A Course on Holomorphic Discs / Hansjörg Geiges, Kai Zehmisch
| A Course on Holomorphic Discs / Hansjörg Geiges, Kai Zehmisch |
| Autore | Geiges, Hansjörg |
| Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2023 |
| Descrizione fisica | xviii, 189 p. : ill. ; 24 cm |
| Altri autori (Persone) | Zehmisch, Kai |
| Soggetto topico |
32Q65 - Pseudoholomorphic curves [MSC 2020]
46T10 - Manifolds of mappings [MSC 2020] 53D35 - Global theory of symplectic and contact manifolds [MSC 2020] 57R17 - Symplectic and contact topology in high or arbitrary dimension [MSC 2020] 58D15 - Manifolds of mappings [MSC 2020] 58J05 - Elliptic equations on manifolds, general theory [MSC 2020] |
| Soggetto non controllato |
Banach manifolds of maps
Fredholm Theory Moduli Spaces Nonlinear Cauchy-Riemann Operator Nonsqueezing Theorem Pseudoholomorphic curves Sard-Smale Theorem Symplectic Embeddings |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00279325 |
Geiges, Hansjörg
|
||
| Cham, : Birkhäuser, : Springer, 2023 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Elliptic Boundary Problems for Dirac Operators / Bernhelm Booß-Bavnbek, Krzysztof P. Wojciechowski
| Elliptic Boundary Problems for Dirac Operators / Bernhelm Booß-Bavnbek, Krzysztof P. Wojciechowski |
| Autore | Booß-Bavnbek, Bernhelm |
| Pubbl/distr/stampa | New York, : Springer ; Boston, : Birkhäuser, 1993 |
| Descrizione fisica | xviii, 307 p. : ill. ; 24 cm |
| Altri autori (Persone) | Wojciechowski, Krzysztof P. |
| Soggetto topico |
15A66 - Clifford algebras, spinors [MSC 2020]
35-XX - Partial differential equations [MSC 2020] 58-XX - Global analysis, analysis on manifolds [MSC 2020] 58J05 - Elliptic equations on manifolds, general theory [MSC 2020] 58J32 - Boundary value problems on manifolds [MSC 2020] 58J50 - Spectral problems; spectral geometry; scattering theory on manifolds [MSC 2020] |
| Soggetto non controllato |
Algebra
Equations Manifolds Matrix theory Ordinary Differential Equations Partial Differential Equations Sobolev spaces |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00290333 |
Booß-Bavnbek, Bernhelm
|
||
| New York, : Springer ; Boston, : Birkhäuser, 1993 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Geometric Analysis of Quasilinear Inequalities on Complete Manifolds : Maximum and Compact Support Principles and Detours on Manifolds / Bruno Bianchini ... [et al.]
| Geometric Analysis of Quasilinear Inequalities on Complete Manifolds : Maximum and Compact Support Principles and Detours on Manifolds / Bruno Bianchini ... [et al.] |
| Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2021 |
| Descrizione fisica | x, 286 p. : ill. ; 24 cm |
| Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
53-XX - Differential geometry [MSC 2020] 35J70 - Degenerate elliptic equations [MSC 2020] 58J05 - Elliptic equations on manifolds, general theory [MSC 2020] |
| Soggetto non controllato |
Coercive Differential Inequalities
Compact Support Principle Liouville Properties Maximum principle Mean Curvature Flow Solitons |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0274387 |
| Cham, : Birkhäuser, : Springer, 2021 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Geometric Analysis of Quasilinear Inequalities on Complete Manifolds : Maximum and Compact Support Principles and Detours on Manifolds / Bruno Bianchini ... [et al.]
