top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
An introduction to differential manifolds / Jacques Lafontaine
An introduction to differential manifolds / Jacques Lafontaine
Autore Lafontaine, Jacques
Pubbl/distr/stampa [Cham], : Springer, 2015
Descrizione fisica XIX, 395 p. : ill. ; 24 cm
Soggetto topico 58-XX - Global analysis, analysis on manifolds [MSC 2020]
53-XX - Differential geometry [MSC 2020]
22-XX - Topological groups, Lie groups [MSC 2020]
58A40 - Differential spaces [MSC 2020]
58A12 - de Rham theory in global analysis [MSC 2020]
58A05 - Differentiable manifolds, foundations [MSC 2020]
Soggetto non controllato De Rham Cohomology
Degree Theory
Differential Forms
Differential Manifolds
Differential geometry
Differential topology
Gauss-Bonnet Theorem
Lie Theory
Lie groups
Manifolds
Riemannian manifolds
Tangent Space
Vector fields
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0113681
Lafontaine, Jacques  
[Cham], : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
An introduction to differential manifolds / Jacques Lafontaine
An introduction to differential manifolds / Jacques Lafontaine
Autore Lafontaine, Jacques
Pubbl/distr/stampa [Cham], : Springer, 2015
Descrizione fisica XIX, 395 p. : ill. ; 24 cm
Soggetto topico 22-XX - Topological groups, Lie groups [MSC 2020]
53-XX - Differential geometry [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58A05 - Differentiable manifolds, foundations [MSC 2020]
58A12 - de Rham theory in global analysis [MSC 2020]
58A40 - Differential spaces [MSC 2020]
Soggetto non controllato De Rham Cohomology
Degree Theory
Differential Forms
Differential Manifolds
Differential geometry
Differential topology
Gauss-Bonnet Theorem
Lie Theory
Lie groups
Manifolds
Riemannian manifolds
Tangent Space
Vector fields
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00113681
Lafontaine, Jacques  
[Cham], : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
An introduction to differential manifolds / Jacques Lafontaine
An introduction to differential manifolds / Jacques Lafontaine
Autore Lafontaine, Jacques
Edizione [[Cham] : Springer, 2015]
Pubbl/distr/stampa XIX, 395 p., : ill. ; 24 cm
Descrizione fisica Pubblicazione in formato elettronico
Soggetto topico 58-XX - Global analysis, analysis on manifolds [MSC 2020]
53-XX - Differential geometry [MSC 2020]
22-XX - Topological groups, Lie groups [MSC 2020]
58A40 - Differential spaces [MSC 2020]
58A12 - de Rham theory in global analysis [MSC 2020]
58A05 - Differentiable manifolds, foundations [MSC 2020]
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0113681
Lafontaine, Jacques  
XIX, 395 p., : ill. ; 24 cm
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Cohomology of Sheaves / Birger Iversen
Cohomology of Sheaves / Birger Iversen
Autore Iversen, Birger
Pubbl/distr/stampa Berlin, : Springer, 1986
Descrizione fisica xii, 464 p. ; 24 cm
Soggetto topico 55-XX - Algebraic topology [MSC 2020]
58A30 - Vector distributions (subbundles of the tangent bundles) [MSC 2020]
55N30 - Sheaf cohomology in algebraic topology [MSC 2020]
58A12 - de Rham theory in global analysis [MSC 2020]
57N65 - Algebraic topology of manifolds [MSC 2020]
18G10 - Resolutions; derived functors (category-theoretic aspects) [MSC 2020]
32L05 - Holomorphic bundles and generalizations [MSC 2020]
Soggetto non controllato Characteristic classes
Chern classes
Cohomology
Homological Algebra
Homology
Homotopy
Homotopy theory
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0263712
Iversen, Birger  
Berlin, : Springer, 1986
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Cohomology of Sheaves / Birger Iversen
Cohomology of Sheaves / Birger Iversen
Autore Iversen, Birger
Pubbl/distr/stampa Berlin, : Springer, 1986
Descrizione fisica xii, 464 p. ; 24 cm
Soggetto topico 18G10 - Resolutions; derived functors (category-theoretic aspects) [MSC 2020]
32L05 - Holomorphic bundles and generalizations [MSC 2020]
55-XX - Algebraic topology [MSC 2020]
55N30 - Sheaf cohomology in algebraic topology [MSC 2020]
57N65 - Algebraic topology of manifolds [MSC 2020]
58A12 - de Rham theory in global analysis [MSC 2020]
58A30 - Vector distributions (subbundles of the tangent bundles) [MSC 2020]
Soggetto non controllato Characteristic classes
Chern classes
Cohomology
Homological Algebra
Homology
Homotopy
Homotopy theory
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00263712
Iversen, Birger  
Berlin, : Springer, 1986
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Autore Rham, Georges : de
Pubbl/distr/stampa Berlin [etc.], : Springer, 1984
Descrizione fisica X, 166 p. ; 24 cm.
