top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Analysis and geometry : MIMS-GGTM, Tunis, Tunisia, march 2014. In honour of Mohammed Salah Baouendi / Ali Baklouti ... [et al.] editors
Analysis and geometry : MIMS-GGTM, Tunis, Tunisia, march 2014. In honour of Mohammed Salah Baouendi / Ali Baklouti ... [et al.] editors
Pubbl/distr/stampa [Cham], : Springer, 2015
Descrizione fisica VIII, 266 p. : ill. ; 24 cm
Soggetto topico 42Axx - Harmonic analysis in one variable [MSC 2020]
14Cxx - Cycles and subschemes [MSC 2020]
58Axx - General theory of differentiable manifolds [MSC 2020]
35Fxx - General first-order partial differential equations and systems of first-order partial differential equations [MSC 2020]
32Hxx - Holomorphic mappings and correspondences [MSC 2020]
32Vxx - CR manifolds [MSC 2020]
35Nxx - Overdetermined problems for partial differential equations and systems of partial differential equations [MSC 2020]
Soggetto non controllato Algebraic geometry and analysis
CR-geometry
Complex vector fields
Dirchilet Eigenfunctions
Holomorphic Functions
Partial differential equations
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0113491
[Cham], : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Analysis and geometry : MIMS-GGTM, Tunis, Tunisia, march 2014. In honour of Mohammed Salah Baouendi / Ali Baklouti ... [et al.] editors
Analysis and geometry : MIMS-GGTM, Tunis, Tunisia, march 2014. In honour of Mohammed Salah Baouendi / Ali Baklouti ... [et al.] editors
Pubbl/distr/stampa [Cham], : Springer, 2015
Descrizione fisica VIII, 266 p. : ill. ; 24 cm
Soggetto topico 14Cxx - Cycles and subschemes [MSC 2020]
32Hxx - Holomorphic mappings and correspondences [MSC 2020]
32Vxx - CR manifolds [MSC 2020]
35Fxx - General first-order partial differential equations and systems of first-order partial differential equations [MSC 2020]
35Nxx - Overdetermined problems for partial differential equations and systems of partial differential equations [MSC 2020]
42Axx - Harmonic analysis in one variable [MSC 2020]
58Axx - General theory of differentiable manifolds [MSC 2020]
Soggetto non controllato Algebraic geometry and analysis
CR-geometry
Complex vector fields
Dirchilet Eigenfunctions
Holomorphic Functions
Partial differential equations
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00113491
[Cham], : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Analysis and geometry : MIMS-GGTM, Tunis, Tunisia, march 2014. In honour of Mohammed Salah Baouendi / Ali Baklouti ... [et al.] editors
Analysis and geometry : MIMS-GGTM, Tunis, Tunisia, march 2014. In honour of Mohammed Salah Baouendi / Ali Baklouti ... [et al.] editors
Edizione [[Cham] : Springer, 2015]
Pubbl/distr/stampa VIII, 266 p., : ill. ; 24 cm
Descrizione fisica Pubblicazione in formato elettronico
Soggetto topico 42Axx - Harmonic analysis in one variable [MSC 2020]
14Cxx - Cycles and subschemes [MSC 2020]
58Axx - General theory of differentiable manifolds [MSC 2020]
35Fxx - General first-order partial differential equations and systems of first-order partial differential equations [MSC 2020]
32Hxx - Holomorphic mappings and correspondences [MSC 2020]
32Vxx - CR manifolds [MSC 2020]
35Nxx - Overdetermined problems for partial differential equations and systems of partial differential equations [MSC 2020]
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0113491
VIII, 266 p., : ill. ; 24 cm
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Autore Rham, Georges : de
Pubbl/distr/stampa Berlin [etc.], : Springer, 1984
Descrizione fisica X, 166 p. ; 24 cm.