| Geometric Analysis of Quasilinear Inequalities on Complete Manifolds : Maximum and Compact Support Principles and Detours on Manifolds / Bruno Bianchini ... [et al.] |
| Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2021 |
| Descrizione fisica | x, 286 p. : ill. ; 24 cm |
| Soggetto topico |
35J70 - Degenerate elliptic equations [MSC 2020]
53-XX - Differential geometry [MSC 2020] 58-XX - Global analysis, analysis on manifolds [MSC 2020] 58J05 - Elliptic equations on manifolds, general theory [MSC 2020] |
| Soggetto non controllato |
Coercive Differential Inequalities
Compact Support Principle Liouville Properties Maximum principle Mean Curvature Flow Solitons |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00274387 |
| Cham, : Birkhäuser, : Springer, 2021 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Heat Kernel method and its applications / Ivan G. Avramidi
| Heat Kernel method and its applications / Ivan G. Avramidi |
| Autore | Avramidi, Ivan G. |
| Pubbl/distr/stampa | [Cham], : Birkhäuser, : Springer, 2015 |
| Descrizione fisica | XIX, 390 p. : ill. ; 24 cm |
| Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
35-XX - Partial differential equations [MSC 2020] 35K05 - Heat equation [MSC 2020] 81Q20 - Semiclassical techniques including WKB and Maslov methods applied to problems in quantum theory [MSC 2020] 58J37 - Perturbations of PDEs on manifolds; asymptotics [MSC 2020] 35K10 - Second-order parabolic equations [MSC 2020] 58J05 - Elliptic equations on manifolds, general theory [MSC 2020] 58J35 - Heat and other parabolic equation methods for PDEs on manifolds [MSC 2020] 91G20 - Derivative securities (option pricing, hedging, etc.) [MSC 2020] 91G30 - Interest rates, asset pricing, etc. (stochastic models) [MSC 2020] 91G80 - Financial applications of other theories [MSC 2020] 35K08 - Heat kernel [MSC 2020] 35K67 - Singular parabolic equations [MSC 2020] 35Q91 - PDEs in connection with game theory, economics, social and behavioral sciences [MSC 2020] |
| Soggetto non controllato |
Heat equations
Heat kernel Partial differential equations Semi-classical approximation Singular Perturbations Spectral asymptotics Stochastic volatility models |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0113894 |
Avramidi, Ivan G.
|
||
| [Cham], : Birkhäuser, : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Heat Kernel method and its applications / Ivan G. Avramidi
| Heat Kernel method and its applications / Ivan G. Avramidi |
| Autore | Avramidi, Ivan G. |
| Pubbl/distr/stampa | [Cham], : Birkhäuser, : Springer, 2015 |
| Descrizione fisica | XIX, 390 p. : ill. ; 24 cm |
| Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
35K05 - Heat equation [MSC 2020] 35K08 - Heat kernel [MSC 2020] 35K10 - Second-order parabolic equations [MSC 2020] 35K67 - Singular parabolic equations [MSC 2020] 35Q91 - PDEs in connection with game theory, economics, social and behavioral sciences [MSC 2020] 58-XX - Global analysis, analysis on manifolds [MSC 2020] 58J05 - Elliptic equations on manifolds, general theory [MSC 2020] 58J35 - Heat and other parabolic equation methods for PDEs on manifolds [MSC 2020] 58J37 - Perturbations of PDEs on manifolds; asymptotics [MSC 2020] 81Q20 - Semiclassical techniques including WKB and Maslov methods applied to problems in quantum theory [MSC 2020] 91G20 - Derivative securities (option pricing, hedging, etc.) [MSC 2020] 91G30 - Interest rates, asset pricing, etc. (stochastic models) [MSC 2020] 91G80 - Financial applications of other theories [MSC 2020] |
| Soggetto non controllato |
Heat equations
Heat kernel Partial Differential Equations Semi-classical approximation Singular Perturbations Spectral asymptotics Stochastic volatility models |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00113894 |
Avramidi, Ivan G.
|
||
| [Cham], : Birkhäuser, : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Heat Kernel method and its applications / Ivan G. Avramidi
| Heat Kernel method and its applications / Ivan G. Avramidi |
| Autore | Avramidi, Ivan G. |
| Edizione | [[Cham] : Birkhäuser : Springer, 2015] |
| Pubbl/distr/stampa | XIX, 390 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
35-XX - Partial differential equations [MSC 2020] 35K05 - Heat equation [MSC 2020] 81Q20 - Semiclassical techniques including WKB and Maslov methods applied to problems in quantum theory [MSC 2020] 58J37 - Perturbations of PDEs on manifolds; asymptotics [MSC 2020] 35K10 - Second-order parabolic equations [MSC 2020] 58J05 - Elliptic equations on manifolds, general theory [MSC 2020] 58J35 - Heat and other parabolic equation methods for PDEs on manifolds [MSC 2020] 91G20 - Derivative securities (option pricing, hedging, etc.) [MSC 2020] 91G30 - Interest rates, asset pricing, etc. (stochastic models) [MSC 2020] 91G80 - Financial applications of other theories [MSC 2020] 35K08 - Heat kernel [MSC 2020] 35K67 - Singular parabolic equations [MSC 2020] 35Q91 - PDEs in connection with game theory, economics, social and behavioral sciences [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0113894 |
Avramidi, Ivan G.
