1930.1-2022 - IEEE Recommended Practice for Software-Defined Networking (SDN) Based Middleware for Control and Management of Wireless Networks / / Institute of Electrical and Electronics Engineers
| 1930.1-2022 - IEEE Recommended Practice for Software-Defined Networking (SDN) Based Middleware for Control and Management of Wireless Networks / / Institute of Electrical and Electronics Engineers |
| Pubbl/distr/stampa | [Place of publication not identified] : , : IEEE, , 2022 |
| Descrizione fisica | 1 online resource (119 pages) |
| Disciplina | 621.38456 |
| Soggetto topico | 5G mobile communication systems |
| ISBN | 1-5044-8868-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | 1930.1-2022 - IEEE Recommended Practice for Software-Defined Networking |
| Record Nr. | UNISA-996575017003316 |
| [Place of publication not identified] : , : IEEE, , 2022 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
2019 IEEE 2nd 5G World Forum (5GWF) : 30 September to 2 October 2019, Dresden, Germany / / Kate Easton, editor
| 2019 IEEE 2nd 5G World Forum (5GWF) : 30 September to 2 October 2019, Dresden, Germany / / Kate Easton, editor |
| Pubbl/distr/stampa | Pistacaway, New Jersey : , : IEEE, , [2019] |
| Descrizione fisica | 1 online resource : illustrations |
| Disciplina | 621.382 |
| Soggetto topico |
Mobile communication systems
5G mobile communication systems Computer networks |
| ISBN | 1-7281-3627-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | 2019 IEEE 2nd 5G World Forum |
| Record Nr. | UNINA-9910389509203321 |
| Pistacaway, New Jersey : , : IEEE, , [2019] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
2019 IEEE 2nd 5G World Forum (5GWF) : 30 September to 2 October 2019, Dresden, Germany / / Kate Easton, editor
| 2019 IEEE 2nd 5G World Forum (5GWF) : 30 September to 2 October 2019, Dresden, Germany / / Kate Easton, editor |
| Pubbl/distr/stampa | Pistacaway, New Jersey : , : IEEE, , [2019] |
| Descrizione fisica | 1 online resource : illustrations |
| Disciplina | 621.382 |
| Soggetto topico |
Mobile communication systems
5G mobile communication systems Computer networks |
| ISBN | 1-7281-3627-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | 2019 IEEE 2nd 5G World Forum |
| Record Nr. | UNISA-996574596403316 |
| Pistacaway, New Jersey : , : IEEE, , [2019] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
2021 IEEE 4th 5G World Forum (5GWF) / / Institute of Electrical and Electronics Engineers
| 2021 IEEE 4th 5G World Forum (5GWF) / / Institute of Electrical and Electronics Engineers |
| Pubbl/distr/stampa | Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2021 |
| Descrizione fisica | 1 online resource (xxxii, 533 pages) |
| Disciplina | 621.38456 |
| Soggetto topico | 5G mobile communication systems |
| ISBN | 1-66544-308-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | 2021 IEEE 4th 5G World Forum |
| Record Nr. | UNINA-9910554054703321 |
| Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
2021 IEEE 4th 5G World Forum (5GWF) / / Institute of Electrical and Electronics Engineers
| 2021 IEEE 4th 5G World Forum (5GWF) / / Institute of Electrical and Electronics Engineers |
| Pubbl/distr/stampa | Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2021 |
