A Visual Introduction to Differential Forms and Calculus on Manifolds / Jon Pierre Fortney
| A Visual Introduction to Differential Forms and Calculus on Manifolds / Jon Pierre Fortney |
| Autore | Fortney, Jon P. |
| Pubbl/distr/stampa | Cham, : Birkhäuser, 2018 |
| Descrizione fisica | xii, 468 p. : ill. ; 24 cm |
| Soggetto topico |
57-XX - Manifolds and cell complexes [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020] 53-XX - Differential geometry [MSC 2020] 53A45 - Differential geometric aspects in vector and tensor analysis [MSC 2020] 58C35 - Integration on manifolds; measures on manifolds [MSC 2020] 58C20 - Differentiation theory (Gateaux, Fréchet, etc.) on manifolds [MSC 2020] |
| Soggetto non controllato |
Calculus on manifolds
Cotangent Bundles Differential Forms Electromagnetism Exterior differentiation Integration of differential forms Manifolds Pull-backs of differential forms Stokes’ theorem Tangent bundle Vector calculus Visualization of differential forms Wedgeproduct |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0124521 |
Fortney, Jon P.
|
||
| Cham, : Birkhäuser, 2018 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
A Visual Introduction to Differential Forms and Calculus on Manifolds / Jon Pierre Fortney
| A Visual Introduction to Differential Forms and Calculus on Manifolds / Jon Pierre Fortney |
| Autore | Fortney, Jon P. |
| Pubbl/distr/stampa | Cham, : Birkhäuser, 2018 |
| Descrizione fisica | xii, 468 p. : ill. ; 24 cm |
| Soggetto topico |
53-XX - Differential geometry [MSC 2020]
53A45 - Differential geometric aspects in vector and tensor analysis [MSC 2020] 57-XX - Manifolds and cell complexes [MSC 2020] 58-XX - Global analysis, analysis on manifolds [MSC 2020] 58C20 - Differentiation theory (Gateaux, Fréchet, etc.) on manifolds [MSC 2020] 58C35 - Integration on manifolds; measures on manifolds [MSC 2020] |
| Soggetto non controllato |
Calculus on manifolds
Cotangent Bundles Differential Forms Electromagnetism Exterior differentiation Integration of differential forms Manifolds Pull-backs of differential forms Stokes’ theorem Tangent bundle Vector calculus Visualization of differential forms Wedgeproduct |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00124521 |
Fortney, Jon P.
|
||
| Cham, : Birkhäuser, 2018 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
A Visual Introduction to Differential Forms and Calculus on Manifolds / Jon Pierre Fortney
| A Visual Introduction to Differential Forms and Calculus on Manifolds / Jon Pierre Fortney |
| Autore | Fortney, Jon P. |
| Edizione | [Cham : Birkhäuser, 2018] |
| Pubbl/distr/stampa | xii, 468 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
57-XX - Manifolds and cell complexes [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020] 53-XX - Differential geometry [MSC 2020] 53A45 - Differential geometric aspects in vector and tensor analysis [MSC 2020] 58C35 - Integration on manifolds; measures on manifolds [MSC 2020] 58C20 - Differentiation theory (Gateaux, Fréchet, etc.) on manifolds [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0124521 |
Fortney, Jon P.
|
||
| xii, 468 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Constructive nonsmooth analysis and related topics / Vladimir F. Demyanov, Panos M. Pardalos, Mikhail Batsyn editors
| Constructive nonsmooth analysis and related topics / Vladimir F. Demyanov, Panos M. Pardalos, Mikhail Batsyn editors |
| Pubbl/distr/stampa | New York, : Springer, 2014 |
| Descrizione fisica | XII, 253 p. : ill. ; 24 cm |
| Soggetto topico |
49J52 - Nonsmooth analysis [MSC 2020]
90C48 - Programming in abstract spaces [MSC 2020] 58C20 - Differentiation theory (Gateaux, Fréchet, etc.) on manifolds [MSC 2020] |
| Soggetto non controllato |
Global optimization
Minimax theory Nonsmooth analysis Nonsmooth optimal control |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0102691 |
| New York, : Springer, 2014 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Constructive nonsmooth analysis and related topics / Vladimir F. Demyanov, Panos M. Pardalos, Mikhail Batsyn editors
| Constructive nonsmooth analysis and related topics / Vladimir F. Demyanov, Panos M. Pardalos, Mikhail Batsyn editors |
| Pubbl/distr/stampa | New York, : Springer, 2014 |
| Descrizione fisica | XII, 253 p. : ill. ; 24 cm |
| Soggetto topico |
49J52 - Nonsmooth analysis [MSC 2020]
58C20 - Differentiation theory (Gateaux, Fréchet, etc.) on manifolds [MSC 2020] 90C48 - Programming in abstract spaces [MSC 2020] |
| Soggetto non controllato |
Global optimization
Minimax theory Nonsmooth analysis Nonsmooth optimal control |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00102691 |
| New York, : Springer, 2014 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Constructive nonsmooth analysis and related topics / Vladimir F. Demyanov, Panos M. Pardalos, Mikhail Batsyn editors
| Constructive nonsmooth analysis and related topics / Vladimir F. Demyanov, Panos M. Pardalos, Mikhail Batsyn editors |
| Edizione | [New York : Springer, 2014] |
| Pubbl/distr/stampa | XII, 253 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
49J52 - Nonsmooth analysis [MSC 2020]
90C48 - Programming in abstract spaces [MSC 2020] 58C20 - Differentiation theory (Gateaux, Fréchet, etc.) on manifolds [MSC 2020] |
| ISBN | 8-1-4614-8614-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0102691 |
| XII, 253 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Differential Calculus in Locally Convex Spaces / Hans Heinrich Keller
| Differential Calculus in Locally Convex Spaces / Hans Heinrich Keller |
| Autore | Keller, Hans H. |
| Pubbl/distr/stampa | Berlin, : Springer, 1974 |
| Descrizione fisica | 143 p. ; 24 cm |
| Soggetto topico |
46-XX - Functional analysis [MSC 2020]
46A03 - General theory of locally convex spaces [MSC 2020] 46G05 - Derivatives of functions in infinite-dimensional spaces [MSC 2020] 58-XX - Global analysis, analysis on manifolds [MSC 2020] 58C20 - Differentiation theory (Gateaux, Fréchet, etc.) on manifolds [MSC 2020] |
| Soggetto non controllato |
Calculus
Classes Convex spaces Differential calculus Functions Locally convex spaces Mapping |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00256018 |
Keller, Hans H.
|
||
| Berlin, : Springer, 1974 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Differential Calculus in Topological Linear Spaces / Sadayuki Yamamuro
| Differential Calculus in Topological Linear Spaces / Sadayuki Yamamuro |
| Autore | Yamamuro, Sadayuki |
| Pubbl/distr/stampa | Berlin, : Springer, 1974 |
| Descrizione fisica | iv, 178 p. ; 24 cm |
| Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
46-XX - Functional analysis [MSC 2020] 46A03 - General theory of locally convex spaces [MSC 2020] 46G05 - Derivatives of functions in infinite-dimensional spaces [MSC 2020] 58C20 - Differentiation theory (Gateaux, Fréchet, etc.) on manifolds [MSC 2020] |
| Soggetto non controllato |
Differential calculus
Linear spaces Spaces Theorem Topological vector spaces Variables |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0256019 |
Yamamuro, Sadayuki
|
||
| Berlin, : Springer, 1974 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Differential Calculus in Topological Linear Spaces / Sadayuki Yamamuro
| Differential Calculus in Topological Linear Spaces / Sadayuki Yamamuro |
| Autore | Yamamuro, Sadayuki |
| Pubbl/distr/stampa | Berlin, : Springer, 1974 |
| Descrizione fisica | iv, 178 p. ; 24 cm |
| Soggetto topico |
46-XX - Functional analysis [MSC 2020]
46A03 - General theory of locally convex spaces [MSC 2020] 46G05 - Derivatives of functions in infinite-dimensional spaces [MSC 2020] 58-XX - Global analysis, analysis on manifolds [MSC 2020] 58C20 - Differentiation theory (Gateaux, Fréchet, etc.) on manifolds [MSC 2020] |
| Soggetto non controllato |
Differential calculus
Linear spaces Spaces Theorem Topological vector spaces Variables |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00256019 |
Yamamuro, Sadayuki
|
||
| Berlin, : Springer, 1974 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Differential Manifolds / Serge Lang
| Differential Manifolds / Serge Lang |
| Autore | Lang, Serge <1927-2005> |
| Edizione | [2. ed] |
| Pubbl/distr/stampa | New York, : Springer-Verlag, 1985 |
| Descrizione fisica | ix, 230 p. : ill. ; 24 cm |
| Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58A15 - Exterior differential systems (Cartan theory) [MSC 2020] 58C35 - Integration on manifolds; measures on manifolds [MSC 2020] 58A10 - Differential forms in global analysis [MSC 2020] 58C20 - Differentiation theory (Gateaux, Fréchet, etc.) on manifolds [MSC 2020] 58B20 - Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds [MSC 2020] 58A05 - Differentiable manifolds, foundations [MSC 2020] |
| Soggetto non controllato |
Differentiable manifolds
Differential geometry Differential topology Exterior derivatives Immersion Manifolds Submersion Tensor Volume |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0268755 |
Lang, Serge <1927-2005>
|
||
| New York, : Springer-Verlag, 1985 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||