|
||
| XIX, 390 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Layer potentials, the Hodge Laplacian, and global boundary problems innonsmooth Riemannian manifolds / Dorina Mitrea, Marius Mitrea, Michael Taylor
| Layer potentials, the Hodge Laplacian, and global boundary problems innonsmooth Riemannian manifolds / Dorina Mitrea, Marius Mitrea, Michael Taylor |
| Autore | Mitrea, Dorina |
| Pubbl/distr/stampa | Providence, R.I., : American mathematical society, 2001 |
| Descrizione fisica | VIII, 120 p. ; 26 cm. |
| Altri autori (Persone) |
Taylor, Michael
Mitrea, Marius |
| Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
42B20 - Singular and oscillatory integrals (Calderón-Zygmund, etc.) [MSC 2020] 78A30 - Electro- and magnetostatics [MSC 2020] 35Jxx - Elliptic equations and elliptic systems [MSC 2020] 58J32 - Boundary value problems on manifolds [MSC 2020] 58J05 - Elliptic equations on manifolds, general theory [MSC 2020] 58A14 - Hodge theory in global analysis [MSC 2020] 31C12 Potential theory on Riemannian manifolds and other spaces [MSC 2020] 45E05 - Integral equations with kernels of Cauchy type [MSC 2020] 31A10 - Integral representations, integral operators, integral equations methods in two dimensions [MSC 2020] |
| ISBN | 8-0-8218-2659-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0053138 |
Mitrea, Dorina
|
||
| Providence, R.I., : American mathematical society, 2001 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Layer potentials, the Hodge Laplacian, and global boundary problems innonsmooth Riemannian manifolds / Dorina Mitrea, Marius Mitrea, Michael Taylor
| Layer potentials, the Hodge Laplacian, and global boundary problems innonsmooth Riemannian manifolds / Dorina Mitrea, Marius Mitrea, Michael Taylor |
| Autore | Mitrea, Dorina |
| Pubbl/distr/stampa | Providence, R.I., : American mathematical society, 2001 |
| Descrizione fisica | VIII, 120 p. ; 26 cm |
| Altri autori (Persone) |
Mitrea, Marius
Taylor, Michael |
| Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
42B20 - Singular and oscillatory integrals (Calderón-Zygmund, etc.) [MSC 2020] 78A30 - Electro- and magnetostatics [MSC 2020] 35Jxx - Elliptic equations and elliptic systems [MSC 2020] 58J32 - Boundary value problems on manifolds [MSC 2020] 58J05 - Elliptic equations on manifolds, general theory [MSC 2020] 58A14 - Hodge theory in global analysis [MSC 2020] 31C12 - Potential theory on Riemannian manifolds and other spaces [MSC 2020] 45E05 - Integral equations with kernels of Cauchy type [MSC 2020] 31A10 - Integral representations, integral operators, integral equations methods in two dimensions [MSC 2020] |
| ISBN | 978-08-218-2659-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0053138 |
Mitrea, Dorina
|
||
| Providence, R.I., : American mathematical society, 2001 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Layer potentials, the Hodge Laplacian, and global boundary problems innonsmooth Riemannian manifolds / Dorina Mitrea, Marius Mitrea, Michael Taylor
| Layer potentials, the Hodge Laplacian, and global boundary problems innonsmooth Riemannian manifolds / Dorina Mitrea, Marius Mitrea, Michael Taylor |
| Autore | Mitrea, Dorina |
| Pubbl/distr/stampa | Providence, R.I., : American mathematical society, 2001 |
| Descrizione fisica | VIII, 120 p. ; 26 cm |
| Altri autori (Persone) |
Mitrea, Marius
Taylor, Michael |
| Soggetto topico |
31A10 - Integral representations, integral operators, integral equations methods in two dimensions [MSC 2020]
31C12 - Potential theory on Riemannian manifolds and other spaces [MSC 2020] 35-XX - Partial differential equations [MSC 2020] 35Jxx - Elliptic equations and elliptic systems [MSC 2020] 42B20 - Singular and oscillatory integrals (Calderón-Zygmund, etc.) [MSC 2020] 45E05 - Integral equations with kernels of Cauchy type [MSC 2020] 58A14 - Hodge theory in global analysis [MSC 2020] 58J05 - Elliptic equations on manifolds, general theory [MSC 2020] 58J32 - Boundary value problems on manifolds [MSC 2020] 78A30 - Electro- and magnetostatics [MSC 2020] |
| ISBN | 978-08-218-2659-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00053138 |
Mitrea, Dorina
|
||
| Providence, R.I., : American mathematical society, 2001 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||