| Descrizione fisica | 1 online resource (xxxii, 533 pages) |
| Disciplina | 621.38456 |
| Soggetto topico | 5G mobile communication systems |
| ISBN | 1-66544-308-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | 2021 IEEE 4th 5G World Forum |
| Record Nr. | UNISA-996574848203316 |
| Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2021 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
2939-2023 - IEEE Guide for Joint Use of Utility Poles with Wireline and/or Wireless Facilities / / IEEE
| 2939-2023 - IEEE Guide for Joint Use of Utility Poles with Wireline and/or Wireless Facilities / / IEEE |
| Pubbl/distr/stampa | New York, USA : , : IEEE, , 2023 |
| Descrizione fisica | 1 online resource (163 pages) : illustrations |
| Disciplina | 621.3 |
| Soggetto topico |
5G mobile communication systems
Wireless communication systems |
| ISBN | 979-88-557-0037-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996559964603316 |
| New York, USA : , : IEEE, , 2023 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
5G and Beyond Wireless Communication Networks
| 5G and Beyond Wireless Communication Networks |
| Autore | Sun Haijian |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (211 pages) |
| Disciplina | 621.38456 |
| Altri autori (Persone) |
HuRose Qingyang
QianYi |
| Collana | IEEE Press Series |
| Soggetto topico |
5G mobile communication systems
Wireless communication systems |
| ISBN |
9781119089490
1119089492 9781119089469 1119089468 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Chapter 1 Introduction to 5G and Beyond Network -- 1.1 5G and Beyond System Requirements -- 1.1.1 Technical Challenges -- 1.2 Enabling Technologies -- 1.2.1 5G New Radio -- 1.2.1.1 Non‐orthogonal Multiple Access (NOMA) -- 1.2.1.2 Channel Codes -- 1.2.1.3 Massive MIMO -- 1.2.1.4 Other 5G NR Techniques -- 1.2.2 Mobile Edge Computing (MEC) -- 1.2.3 Hybrid and Heterogeneous Communication Architecture for Pervasive IoTs -- 1.3 Book Outline -- Chapter 2 5G Wireless Networks with Underlaid D2D Communications -- 2.1 Background -- 2.1.1 MU‐MIMO -- 2.1.2 D2D Communication -- 2.1.3 MU‐MIMO and D2D in 5G -- 2.2 NOMA‐Aided Network with Underlaid D2D -- 2.3 NOMA with SIC and Problem Formation -- 2.3.1 NOMA with SIC -- 2.3.2 Problem Formation -- 2.4 Precoding and User Grouping Algorithm -- 2.4.1 Zero‐Forcing Beamforming -- 2.4.1.1 First ZF Precoding -- 2.4.1.2 Second ZF Precoding -- 2.4.2 User Grouping and Optimal Power Allocation -- 2.4.2.1 First ZF Precoding -- 2.4.2.2 Second ZF Precoding -- 2.5 Numerical Results -- 2.6 Summary -- Chapter 3 5G NOMA‐Enabled Wireless Networks -- 3.1 Background -- 3.2 Error Propagation in NOMA -- 3.3 SIC and Problem Formulation -- 3.3.1 SIC with Error Propagation -- 3.3.2 Problem Formation -- 3.4 Precoding and Power Allocation -- 3.4.1 Precoding Design -- 3.4.2 Case Studies for Power Allocation -- 3.4.2.1 Case I -- 3.4.2.2 Case II -- 3.5 Numerical Results -- 3.6 Summary -- Chapter 4 NOMA in Relay and IoT for 5G Wireless Networks -- 4.1 Outage Probability Study in a NOMA Relay System -- 4.1.1 Background -- 4.1.2 System Model -- 4.1.2.1 NOMA Cooperative Scheme -- 4.1.2.2 NOMA TDMA Scheme -- 4.1.3 Outage Probability Analysis -- 4.1.3.1 Outage Probability in NOMA Cooperative Scheme -- 4.1.4 Outage Probability in NOMA TDMA Scheme.
4.1.5 Outage Probability with Error Propagation in SIC -- 4.1.5.1 Outage Probability in NOMA Cooperative Scheme with EP -- 4.1.5.2 Outage Probability in NOMA TDMA Scheme with EP -- 4.1.6 Numerical Results -- 4.2 NOMA in a mmWave‐Based IoT Wireless System with SWIPT -- 4.2.1 Introduction -- 4.2.2 System Model -- 4.2.2.1 Phase 1 Transmission -- 4.2.2.2 Phase 2 Transmission -- 4.2.3 Outage Analysis -- 4.2.3.1 UE 1 Outage Probability -- 4.2.3.2 UE 2 Outage Probability -- 4.2.3.3 Outage at High SNR -- 4.2.3.4 Diversity Analysis for UE 2 -- 4.2.4 Numerical Results -- 4.2.5 Summary -- Chapter 5 Robust Beamforming in NOMA Cognitive Radio Networks: Bounded CSI -- 5.1 Background -- 5.1.1 Related Work and Motivation -- 5.1.1.1 Linear EH Model -- 5.1.1.2 Non‐linear EH Model -- 5.1.2 Contributions -- 5.2 System and Energy Harvesting Models -- 5.2.1 System Model -- 5.2.2 Non‐linear EH Model -- 5.2.3 Bounded CSI Error Model -- 5.2.3.1 NOMA Transmission -- 5.3 Power Minimization‐Based Problem Formulation -- 5.3.1 Problem Formulation -- 5.3.2 Matrix Decomposition -- 5.4 Maximum Harvested Energy Problem Formulation -- 5.4.1 Complexity Analysis -- 5.5 Numerical Results -- 5.5.1 Power Minimization Problem -- 5.5.2 Energy Harvesting Maximization Problem -- 5.6 Summary -- Chapter 6 Robust Beamforming in NOMA Cognitive Radio Networks: Gaussian CSI -- 6.1 Gaussian CSI Error Model -- 6.2 Power Minimization‐Based Problem Formulation -- 6.2.1 Bernstein‐Type Inequality I -- 6.2.2 Bernstein‐Type Inequality II -- 6.3 Maximum Harvested Energy Problem Formulation -- 6.3.1 Complexity Analysis -- 6.4 Numerical Results -- 6.4.1 Power Minimization Problem -- 6.4.2 Energy Harvesting Maximization Problem -- 6.5 Summary -- Chapter 7 Mobile Edge Computing in 5G Wireless Networks -- 7.1 Background -- 7.2 System Model -- 7.2.1 Data Offloading -- 7.2.2 Local Computing. 7.3 Problem Formulation -- 7.3.1 Update pk, tk, and fk -- 7.3.2 Update Lagrange Multipliers -- 7.3.3 Update Auxiliary Variables -- 7.3.4 Complexity Analysis -- 7.4 Numerical Results -- 7.5 Summary -- Chapter 8 Toward Green MEC Offloading with Security Enhancement -- 8.1 Background -- 8.2 System Model -- 8.2.1 Secure Offloading -- 8.2.2 Local Computing -- 8.2.3 Receiving Computed Results -- 8.2.4 Computation Efficiency in MEC Systems -- 8.3 Computation Efficiency Maximization with Active Eavesdropper -- 8.3.1 SCA‐Based Optimization Algorithm -- 8.3.2 Objective Function -- 8.3.3 Proposed Solution to P4 with given (λk,βk) -- 8.3.4 Update (λk,βk) -- 8.4 Numerical Results -- 8.5 Summary -- Chapter 9 Wireless Systems for Distributed Machine Learning -- 9.1 Background -- 9.2 System Model -- 9.2.1 FL Model Update -- 9.2.2 Gradient Quantization -- 9.2.3 Gradient Sparsification -- 9.3 FL Model Update with Adaptive NOMA Transmission -- 9.3.1 Uplink NOMA Transmission -- 9.3.2 NOMA Scheduling -- 9.3.3 Adaptive Transmission -- 9.4 Scheduling and Power Optimization -- 9.4.1 Problem Formulation -- 9.5 Scheduling Algorithm and Power Allocation -- 9.5.1 Scheduling Graph Construction -- 9.5.2 Optimal scheduling Pattern -- 9.5.3 Power Allocation -- 9.6 Numerical Results -- 9.7 Summary -- Chapter 10 Secure Spectrum Sharing with Machine Learning: An Overview -- 10.1 Background -- 10.1.1 SS: A Brief History -- 10.1.2 Security Issues in SS -- 10.2 ML‐Based Methodologies for SS -- 10.2.1 ML‐Based CRN -- 10.2.1.1 Spectrum Sensing -- 10.2.1.2 Spectrum Selection -- 10.2.1.3 Spectrum Access -- 10.2.1.4 Spectrum Handoff -- 10.2.2 Database‐Assisted SS -- 10.2.2.1 ML‐Based EZ Optimization -- 10.2.2.2 Incumbent Detection -- 10.2.2.3 Channel Selection and Transaction -- 10.2.3 ML‐Based LTE‐U/LTE‐LAA -- 10.2.3.1 ML‐Based LBT Methods -- 10.2.3.2 ML‐Based Duty Cycle Methods. 10.2.3.3 Game‐Theory‐Based Methods -- 10.2.3.4 Distributed‐Algorithm‐Based Methods -- 10.2.4 Ambient Backscatter Networks -- 10.2.4.1 Information Extraction -- 10.2.4.2 Operating Mode Selection and User Coordination -- 10.2.4.3 AmBC‐CR Methods -- 10.3 Summary -- Chapter 11 Secure Spectrum Sharing with Machine Learning: Methodologies -- 11.1 Security Concerns in SS -- 11.1.1 Primary User Emulation Attack -- 11.1.2 Spectrum Sensing Data Falsification Attack -- 11.1.3 Jamming Attacks -- 11.1.4 Intercept/Eavesdrop -- 11.1.5 Privacy Issues in Database‐Assisted SS Systems -- 11.2 ML‐Assisted Secure SS -- 11.2.1 State‐of‐the‐Art Methods of Defense Against PUE Attack -- 11.2.1.1 ML‐Based Detection Methods -- 11.2.1.2 Robust Detection Methods -- 11.2.1.3 ML‐Based Attack Methods -- 11.2.2 State‐of‐the‐Art Methods of Defense Against SSDF Attack -- 11.2.2.1 Outlier Detection Methods -- 11.2.2.2 Reputation‐Based Detection Methods -- 11.2.2.3 SSDF and PUE Combination Attacks -- 11.2.3 State‐of‐the‐Art Methods of Defense Against Jamming Attacks -- 11.2.3.1 ML‐Based Anti‐Jamming Methods -- 11.2.3.2 Attacker Enhanced Anti‐Jamming Methods -- 11.2.3.3 AmBC Empowered Anti‐Jamming Methods -- 11.2.4 State‐of‐the‐Art Methods of Defense Against Intercept/Eavesdrop -- 11.2.4.1 RL‐Based Anti‐Eavesdropping Methods -- 11.2.5 State‐of‐the‐Art ML‐Based Privacy Protection Methods -- 11.2.5.1 Privacy Protection for PUs in SS Networks -- 11.2.5.2 Privacy Protection for SUs in SS Networks -- 11.2.5.3 Privacy Protection for ML Algorithms -- 11.3 Summary -- Chapter 12 Open Issues and Future Directions for 5G and Beyond Wireless Networks -- 12.1 Joint Communication and Sensing -- 12.2 Space‐Air‐Ground Communication -- 12.3 Semantic Communication -- 12.4 Data‐Driven Communication System Design -- Appendix A Proof of Theorem 5.1 -- Bibliography -- Index -- EULA. |
| Record Nr. | UNINA-9911019090903321 |
Sun Haijian
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
5G and beyond wireless transport technologies : enabling backhaul, midhaul, and fronthaul / / Douglas H. Morais
| 5G and beyond wireless transport technologies : enabling backhaul, midhaul, and fronthaul / / Douglas H. Morais |
| Autore | Morais Douglas H. |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (249 pages) |
| Disciplina | 621.38456 |
| Soggetto topico | 5G mobile communication systems |