Soggetto topico 57-XX - Manifolds and cell complexes [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58A25 - Currents in global analysis [MSC 2020]
58A14 - Hodge theory in global analysis [MSC 2020]
58Axx - General theory of differentiable manifolds [MSC 2020]
58A10 - Differential forms in global analysis [MSC 2020]
55Nxx - Homology and cohomology theories in algebraic topology [MSC 2020]
58A12 - de Rham theory in global analysis [MSC 2020]
58A05 - Differentiable manifolds, foundations [MSC 2020]
ISBN 978-35-401-3463-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0054496
Rham, Georges : de  
Berlin [etc.], : Springer, 1984
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Autore Rham, Georges de
Pubbl/distr/stampa Berlin, : Springer, 1984
Descrizione fisica X, 166 p. ; 24 cm
Soggetto topico 57-XX - Manifolds and cell complexes [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58A25 - Currents in global analysis [MSC 2020]
58A14 - Hodge theory in global analysis [MSC 2020]
58Axx - General theory of differentiable manifolds [MSC 2020]
58A10 - Differential forms in global analysis [MSC 2020]
55Nxx - Homology and cohomology theories in algebraic topology [MSC 2020]
58A12 - de Rham theory in global analysis [MSC 2020]
58A05 - Differentiable manifolds, foundations [MSC 2020]
Soggetto non controllato Differentiable manifolds
Manifolds
Riemannian manifolds
Varieties
ISBN 978-35-401-3463-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0054496
Rham, Georges de  
Berlin, : Springer, 1984
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Autore Rham, Georges de
Pubbl/distr/stampa Berlin, : Springer, 1984
Descrizione fisica x, 166 p. ; 24 cm
Soggetto topico 57-XX - Manifolds and cell complexes [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58A25 - Currents in global analysis [MSC 2020]
58A14 - Hodge theory in global analysis [MSC 2020]
58Axx - General theory of differentiable manifolds [MSC 2020]
58A10 - Differential forms in global analysis [MSC 2020]
55Nxx - Homology and cohomology theories in algebraic topology [MSC 2020]
58A12 - de Rham theory in global analysis [MSC 2020]
58A05 - Differentiable manifolds, foundations [MSC 2020]
Soggetto non controllato Differentiable manifolds
Manifolds
Riemannian manifolds
Varieties
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0263218
Rham, Georges de  
Berlin, : Springer, 1984
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Autore Rham, Georges de
Pubbl/distr/stampa Berlin, : Springer, 1984
Descrizione fisica X, 166 p. ; 24 cm
Soggetto topico 55Nxx - Homology and cohomology theories in algebraic topology [MSC 2020]
57-XX - Manifolds and cell complexes [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58A05 - Differentiable manifolds, foundations [MSC 2020]
58A10 - Differential forms in global analysis [MSC 2020]
58A12 - de Rham theory in global analysis [MSC 2020]
58A14 - Hodge theory in global analysis [MSC 2020]
58A25 - Currents in global analysis [MSC 2020]
58Axx - General theory of differentiable manifolds [MSC 2020]
Soggetto non controllato Differentiable manifolds
Manifolds
Riemannian manifolds
Varieties
ISBN 978-35-401-3463-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00054496
Rham, Georges de  
Berlin, : Springer, 1984
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Differentiable manifolds : forms, currents, harmonic forms / Georges de Rham ; translated from the French by F. R. Smith ; introduction to the English edition by S. S. Chern
Autore Rham, Georges de
Pubbl/distr/stampa Berlin, : Springer, 1984
Descrizione fisica x, 166 p. ; 24 cm
Soggetto topico 55Nxx - Homology and cohomology theories in algebraic topology [MSC 2020]
57-XX - Manifolds and cell complexes [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020]
58A05 - Differentiable manifolds, foundations [MSC 2020]
58A10 - Differential forms in global analysis [MSC 2020]
58A12 - de Rham theory in global analysis [MSC 2020]
58A14 - Hodge theory in global analysis [MSC 2020]
58A25 - Currents in global analysis [MSC 2020]
58Axx - General theory of differentiable manifolds [MSC 2020]
Soggetto non controllato Differentiable manifolds
Manifolds
Riemannian manifolds
Varieties
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00263218
Rham, Georges de  
Berlin, : Springer, 1984
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui