A Visual Introduction to Differential Forms and Calculus on Manifolds / Jon Pierre Fortney |
Autore | Fortney, Jon P. |
Pubbl/distr/stampa | Cham, : Birkhäuser, 2018 |
Descrizione fisica | xii, 468 p. : ill. ; 24 cm |
Soggetto topico |
57-XX - Manifolds and cell complexes [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020] 53-XX - Differential geometry [MSC 2020] 53A45 - Differential geometric aspects in vector and tensor analysis [MSC 2020] 58C35 - Integration on manifolds; measures on manifolds [MSC 2020] 58C20 - Differentiation theory (Gateaux, Fréchet, etc.) on manifolds [MSC 2020] |
Soggetto non controllato |
Calculus on manifolds
Cotangent Bundles Differential Forms Electromagnetism Exterior differentiation Integration of differential forms Manifolds Pull-backs of differential forms Stokes’ theorem Tangent bundle Vector calculus Visualization of differential forms Wedgeproduct |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0124521 |
Fortney, Jon P.
![]() |
||
Cham, : Birkhäuser, 2018 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
A Visual Introduction to Differential Forms and Calculus on Manifolds / Jon Pierre Fortney |
Autore | Fortney, Jon P. |
Pubbl/distr/stampa | Cham, : Birkhäuser, 2018 |
Descrizione fisica | xii, 468 p. : ill. ; 24 cm |
Soggetto topico |
53-XX - Differential geometry [MSC 2020]
53A45 - Differential geometric aspects in vector and tensor analysis [MSC 2020] 57-XX - Manifolds and cell complexes [MSC 2020] 58-XX - Global analysis, analysis on manifolds [MSC 2020] 58C20 - Differentiation theory (Gateaux, Fréchet, etc.) on manifolds [MSC 2020] 58C35 - Integration on manifolds; measures on manifolds [MSC 2020] |
Soggetto non controllato |
Calculus on manifolds
Cotangent Bundles Differential Forms Electromagnetism Exterior differentiation Integration of differential forms Manifolds Pull-backs of differential forms Stokes’ theorem Tangent bundle Vector calculus Visualization of differential forms Wedgeproduct |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00124521 |
Fortney, Jon P.
![]() |
||
Cham, : Birkhäuser, 2018 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
A Visual Introduction to Differential Forms and Calculus on Manifolds / Jon Pierre Fortney |
Autore | Fortney, Jon P. |
Edizione | [Cham : Birkhäuser, 2018] |
Pubbl/distr/stampa | xii, 468 p., : ill. ; 24 cm |
Descrizione fisica | Pubblicazione in formato elettronico |
Soggetto topico |
57-XX - Manifolds and cell complexes [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020] 53-XX - Differential geometry [MSC 2020] 53A45 - Differential geometric aspects in vector and tensor analysis [MSC 2020] 58C35 - Integration on manifolds; measures on manifolds [MSC 2020] 58C20 - Differentiation theory (Gateaux, Fréchet, etc.) on manifolds [MSC 2020] |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-SUN0124521 |
Fortney, Jon P.
![]() |
||
xii, 468 p., : ill. ; 24 cm | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential Geometry and Lie Groups : A Second Course / Jean Gallier, Jocelyn Quaintance |
Autore | Gallier, Jean |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | xiv, 620 p. : ill. ; 24 cm |
Altri autori (Persone) | Quaintance, Jocelyn |
Soggetto topico |
53-XX - Differential geometry [MSC 2020]
22-XX - Topological groups, Lie groups [MSC 2020] 15A66 - Clifford algebras, spinors [MSC 2020] 58C35 - Integration on manifolds; measures on manifolds [MSC 2020] 58A10 - Differential forms in global analysis [MSC 2020] 55R10 - Fiber bundles in algebraic topology [MSC 2020] 33C55 - Spherical harmonics [MSC 2020] |
Soggetto non controllato |
Clifford algebras
Clifford groups Curvature form Differential Forms Differential geometry Frobenius theorem Pin group Pinor and Spinor groups Riemannian manifolds Spherical Harmonics Spin group Stokes’ theorem Tensor algebra Tensor products Vector bundles |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0249004 |
Gallier, Jean
![]() |
||
Cham, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential Geometry and Lie Groups : A Second Course / Jean Gallier, Jocelyn Quaintance |
Autore | Gallier, Jean |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | xiv, 620 p. : ill. ; 24 cm |
Altri autori (Persone) | Quaintance, Jocelyn |
Soggetto topico |
15A66 - Clifford algebras, spinors [MSC 2020]
22-XX - Topological groups, Lie groups [MSC 2020] 33C55 - Spherical harmonics [MSC 2020] 53-XX - Differential geometry [MSC 2020] 55R10 - Fiber bundles in algebraic topology [MSC 2020] 58A10 - Differential forms in global analysis [MSC 2020] 58C35 - Integration on manifolds; measures on manifolds [MSC 2020] |
Soggetto non controllato |
Clifford algebras
Clifford groups Curvature form Differential Forms Differential geometry Frobenius theorem Pin group Pinor and Spinor groups Riemannian manifolds Spherical Harmonics Spin group Stokes’ theorem Tensor algebra Tensor products Vector bundles |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00249004 |
Gallier, Jean
![]() |
||
Cham, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential Manifolds / Serge Lang |
Autore | Lang, Serge <1927-2005> |
Edizione | [2. ed] |
Pubbl/distr/stampa | New York, : Springer-Verlag, 1985 |
Descrizione fisica | ix, 230 p. : ill. ; 24 cm |
Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58A15 - Exterior differential systems (Cartan theory) [MSC 2020] 58C35 - Integration on manifolds; measures on manifolds [MSC 2020] 58A10 - Differential forms in global analysis [MSC 2020] 58C20 - Differentiation theory (Gateaux, Fréchet, etc.) on manifolds [MSC 2020] 58B20 - Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds [MSC 2020] 58A05 - Differentiable manifolds, foundations [MSC 2020] |
Soggetto non controllato |
Differentiable manifolds
Differential geometry Differential topology Exterior derivatives Immersion Manifolds Submersion Tensor Volume |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0268755 |
Lang, Serge <1927-2005>
![]() |
||
New York, : Springer-Verlag, 1985 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential Manifolds / Serge Lang |
Autore | Lang, Serge <1927-2005> |
Edizione | [2. ed] |
Pubbl/distr/stampa | New York, : Springer-Verlag, 1985 |
Descrizione fisica | ix, 230 p. : ill. ; 24 cm |
Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58A05 - Differentiable manifolds, foundations [MSC 2020] 58A10 - Differential forms in global analysis [MSC 2020] 58A15 - Exterior differential systems (Cartan theory) [MSC 2020] 58B20 - Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds [MSC 2020] 58C20 - Differentiation theory (Gateaux, Fréchet, etc.) on manifolds [MSC 2020] 58C35 - Integration on manifolds; measures on manifolds [MSC 2020] |
Soggetto non controllato |
Differentiable manifolds
Differential geometry Differential topology Exterior derivatives Immersion Manifolds Submersion Tensor Volume |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00268755 |
Lang, Serge <1927-2005>
![]() |
||
New York, : Springer-Verlag, 1985 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential Topology / Amiya Mukherjee |
Autore | Mukherjee, Amiya |
Edizione | [2. ed] |
Pubbl/distr/stampa | [Cham], : Springer, : Hindustan book agency, 2015 |
Descrizione fisica | XIII, 349 p. : ill. ; 24 cm |
Soggetto topico |
70G45 - Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics [MSC 2020]
58C35 - Integration on manifolds; measures on manifolds [MSC 2020] 58A10 - Differential forms in global analysis [MSC 2020] 57R70 - Critical points and critical submanifolds in differential topology [MSC 2020] 57R17 - Symplectic and contact topology in high or arbitrary dimension [MSC 2020] 57R65 - Surgery and handlebodies [MSC 2020] 58A05 - Differentiable manifolds, foundations [MSC 2020] 58A20 - Jets in global analysis [MSC 2020] 57R12 - Smooth approximations in differential topology [MSC 2020] 57R22 - Topology of vector bundles and fiber bundles [MSC 2020] 57Q65 - General position and transversality [MSC 2020] 57R60 - Homotopy spheres, Poincaré conjecture [MSC 2020] |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-SUN0113619 |
Mukherjee, Amiya
![]() |
||
[Cham], : Springer, : Hindustan book agency, 2015 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential Topology / Amiya Mukherjee |
Autore | Mukherjee, Amiya |
Edizione | [2. ed] |
Pubbl/distr/stampa | Cham, : Springer, : Hindustan book agency, 2015 |
Descrizione fisica | XIII, 349 p. : ill. ; 24 cm |
Soggetto topico |
70G45 - Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics [MSC 2020]
58C35 - Integration on manifolds; measures on manifolds [MSC 2020] 58A10 - Differential forms in global analysis [MSC 2020] 57R70 - Critical points and critical submanifolds in differential topology [MSC 2020] 57R17 - Symplectic and contact topology in high or arbitrary dimension [MSC 2020] 57R65 - Surgery and handlebodies [MSC 2020] 58A05 - Differentiable manifolds, foundations [MSC 2020] 58A20 - Jets in global analysis [MSC 2020] 57R12 - Smooth approximations in differential topology [MSC 2020] 57R22 - Topology of vector bundles and fiber bundles [MSC 2020] 57Q65 - General position and transversality [MSC 2020] 57R60 - Homotopy spheres, Poincaré conjecture [MSC 2020] |
Soggetto non controllato |
Handle presentations
Hoods transversality Immersions and embeddings Manifolds Smooth maps Tubular neighbour h-cobordism |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0113619 |
Mukherjee, Amiya
![]() |
||
Cham, : Springer, : Hindustan book agency, 2015 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential Topology / Amiya Mukherjee |
Autore | Mukherjee, Amiya |
Edizione | [2. ed] |
Pubbl/distr/stampa | Cham, : Springer, : Hindustan book agency, 2015 |
Descrizione fisica | XIII, 349 p. : ill. ; 24 cm |
Soggetto topico |
57Q65 - General position and transversality [MSC 2020]
57R12 - Smooth approximations in differential topology [MSC 2020] 57R17 - Symplectic and contact topology in high or arbitrary dimension [MSC 2020] 57R22 - Topology of vector bundles and fiber bundles [MSC 2020] 57R60 - Homotopy spheres, Poincaré conjecture [MSC 2020] 57R65 - Surgery and handlebodies [MSC 2020] 57R70 - Critical points and critical submanifolds in differential topology [MSC 2020] 58A05 - Differentiable manifolds, foundations [MSC 2020] 58A10 - Differential forms in global analysis [MSC 2020] 58A20 - Jets in global analysis [MSC 2020] 58C35 - Integration on manifolds; measures on manifolds [MSC 2020] 70G45 - Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics [MSC 2020] |
Soggetto non controllato |
Handle presentations
Hoods transversality Immersions and embeddings Manifolds Smooth maps Tubular neighbour h-cobordism |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00113619 |
Mukherjee, Amiya
![]() |
||
Cham, : Springer, : Hindustan book agency, 2015 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|