| ISBN | 3-030-74080-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Abbreviations and Acronyms -- Contents -- About the Author -- Chapter 1: 5G Architecture and the Roll of Wireless Transport -- 1.1 Introduction -- 1.2 5G Usage Scenarios and Top-Level Requirements -- 1.3 5G Network Overview -- 1.4 5G Transport Network Components (Backhaul, Midhaul, Fronthaul) -- 1.5 Transport Realization Options -- 1.5.1 Fiber -- 1.5.2 Free Space Optics -- 1.5.3 Wireless -- 1.5.3.1 Wireless Transport Evolution -- 1.5.3.2 Traditional Bands -- 1.5.3.3 Nontraditional Millimeter-Wave Bands -- 1.5.3.4 Integrated Access and Backhaul -- 1.6 Key Wireless Transport Technologies in Support of 5G Networks -- 1.7 Summary -- References -- Chapter 2: 5G Transport Payload: Ethernet-Based Packet-Switched Data -- 2.1 Introduction -- 2.2 TCP/IP -- 2.2.1 Application Layer Protocol -- 2.2.2 Transport Layer Transmission Control Protocol -- 2.2.3 Transport Layer User Datagram Protocol -- 2.2.4 Internet Layer Protocol -- 2.2.5 Data Link Layer Ethernet Protocol -- 2.2.6 Multi-Protocol Label Switching (MPLS) -- 2.3 Voice over IP (VoIP) -- 2.4 Video over IP -- 2.5 Header Compression -- 2.6 Payload Compression -- 2.7 Summary -- References -- Chapter 3: The Fixed Wireless Path -- 3.1 Introduction -- 3.2 Antennas -- 3.2.1 Introduction -- 3.2.2 Antenna Characteristics -- 3.2.3 Typical Point-to-Point Wireless Antennas -- 3.3 Free Space Propagation -- 3.4 Line-of-Sight Non-Faded Received Signal Level -- 3.5 Fading Phenomena -- 3.5.1 Atmospheric Effects -- 3.5.1.1 Refraction -- 3.5.1.2 Reflection -- 3.5.1.3 Rain Attenuation and Atmospheric Absorption -- 3.5.2 Terrain Effects -- 3.5.2.1 Terrain Reflection -- 3.5.2.2 Fresnel Zones -- 3.5.2.3 Diffraction -- 3.5.2.4 Path Clearance Criteria -- 3.5.3 Signal Strength Versus Frequency Effects -- 3.5.3.1 Flat Fading -- 3.5.3.2 Frequency Selective Fading -- 3.5.3.3 Multipath Fading Channel Model.
3.5.4 Cross-Polarization Discrimination Degradation due to Fading -- 3.6 External Interference -- 3.7 Outage and Unavailability -- 3.8 Diversity Techniques for Improved Reliability -- 3.8.1 Space Diversity -- 3.8.2 Angle Diversity -- 3.9 Summary -- References -- Chapter 4: Digital Modulation: The Basic Principles -- 4.1 Introduction -- 4.2 Baseband Data Transmission -- 4.3 Linear Modulation Systems -- 4.3.1 Double-Sideband Suppressed Carrier (DSBSC) Modulation -- 4.3.2 Binary Phase-Shift Keying (BPSK) -- 4.3.3 Quadrature Amplitude Modulation (QAM) -- 4.3.4 Quadrature Phase-Shift Keying (QPSK) -- 4.3.5 High-Order 22n-QAM -- 4.3.6 High-Order 22n+1-QAM -- 4.3.7 Peak-to-Average Power Ratio -- 4.4 Transmission IF and RF Components -- 4.4.1 Transmitter Upconverter and Receiver Downconverter -- 4.4.2 Transmitter RF Power Amplifier and Output Bandpass Filter -- 4.4.3 The Receiver ``Front End´´ -- 4.5 Modem Realization Techniques -- 4.5.1 Scrambling/Descrambling -- 4.5.2 Carrier Recovery -- 4.5.3 Timing Recovery -- 4.6 Summary -- References -- Chapter 5: Performance Optimization Techniques -- 5.1 Introduction -- 5.2 Forward Error Correction Coding -- 5.2.1 Introduction -- 5.2.2 Block Codes -- 5.2.3 Classical Parity-Check Block Codes -- 5.2.4 Low-Density Parity-Check (LDPC) Codes -- 5.2.4.1 Encoding of Quasi-Cyclic LDPC Codes -- 5.2.4.2 Decoding of LDPC Codes -- 5.2.5 Reed-Solomon (RS) Codes -- 5.2.6 LDPC and RS Codes in Wireless Transport -- 5.2.7 Polar Codes -- 5.2.7.1 Channel Polarization -- 5.2.7.2 Encoding of Polar Codes -- 5.2.7.3 Decoding of Polar Codes -- 5.3 Block Interleaving -- 5.4 Puncturing -- 5.5 Adaptive Modulation and Coding (AMC) -- 5.6 Power Amplifier Linearization Via Predistortion -- 5.7 Phase Noise Suppression -- 5.8 Quadrature Modulation/Demodulation Imperfections Mitigation -- 5.8.1 Transmitter Quadrature Error Mitigation. 5.8.2 Transmitter I/Q Balance Error Mitigation -- 5.8.3 Transmitter Residual Error Mitigation -- 5.8.4 Receiver Quadrature Imperfections Mitigation -- 5.9 Adaptive Equalization -- 5.9.1 Introduction -- 5.9.2 Time-Domain Equalization -- 5.9.2.1 Introduction -- 5.9.2.2 Adaptive Baseband Equalization Fundamentals -- 5.9.2.3 QAM Adaptive Baseband Equalization -- 5.9.2.4 Initialization Methods -- 5.10 Summary -- References -- Chapter 6: Non-Modulation-Based Capacity Improvement Techniques -- 6.1 Introduction -- 6.2 Co-Channel Dual Polarization (CCDP) Transmission -- 6.3 Line-of-Sight Multiple-input Multiple-output (LoS MIMO) -- 6.3.1 Introduction -- 6.3.2 LoS MIMO Fundamentals -- 6.3.3 Optimal Antenna Separation -- 6.3.4 Non-optimal Antenna Separation -- 6.3.5 LoS MIMO Equalization -- 6.3.6 Increasing Channel Capacity Via the Simultaneous Use of CCDP/XPIC and LoS MIMO -- 6.4 Orbital Angular Momentum Multiplexing -- 6.4.1 Introduction -- 6.4.2 OAM Structure and Characteristics -- 6.4.3 OAM Mode Generation and Multiplexing/Demultiplexing -- 6.5 Band and Carrier Aggregation -- 6.6 Summary -- References -- Chapter 7: Transceiver Architecture, Link Capacity, and Example Specifications -- 7.1 Introduction -- 7.2 Basic Transceiver Architecture and Structural Options -- 7.2.1 The Baseband Processor -- 7.2.2 The IF Processor -- 7.2.3 The Direct Conversion RF Front End -- 7.2.4 The Heterodyne RF Front End -- 7.2.5 Antenna Coupling -- 7.2.6 The Antenna -- 7.3 Link Capacity Capability -- 7.4 Example Specifications and Typical Path Performance of an 80 GHz (E-Band) Link -- 7.5 Example Specifications and Typical Path Performance of a 32 GHz Link -- 7.6 Conclusion -- References -- Appendices -- Appendix A -- Helpful Mathematical Identities -- Trigonometric Identities -- Standard Integrals -- Matrix Algebra -- Appendix B -- Multipath Fading Outage Analysis. B.1 Total Outage -- B.2 Unprotected Nonselective Outage Prediction -- B.3 Unprotected Selective Outage Prediction -- B.4 Outage Prediction Example -- Appendix C -- Rain Outage Analysis -- Appendix D -- Spectral Analysis of Nonperiodic Functions and Linear System Response -- D.1 Spectral Analysis of Nonperiodic Functions -- D.2 Linear System Response -- Appendix E -- QAM Cross-Constellation BER Computation -- Index. |
| Record Nr. | UNINA-9910491027603321 |
Morais Douglas H.
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
5G backhaul and fronthaul / / edited by Esa Marcus Metsälä, Juha T. T. Salmelin
| 5G backhaul and fronthaul / / edited by Esa Marcus Metsälä, Juha T. T. Salmelin |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023] |
| Descrizione fisica | 1 online resource (306 pages) |
| Disciplina | 621.38456 |
| Soggetto topico | 5G mobile communication systems |
| ISBN |
1-119-27557-1
1-119-27567-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910831199203321 |
| Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
5G new radio : a beam-based air interface / / edited by Mihai Enescu
| 5G new radio : a beam-based air interface / / edited by Mihai Enescu |
| Edizione | [First edition.] |
| Pubbl/distr/stampa | Hoboken, New Jersey, USA : , : Wiley, , 2020 |
| Descrizione fisica | 1 online resource (604 pages) |
| Disciplina | 621.38456 |
| Soggetto topico |
5G mobile communication systems
Radio - High-fidelity systems |
| ISBN |
1-119-58237-7
1-119-58236-9 1-119-58233-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Table of Contents -- List of Contributors -- Preface -- Acknowledgments -- Abbreviations -- 1 Introduction and Background -- 1.1 Why 5G? -- 1.2 Requirements and Targets -- 1.3 Technology Components and Design Considerations -- 2 Network Architecture and NR Radio Protocols -- 2.1 Architecture Overview -- 2.2 Core Network Architecture -- 2.3 Radio Access Network -- 2.4 NR Radio Interface Protocols -- 3 PHY Layer -- 3.1 Introduction (Mihai Enescu, Nokia Bell Labs, Finland) -- 3.2 NR Waveforms (Youngsoo Yuk, Nokia Bell Labs, Korea)
3.3 Antenna Architectures in 5G (Fred Vook, Nokia Bell Labs, USA) -- 3.4 Frame Structure and Resource Allocation (Karri Ranta-aho, Nokia Bell Labs, Finland) -- 3.5 Synchronization Signals and Broadcast Channels in NR Beam-Based System (Jorma Kaikkonen, Sami Hakola, Nokia Bell Labs, Finland) -- 3.6 Physical Random Access Channel (PRACH) (Emad Farag, Nokia Bell Labs, USA) -- 3.7 CSI-RS (Stephen Grant, Ericsson, USA) -- 3.8 PDSCH and PUSCH DM-RS, Qualcomm Technologies, Inc. (Alexandros Manolakos, Qualcomm Technologies, Inc, USA) -- 3.9 Phrase- Tracking RS (Youngsoo Yuk, Nokia Bell Labs, Korea) 3.10 SRS (Stephen Grant, Ericsson, USA) -- 3.11 Power Control (Mihai Enescu, Nokia Bell Labs, Finland) -- 3.12 DL and UL Transmission Framework (Mihai Enescu, Nokia, Karri Ranta-aho, Nokia Bell Labs, Finland) -- Notes -- 4 Main Radio Interface Related System Procedures -- 4.1 Initial Access (Jorma Kaikkonen, Sami Hakola, Nokia Bell Labs, Finland, Emad Farag, Nokia Bell Labs, USA) -- 4.2 Beam Management (Mihai Enescu, Nokia Bell Labs, Finland, Claes Tidestav, Ericsson, Sweden, Sami Hakola, Juha Karjalainen, Nokia Bell Labs, Finland) -- 4.3 CSI Framework (Sebastian Faxér, Ericsson, Sweden) 4.4 Radio Link Monitoring (Claes Tidestav, Ericsson, Sweden, Dawid Koziol, Nokia Bell Labs, Poland) -- 4.5 Radio Resource Management (RRM) and Mobility (Helka-Liina Määttänen, Ericsson, Finland, Dawid Koziol, Nokia Bell Labs, Poland, Claes Tidestav, Ericsson, Sweden) -- Note -- 5 Performance Characteristics of 5G New Radio -- 5.1 Introduction -- 5.2 Sub-6 GHz: Codebook-Based MIMO in NR -- 5.3 NR MIMO Performance in mmWave Bands -- 5.4 Concluding Remarks -- 6 UE Features -- 6.1 Reference Signals -- References -- Index -- End User License Agreement |
| Record Nr. | UNINA-9910555153703321 |
| Hoboken, New Jersey, USA : , : Wiley, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||