Identities -- Trigonometric Identities -- Standard Integrals -- Matrix Algebra -- Appendix B -- Multipath Fading Outage Analysis.
B.1 Total Outage -- B.2 Unprotected Nonselective Outage Prediction -- B.3 Unprotected Selective Outage Prediction -- B.4 Outage Prediction Example -- Appendix C -- Rain Outage Analysis -- Appendix D -- Spectral Analysis of Nonperiodic Functions and Linear System Response -- D.1 Spectral Analysis of Nonperiodic Functions -- D.2 Linear System Response -- Appendix E -- QAM Cross-Constellation BER Computation -- Index.
Record Nr. UNINA-9910491027603321
Morais Douglas H.  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
5G backhaul and fronthaul / / edited by Esa Marcus Metsälä, Juha T. T. Salmelin
5G backhaul and fronthaul / / edited by Esa Marcus Metsälä, Juha T. T. Salmelin
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (306 pages)
Disciplina 621.38456
Soggetto topico 5G mobile communication systems
ISBN 1-119-27557-1
1-119-27567-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910831199203321
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
5G new radio : a beam-based air interface / / edited by Mihai Enescu
5G new radio : a beam-based air interface / / edited by Mihai Enescu
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley, , 2020
Descrizione fisica 1 online resource (604 pages)
Disciplina 621.38456
Soggetto topico 5G mobile communication systems
Radio - High-fidelity systems
ISBN 1-119-58237-7
1-119-58236-9
1-119-58233-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Table of Contents -- List of Contributors -- Preface -- Acknowledgments -- Abbreviations -- 1 Introduction and Background -- 1.1 Why 5G? -- 1.2 Requirements and Targets -- 1.3 Technology Components and Design Considerations -- 2 Network Architecture and NR Radio Protocols -- 2.1 Architecture Overview -- 2.2 Core Network Architecture -- 2.3 Radio Access Network -- 2.4 NR Radio Interface Protocols -- 3 PHY Layer -- 3.1 Introduction (Mihai Enescu, Nokia Bell Labs, Finland) -- 3.2 NR Waveforms (Youngsoo Yuk, Nokia Bell Labs, Korea)
3.3 Antenna Architectures in 5G (Fred Vook, Nokia Bell Labs, USA) -- 3.4 Frame Structure and Resource Allocation (Karri Ranta-aho, Nokia Bell Labs, Finland) -- 3.5 Synchronization Signals and Broadcast Channels in NR Beam-Based System (Jorma Kaikkonen, Sami Hakola, Nokia Bell Labs, Finland) -- 3.6 Physical Random Access Channel (PRACH) (Emad Farag, Nokia Bell Labs, USA) -- 3.7 CSI-RS (Stephen Grant, Ericsson, USA) -- 3.8 PDSCH and PUSCH DM-RS, Qualcomm Technologies, Inc. (Alexandros Manolakos, Qualcomm Technologies, Inc, USA) -- 3.9 Phrase- Tracking RS (Youngsoo Yuk, Nokia Bell Labs, Korea)
3.10 SRS (Stephen Grant, Ericsson, USA) -- 3.11 Power Control (Mihai Enescu, Nokia Bell Labs, Finland) -- 3.12 DL and UL Transmission Framework (Mihai Enescu, Nokia, Karri Ranta-aho, Nokia Bell Labs, Finland) -- Notes -- 4 Main Radio Interface Related System Procedures -- 4.1 Initial Access (Jorma Kaikkonen, Sami Hakola, Nokia Bell Labs, Finland, Emad Farag, Nokia Bell Labs, USA) -- 4.2 Beam Management (Mihai Enescu, Nokia Bell Labs, Finland, Claes Tidestav, Ericsson, Sweden, Sami Hakola, Juha Karjalainen, Nokia Bell Labs, Finland) -- 4.3 CSI Framework (Sebastian Faxér, Ericsson, Sweden)
4.4 Radio Link Monitoring (Claes Tidestav, Ericsson, Sweden, Dawid Koziol, Nokia Bell Labs, Poland) -- 4.5 Radio Resource Management (RRM) and Mobility (Helka-Liina Määttänen, Ericsson, Finland, Dawid Koziol, Nokia Bell Labs, Poland, Claes Tidestav, Ericsson, Sweden) -- Note -- 5 Performance Characteristics of 5G New Radio -- 5.1 Introduction -- 5.2 Sub-6 GHz: Codebook-Based MIMO in NR -- 5.3 NR MIMO Performance in mmWave Bands -- 5.4 Concluding Remarks -- 6 UE Features -- 6.1 Reference Signals -- References -- Index -- End User License Agreement
Record Nr. UNINA-9910555153703321
Hoboken, New Jersey, USA : , : Wiley, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui