Elliptic Operators and Compact Groups / Michael Francis Atiyah
| Elliptic Operators and Compact Groups / Michael Francis Atiyah |
| Autore | Atiyah, Michael Francis |
| Pubbl/distr/stampa | Berlin, : Springer, 1974 |
| Descrizione fisica | 93 p. ; 24 cm |
| Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
46F10 - Operations with distributions and generalized functions [MSC 2020] 58J40 - Pseudodifferential and Fourier integral operators on manifolds [MSC 2020] 58J20 - Index theory and related fixed point theorems on manifolds [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] 55N15 - Topological K-theory [MSC 2020] |
| Soggetto non controllato |
Compact groups
Elliptic operators Morphism Theorem |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0256031 |
Atiyah, Michael Francis
|
||
| Berlin, : Springer, 1974 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Elliptic Operators and Compact Groups / Michael Francis Atiyah
| Elliptic Operators and Compact Groups / Michael Francis Atiyah |
| Autore | Atiyah, Michael F. |
| Pubbl/distr/stampa | Berlin, : Springer, 1974 |
| Descrizione fisica | 93 p. ; 24 cm |
| Soggetto topico |
46F10 - Operations with distributions and generalized functions [MSC 2020]
55N15 - Topological K-theory [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] 58-XX - Global analysis, analysis on manifolds [MSC 2020] 58J20 - Index theory and related fixed point theorems on manifolds [MSC 2020] 58J40 - Pseudodifferential and Fourier integral operators on manifolds [MSC 2020] |
| Soggetto non controllato |
Compact groups
Elliptic operators Morphism Theorem |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00256031 |
Atiyah, Michael F.
|
||
| Berlin, : Springer, 1974 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Equivariant Poincaré Duality on G-Manifolds : Equivariant Gysin Morphism and Equivariant Euler Classes / Alberto Arabia
| Equivariant Poincaré Duality on G-Manifolds : Equivariant Gysin Morphism and Equivariant Euler Classes / Alberto Arabia |
| Autore | Arabia, Alberto |
| Pubbl/distr/stampa | Cham, : Springer, 2021 |
| Descrizione fisica | xv, 376 p. : ill. ; 24 cm |
| Soggetto topico |
55-XX - Algebraic topology [MSC 2020]
20Cxx - Representation theory of groups [MSC 2020] 55N30 - Sheaf cohomology in algebraic topology [MSC 2020] 14Fxx - (Co)homology theory in algebraic geometry [MSC 2020] 55Mxx - Classical topics in algebraic topology [MSC 2020] 57R91 - Equivariant algebraic topology of manifolds [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] |
| Soggetto non controllato |
Derived category
Gysin Morphism Linear Representations of Compact Lie Groups Poincaré Duality Sheaf Cohomology |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0234364 |
Arabia, Alberto
|
||
| Cham, : Springer, 2021 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Equivariant Poincaré Duality on G-Manifolds : Equivariant Gysin Morphism and Equivariant Euler Classes / Alberto Arabia
| Equivariant Poincaré Duality on G-Manifolds : Equivariant Gysin Morphism and Equivariant Euler Classes / Alberto Arabia |
| Autore | Arabia, Alberto |
| Pubbl/distr/stampa | Cham, : Springer, 2021 |
| Descrizione fisica | xv, 376 p. : ill. ; 24 cm |
| Soggetto topico |
14Fxx - (Co)homology theory in algebraic geometry [MSC 2020]
20Cxx - Representation theory of groups [MSC 2020] 55-XX - Algebraic topology [MSC 2020] 55Mxx - Classical topics in algebraic topology [MSC 2020] 55N30 - Sheaf cohomology in algebraic topology [MSC 2020] 57R91 - Equivariant algebraic topology of manifolds [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] |
| Soggetto non controllato |
Derived category
Gysin Morphism Linear Representations of Compact Lie Groups Poincaré Duality Sheaf Cohomology |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00234364 |
Arabia, Alberto
|
||
| Cham, : Springer, 2021 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Equivariant Pontrjagin Classes and Applications to Orbit Spaces : Applications of the G-signature Theorem to Transformation Groups, Symmetric Products and Number Theory / Don Bernard Zagier
| Equivariant Pontrjagin Classes and Applications to Orbit Spaces : Applications of the G-signature Theorem to Transformation Groups, Symmetric Products and Number Theory / Don Bernard Zagier |
| Autore | Zagier, Don Bernard |
| Pubbl/distr/stampa | Berlin, : Springer, 1972 |
| Descrizione fisica | vii, 130 p. ; 24 cm |
| Soggetto topico |
57-XX - Manifolds and cell complexes [MSC 2020]
57R20 - Characteristic classes and numbers in differential topology [MSC 2020] 57S25 - Groups acting on specific manifolds [MSC 2020] 11A15 - Power residues, reciprocity [MSC 2020] 58J20 - Index theory and related fixed point theorems on manifolds [MSC 2020] 57Pxx - Generalized manifolds [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] |
| Soggetto non controllato |
Cohomoly
Manifolds Number theory Pontryagin class Spaces Theorem |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0255525 |
Zagier, Don Bernard
|
||
| Berlin, : Springer, 1972 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Equivariant Pontrjagin Classes and Applications to Orbit Spaces : Applications of the G-signature Theorem to Transformation Groups, Symmetric Products and Number Theory / Don Bernard Zagier
| Equivariant Pontrjagin Classes and Applications to Orbit Spaces : Applications of the G-signature Theorem to Transformation Groups, Symmetric Products and Number Theory / Don Bernard Zagier |
| Autore | Zagier, Don Bernard |
| Pubbl/distr/stampa | Berlin, : Springer, 1972 |
| Descrizione fisica | vii, 130 p. ; 24 cm |
| Soggetto topico |
11A15 - Power residues, reciprocity [MSC 2020]
57-XX - Manifolds and cell complexes [MSC 2020] 57Pxx - Generalized manifolds [MSC 2020] 57R20 - Characteristic classes and numbers in differential topology [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] 57S25 - Groups acting on specific manifolds [MSC 2020] 58J20 - Index theory and related fixed point theorems on manifolds [MSC 2020] |
| Soggetto non controllato |
Cohomoly
Manifolds Number theory Pontryagin class Spaces Theorem |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00255525 |
Zagier, Don Bernard
|
||
| Berlin, : Springer, 1972 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Equivariant Surgery Theories and Their Periodicity Properties / Karl Heinz Dovermann, Reinhard Schultz
| Equivariant Surgery Theories and Their Periodicity Properties / Karl Heinz Dovermann, Reinhard Schultz |
| Autore | Dovermann, Karl H. |
| Pubbl/distr/stampa | Berlin, : Springer-Verlag, 1990 |
| Descrizione fisica | viii, 228 p. : ill. ; 24 cm |
| Altri autori (Persone) | Schultz, Reinhard |
| Soggetto topico |
57-XX - Manifolds and cell complexes [MSC 2020]
57R65 - Surgery and handlebodies [MSC 2020] 57R67 - Surgery obstructions, Wall groups [MSC 2020] 57R91 - Equivariant algebraic topology of manifolds [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] 57S17 - Finite transformation groups [MSC 2020] |
| Soggetto non controllato |
Area
Boundary Element Methods Design Equivalence Forms Geometric topology Group actions Groups Manifolds Surgery Transformation Transformation groups |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00286849 |
Dovermann, Karl H.
|
||
| Berlin, : Springer-Verlag, 1990 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Invariant Markov Processes Under Lie Group Actions / Ming Liao
| Invariant Markov Processes Under Lie Group Actions / Ming Liao |
| Autore | Liao, Ming |
| Pubbl/distr/stampa | Cham, : Springer, 2018 |
| Descrizione fisica | xiii, 363 p. ; 24 cm |
| Soggetto topico |
60J25 - Continuous-time Markov processes on general state spaces [MSC 2020]
60-XX - Probability theory and stochastic processes [MSC 2020] 60G51 - Processes with independent increments; Lévy processes [MSC 2020] 60Bxx - Probability theory on algebraic and topological structures [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] |
| Soggetto non controllato |
Homogeneous spaces
Lie groups Lévy processes Lévy-Khintchine formula Martingale representation Stochastic differential geometry |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0124785 |
Liao, Ming
|
||
| Cham, : Springer, 2018 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Invariant Markov Processes Under Lie Group Actions / Ming Liao
| Invariant Markov Processes Under Lie Group Actions / Ming Liao |
| Autore | Liao, Ming |
| Pubbl/distr/stampa | Cham, : Springer, 2018 |
| Descrizione fisica | xiii, 363 p. ; 24 cm |
| Soggetto topico |
57S15 - Compact Lie groups of differentiable transformations [MSC 2020]
60-XX - Probability theory and stochastic processes [MSC 2020] 60Bxx - Probability theory on algebraic and topological structures [MSC 2020] 60G51 - Processes with independent increments; Lévy processes [MSC 2020] 60J25 - Continuous-time Markov processes on general state spaces [MSC 2020] |
| Soggetto non controllato |
Homogeneous spaces
Lie groups Lévy processes Lévy-Khintchine formula Martingale representation Stochastic differential geometry |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00124785 |
Liao, Ming
|
||
| Cham, : Springer, 2018 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Invariant Markov Processes Under Lie Group Actions / Ming Liao
| Invariant Markov Processes Under Lie Group Actions / Ming Liao |
| Autore | Liao, Ming |
| Edizione | [Cham : Springer, 2018] |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
60J25 - Continuous-time Markov processes on general state spaces [MSC 2020]
60-XX - Probability theory and stochastic processes [MSC 2020] 60G51 - Processes with independent increments; Lévy processes [MSC 2020] 60Bxx - Probability theory on algebraic and topological structures [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0124785 |
Liao, Ming
|
||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||