Diffeomorphisms of elliptic 3-manifolds / Sungbok Hong ... [et al.] |
Pubbl/distr/stampa | Berlin, : Springer, 2012 |
Descrizione fisica | X, 155 p. : ill. ; 24 cm |
Soggetto topico |
58D29 - Moduli problems for topological structures [MSC 2020]
57Mxx - General low-dimensional topology [MSC 2020] 58D05 - Groups of diffeomorphisms and homeomorphisms as manifolds [MSC 2020] 57S10 - Compact groups of homeomorphisms [MSC 2020] |
Soggetto non controllato |
3-manifold
Frechet Smale Conjecture |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0091513 |
Berlin, : Springer, 2012 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Diffeomorphisms of elliptic 3-manifolds / Sungbok Hong ... [et al.] |
Pubbl/distr/stampa | Berlin, : Springer, 2012 |
Descrizione fisica | X, 155 p. : ill. ; 24 cm |
Soggetto topico |
57Mxx - General low-dimensional topology [MSC 2020]
57S10 - Compact groups of homeomorphisms [MSC 2020] 58D05 - Groups of diffeomorphisms and homeomorphisms as manifolds [MSC 2020] 58D29 - Moduli problems for topological structures [MSC 2020] |
Soggetto non controllato |
3-manifold
Frechet Smale Conjecture |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00091513 |
Berlin, : Springer, 2012 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Diffeomorphisms of elliptic 3-manifolds / Sungbok Hong ... [et al.] |
Edizione | [Berlin : Springer, 2012] |
Pubbl/distr/stampa | X, 155 p., : ill. ; 24 cm |
Descrizione fisica | Pubblicazione in formato elettronico |
Soggetto topico |
58D29 - Moduli problems for topological structures [MSC 2020]
57Mxx - General low-dimensional topology [MSC 2020] 58D05 - Groups of diffeomorphisms and homeomorphisms as manifolds [MSC 2020] 57S10 - Compact groups of homeomorphisms [MSC 2020] |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-SUN0091513 |
X, 155 p., : ill. ; 24 cm | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Infinite Dimensional Lie Transformation Groups / Hideki Omori |
Autore | Omori, Hideki |
Pubbl/distr/stampa | Berlin, : Springer, 1974 |
Descrizione fisica | x, 149 p. ; 24 cm |
Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
54H15 - Transformation groups and semigroups (topological aspects) [MSC 2020] 58B10 - Differentiability questions for infinite-dimensional manifolds [MSC 2020] 58D05 - Groups of diffeomorphisms and homeomorphisms as manifolds [MSC 2020] 57Txx - Homology and homotopy of topological groups and related structures [MSC 2020] 22E65 - Infinite-dimensional Lie groups and their Lie algebras: general properties [MSC 2020] 17B65 - Infinite-dimensional Lie (super)algebras [MSC 2020] 58Bxx - Infinite-dimensional manifolds [MSC 2020] |
Soggetto non controllato |
Algebra
Lie groups Transformation groups |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0256095 |
Omori, Hideki
![]() |
||
Berlin, : Springer, 1974 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Infinite Dimensional Lie Transformation Groups / Hideki Omori |
Autore | Omori, Hideki |
Pubbl/distr/stampa | Berlin, : Springer, 1974 |
Descrizione fisica | x, 149 p. ; 24 cm |
Soggetto topico |
17B65 - Infinite-dimensional Lie (super)algebras [MSC 2020]
22E65 - Infinite-dimensional Lie groups and their Lie algebras: general properties [MSC 2020] 54H15 - Transformation groups and semigroups (topological aspects) [MSC 2020] 57Txx - Homology and homotopy of topological groups and related structures [MSC 2020] 58-XX - Global analysis, analysis on manifolds [MSC 2020] 58B10 - Differentiability questions for infinite-dimensional manifolds [MSC 2020] 58Bxx - Infinite-dimensional manifolds [MSC 2020] 58D05 - Groups of diffeomorphisms and homeomorphisms as manifolds [MSC 2020] |
Soggetto non controllato |
Algebra
Lie groups Transformation groups |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00256095 |
Omori, Hideki
![]() |
||
Berlin, : Springer, 1974 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Instantons and Four-Manifolds / Daniel S. Freed, Karen K. Uhlenbeck |
Autore | Freed, Daniel S. |
Pubbl/distr/stampa | New York, : Springer-Verlag, 1984 |
Descrizione fisica | x, 232 p. : ill. ; 24 cm |
Altri autori (Persone) | Uhlenbeck, Karen K. |
Soggetto topico |
57-XX - Manifolds and cell complexes [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020] 53-XX - Differential geometry [MSC 2020] 11E16 - General binary quadratic forms [MSC 2020] 58J60 - Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.) [MSC 2020] 58J10 - Differential complexes ; elliptic complexes [MSC 2020] 58D05 - Groups of diffeomorphisms and homeomorphisms as manifolds [MSC 2020] 55R10 - Fiber bundles in algebraic topology [MSC 2020] 53C05 - Connections, general theory [MSC 2020] 57R19 - Algebraic topology on manifolds and differential topology [MSC 2020] 55Q45 - Stable homotopy of spheres [MSC 2020] 58J20 - Index theory and related fixed point theorems on manifolds [MSC 2020] 58E15 - Variational problems in concerning extremal problems in several variables; Yang-Mills functionals [MSC 2020] |
Soggetto non controllato |
Differential equations
Equations Manifolds Mathematics Proofs Topology |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0268662 |
Freed, Daniel S.
![]() |
||
New York, : Springer-Verlag, 1984 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Instantons and Four-Manifolds / Daniel S. Freed, Karen K. Uhlenbeck |
Autore | Freed, Daniel S. |
Pubbl/distr/stampa | New York, : Springer-Verlag, 1984 |
Descrizione fisica | x, 232 p. : ill. ; 24 cm |
Altri autori (Persone) | Uhlenbeck, Karen K. |
Soggetto topico |
11E16 - General binary quadratic forms [MSC 2020]
53-XX - Differential geometry [MSC 2020] 53C05 - Connections, general theory [MSC 2020] 55Q45 - Stable homotopy of spheres [MSC 2020] 55R10 - Fiber bundles in algebraic topology [MSC 2020] 57-XX - Manifolds and cell complexes [MSC 2020] 57R19 - Algebraic topology on manifolds and differential topology [MSC 2020] 58-XX - Global analysis, analysis on manifolds [MSC 2020] 58D05 - Groups of diffeomorphisms and homeomorphisms as manifolds [MSC 2020] 58E15 - Variational problems in concerning extremal problems in several variables; Yang-Mills functionals [MSC 2020] 58J10 - Differential complexes ; elliptic complexes [MSC 2020] 58J20 - Index theory and related fixed point theorems on manifolds [MSC 2020] 58J60 - Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.) [MSC 2020] |
Soggetto non controllato |
Differential equations
Equations Manifolds Mathematics Proofs Topology |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00268662 |
Freed, Daniel S.
![]() |
||
New York, : Springer-Verlag, 1984 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Singularity theory, rod theory, and symmetry-breaking loads / John F. Pierce |
Autore | Pierce, John R. |
Pubbl/distr/stampa | Berlin, : Springer, 1989 |
Descrizione fisica | IV, 177 p. : ill. ; 25 cm. |
Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58Kxx - Theory of singularities and catastrophe theory [MSC 2020] 58C25 - Differentiable maps on manifolds [MSC 2020] 74K10 - Rods (beams, columns, shafts, arches, rings, etc.) [MSC 2020] 57R70 - Critical points and critical submanifolds in differential topology [MSC 2020] 58D05 - Groups of diffeomorphisms and homeomorphisms as manifolds [MSC 2020] |
ISBN | 978-03-87513-04-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-SUN0053267 |
Pierce, John R.
![]() |
||
Berlin, : Springer, 1989 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Singularity theory, rod theory, and symmetry-breaking loads / John F. Pierce |
Autore | Pierce, John R. |
Pubbl/distr/stampa | Berlin, : Springer, 1989 |
Descrizione fisica | IV, 177 p. : ill. ; 25 cm |
Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58Kxx - Theory of singularities and catastrophe theory [MSC 2020] 58C25 - Differentiable maps on manifolds [MSC 2020] 74K10 - Rods (beams, columns, shafts, arches, rings, etc.) [MSC 2020] 57R70 - Critical points and critical submanifolds in differential topology [MSC 2020] 58D05 - Groups of diffeomorphisms and homeomorphisms as manifolds [MSC 2020] |
Soggetto non controllato |
Addition
Bifurcation Configurations Equilibrium Singularity Symmetry |
ISBN | 978-03-87513-04-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0053267 |
Pierce, John R.
![]() |
||
Berlin, : Springer, 1989 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Singularity theory, rod theory, and symmetry-breaking loads / John F. Pierce |
Autore | Pierce, John R. |
Pubbl/distr/stampa | Berlin, : Springer, 1989 |
Descrizione fisica | IV, 177 p. : ill. ; 25 cm |
Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58Kxx - Theory of singularities and catastrophe theory [MSC 2020] 58C25 - Differentiable maps on manifolds [MSC 2020] 74K10 - Rods (beams, columns, shafts, arches, rings, etc.) [MSC 2020] 57R70 - Critical points and critical submanifolds in differential topology [MSC 2020] 58D05 - Groups of diffeomorphisms and homeomorphisms as manifolds [MSC 2020] |
Soggetto non controllato |
Addition
Bifurcation Configurations Equilibrium Singularity Symmetry |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0265998 |
Pierce, John R.
![]() |
||
Berlin, : Springer, 1989 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|