Soggetto topico 57-XX - Manifolds and cell complexes [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58A25 - Currents in global analysis [MSC 2020]
58A14 - Hodge theory in global analysis [MSC 2020]
58Axx - General theory of differentiable manifolds [MSC 2020]
58A10 - Differential forms in global analysis [MSC 2020]
55Nxx - Homology and cohomology theories in algebraic topology [MSC 2020]
58A12 - de Rham theory in global analysis [MSC 2020]
58A05 - Differentiable manifolds, foundations [MSC 2020]
ISBN 978-35-401-3463-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0054496
Rham, Georges : de  
Berlin [etc.], : Springer, 1984
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Autore Rham, Georges de
Pubbl/distr/stampa Berlin, : Springer, 1984
Descrizione fisica X, 166 p. ; 24 cm
Soggetto topico 57-XX - Manifolds and cell complexes [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58A25 - Currents in global analysis [MSC 2020]
58A14 - Hodge theory in global analysis [MSC 2020]
58Axx - General theory of differentiable manifolds [MSC 2020]
58A10 - Differential forms in global analysis [MSC 2020]
55Nxx - Homology and cohomology theories in algebraic topology [MSC 2020]
58A12 - de Rham theory in global analysis [MSC 2020]
58A05 - Differentiable manifolds, foundations [MSC 2020]
Soggetto non controllato Differentiable manifolds
Manifolds
Riemannian manifolds
Varieties
ISBN 978-35-401-3463-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0054496
Rham, Georges de  
Berlin, : Springer, 1984
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Autore Rham, Georges de
Pubbl/distr/stampa Berlin, : Springer, 1984
Descrizione fisica x, 166 p. ; 24 cm
Soggetto topico 57-XX - Manifolds and cell complexes [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58A25 - Currents in global analysis [MSC 2020]
58A14 - Hodge theory in global analysis [MSC 2020]
58Axx - General theory of differentiable manifolds [MSC 2020]
58A10 - Differential forms in global analysis [MSC 2020]
55Nxx - Homology and cohomology theories in algebraic topology [MSC 2020]
58A12 - de Rham theory in global analysis [MSC 2020]
58A05 - Differentiable manifolds, foundations [MSC 2020]
Soggetto non controllato Differentiable manifolds
Manifolds
Riemannian manifolds
Varieties
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0263218
Rham, Georges de  
Berlin, : Springer, 1984
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Autore Rham, Georges de
Pubbl/distr/stampa Berlin, : Springer, 1984
Descrizione fisica X, 166 p. ; 24 cm
Soggetto topico 55Nxx - Homology and cohomology theories in algebraic topology [MSC 2020]
57-XX - Manifolds and cell complexes [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58A05 - Differentiable manifolds, foundations [MSC 2020]
58A10 - Differential forms in global analysis [MSC 2020]
58A12 - de Rham theory in global analysis [MSC 2020]
58A14 - Hodge theory in global analysis [MSC 2020]
58A25 - Currents in global analysis [MSC 2020]
58Axx - General theory of differentiable manifolds [MSC 2020]
Soggetto non controllato Differentiable manifolds
Manifolds
Riemannian manifolds
Varieties
ISBN 978-35-401-3463-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00054496
Rham, Georges de  
Berlin, : Springer, 1984
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Autore Rham, Georges de
Pubbl/distr/stampa Berlin, : Springer, 1984
Descrizione fisica x, 166 p. ; 24 cm
Soggetto topico 55Nxx - Homology and cohomology theories in algebraic topology [MSC 2020]
57-XX - Manifolds and cell complexes [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58A05 - Differentiable manifolds, foundations [MSC 2020]
58A10 - Differential forms in global analysis [MSC 2020]
58A12 - de Rham theory in global analysis [MSC 2020]
58A14 - Hodge theory in global analysis [MSC 2020]
58A25 - Currents in global analysis [MSC 2020]
58Axx - General theory of differentiable manifolds [MSC 2020]
Soggetto non controllato Differentiable manifolds
Manifolds
Riemannian manifolds
Varieties
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00263218
Rham, Georges de  
Berlin, : Springer, 1984
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Differential forms in algebraic topology / Raoul Bott, Loring W. Tu
Differential forms in algebraic topology / Raoul Bott, Loring W. Tu
Autore Bott, Raoul <1923-2005>
Pubbl/distr/stampa New York, : Springer, 1982
Descrizione fisica XIV, 331 p. : ill. ; 24 cm.
Altri autori (Persone) Tu, Loring W.
Soggetto topico 58Axx - General theory of differentiable manifolds [MSC 2020]
57Rxx - Differential topology [MSC 2020]
14F40 - de Rham cohomology and algebraic geometry [MSC 2020]
ISBN 978-03-87906-13-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0053196
Bott, Raoul <1923-2005>  
New York, : Springer, 1982
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Differential forms in algebraic topology / Raoul Bott, Loring W. Tu
Differential forms in algebraic topology / Raoul Bott, Loring W. Tu
Autore Bott, Raoul <1923-2005>
Pubbl/distr/stampa New York, : Springer, 1982
Descrizione fisica XIV, 331 p. : ill. ; 24 cm
Altri autori (Persone) Tu, Loring W.
Soggetto topico 58Axx - General theory of differentiable manifolds [MSC 2020]
57Rxx - Differential topology [MSC 2020]
14F40 - de Rham cohomology and algebraic geometry [MSC 2020]
Soggetto non controllato Algebraic
Algebraic Topology
Characteristic class
Cohomology
Cohomology theory
Homology
Homotopy
Homotopy theory
Topology
ISBN 978-03-87906-13-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0053196
Bott, Raoul <1923-2005>  
New York, : Springer, 1982
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui