Equivariant ordinary homology and cohomology / Steven R. Costenoble, Stefan Waner
| Equivariant ordinary homology and cohomology / Steven R. Costenoble, Stefan Waner |
| Autore | Costenoble, Steven R. |
| Pubbl/distr/stampa | [Cham], : Springer, 2016 |
| Descrizione fisica | XIV, 294 p. : ill. ; 24 cm |
| Altri autori (Persone) | Waner, Stefan |
| Soggetto topico |
55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020]
55P42 - Stable homotopy theory, spectra [MSC 2020] 55N91 - Equivariant homology and cohomology in algebraic topology [MSC 2020] 57R91 - Equivariant algebraic topology of manifolds [MSC 2020] 55N25 - Homology with local coefficients, equivariant cohomology [MSC 2020] 55P20 - Eilenberg-Mac Lane spaces [MSC 2020] 55R70 - Fibrewise topology [MSC 2020] 55R91 - Equivariant fiber spaces and bundles in algebraic topology [MSC 2020] |
| Soggetto non controllato |
Cell complex
Equivariant Homology Ordinary |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0110739 |
Costenoble, Steven R.
|
||
| [Cham], : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Equivariant ordinary homology and cohomology / Steven R. Costenoble, Stefan Waner
| Equivariant ordinary homology and cohomology / Steven R. Costenoble, Stefan Waner |
| Autore | Costenoble, Steven R. |
| Pubbl/distr/stampa | [Cham], : Springer, 2016 |
| Descrizione fisica | XIV, 294 p. : ill. ; 24 cm |
| Altri autori (Persone) | Waner, Stefan |
| Soggetto topico |
55N25 - Homology with local coefficients, equivariant cohomology [MSC 2020]
55N91 - Equivariant homology and cohomology in algebraic topology [MSC 2020] 55P20 - Eilenberg-Mac Lane spaces [MSC 2020] 55P42 - Stable homotopy theory, spectra [MSC 2020] 55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020] 55R70 - Fibrewise topology [MSC 2020] 55R91 - Equivariant fiber spaces and bundles in algebraic topology [MSC 2020] 57R91 - Equivariant algebraic topology of manifolds [MSC 2020] |
| Soggetto non controllato |
Cell complex
Equivariant Homology Ordinary |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00110739 |
Costenoble, Steven R.
|
||
| [Cham], : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Equivariant ordinary homology and cohomology / Steven R. Costenoble, Stefan Waner
| Equivariant ordinary homology and cohomology / Steven R. Costenoble, Stefan Waner |
| Autore | Costenoble, Steven R. |
| Edizione | [[Cham] : Springer, 2016] |
| Pubbl/distr/stampa | XIV, 294 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Altri autori (Persone) | Waner, Stefan |
| Soggetto topico |
55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020]
55P42 - Stable homotopy theory, spectra [MSC 2020] 55N91 - Equivariant homology and cohomology in algebraic topology [MSC 2020] 57R91 - Equivariant algebraic topology of manifolds [MSC 2020] 55N25 - Homology with local coefficients, equivariant cohomology [MSC 2020] 55P20 - Eilenberg-Mac Lane spaces [MSC 2020] 55R70 - Fibrewise topology [MSC 2020] 55R91 - Equivariant fiber spaces and bundles in algebraic topology [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0110739 |
Costenoble, Steven R.
|
||
| XIV, 294 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Fixed Point Theory of Parametrized Equivariant Maps / Hanno Ulrich
| Fixed Point Theory of Parametrized Equivariant Maps / Hanno Ulrich |
| Autore | Ulrich, Hanno |
| Pubbl/distr/stampa | Berlin, : Springer, 1988 |
| Descrizione fisica | x, 154 p. ; 24 cm |
| Soggetto topico |
55-XX - Algebraic topology [MSC 2020]
55M20 - Fixed-points and coincidences in algebraic topology [MSC 2020] 54H25 - Fixed-point and coincidence theorems (topological aspects) [MSC 2020] 55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020] 55N91 - Equivariant homology and cohomology in algebraic topology [MSC 2020] 55R91 - Equivariant fiber spaces and bundles in algebraic topology [MSC 2020] |
| Soggetto non controllato |
Algebraic Topology
Cohomology Cohomology theory Fibrations Fixed Point Theory Homology Homotopy Homotopy theory K-theory Point-set topology |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0265056 |
Ulrich, Hanno
|
||
| Berlin, : Springer, 1988 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Fixed Point Theory of Parametrized Equivariant Maps / Hanno Ulrich
| Fixed Point Theory of Parametrized Equivariant Maps / Hanno Ulrich |
| Autore | Ulrich, Hanno |
| Pubbl/distr/stampa | Berlin, : Springer, 1988 |
| Descrizione fisica | x, 154 p. ; 24 cm |
| Soggetto topico |
54H25 - Fixed-point and coincidence theorems (topological aspects) [MSC 2020]
55-XX - Algebraic topology [MSC 2020] 55M20 - Fixed-points and coincidences in algebraic topology [MSC 2020] 55N91 - Equivariant homology and cohomology in algebraic topology [MSC 2020] 55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020] 55R91 - Equivariant fiber spaces and bundles in algebraic topology [MSC 2020] |
| Soggetto non controllato |
Algebraic Topology
Cohomology Cohomology theory Fibrations Fixed Point Theory Homology Homotopy Homotopy theory K-theory Point-set topology |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00265056 |
Ulrich, Hanno
|
||
| Berlin, : Springer, 1988 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Transformation Groups and Algebraic K-Theory / Wolfgang Lück
| Transformation Groups and Algebraic K-Theory / Wolfgang Lück |
| Autore | Lück, Wolfgang |
| Pubbl/distr/stampa | Berlin, : Springer, 1989 |
| Descrizione fisica | xiv, 454 p. ; 24 cm |
| Soggetto topico |
57-XX - Manifolds and cell complexes [MSC 2020]
19-XX - $K$-theory [MSC 2020] 57R67 - Surgery obstructions, Wall groups [MSC 2020] 19Jxx - Obstructions from topology [MSC 2020] 57S17 - Finite transformation groups [MSC 2020] 57R91 - Equivariant algebraic topology of manifolds [MSC 2020] 55R91 - Equivariant fiber spaces and bundles in algebraic topology [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] 57Q10 - Simple homotopy type, Whitehead torsion, Reidemeister-Franz torsion, etc. [MSC 2020] 57Q12 - Wall finiteness obstruction for CW-complexes [MSC 2020] |
| Soggetto non controllato |
Algebra
Algebraic K-theory Algebraic Topology K-theory Transformation groups |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0266025 |
Lück, Wolfgang
|
||
| Berlin, : Springer, 1989 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Transformation Groups and Algebraic K-Theory / Wolfgang Lück
| Transformation Groups and Algebraic K-Theory / Wolfgang Lück |
| Autore | Lück, Wolfgang |
| Pubbl/distr/stampa | Berlin, : Springer, 1989 |
| Descrizione fisica | xiv, 454 p. ; 24 cm |
| Soggetto topico |
19-XX - K-theory [MSC 2020]
19Jxx - Obstructions from topology [MSC 2020] 55R91 - Equivariant fiber spaces and bundles in algebraic topology [MSC 2020] 57-XX - Manifolds and cell complexes [MSC 2020] 57Q10 - Simple homotopy type, Whitehead torsion, Reidemeister-Franz torsion, etc. [MSC 2020] 57Q12 - Wall finiteness obstruction for CW-complexes [MSC 2020] 57R67 - Surgery obstructions, Wall groups [MSC 2020] 57R91 - Equivariant algebraic topology of manifolds [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] 57S17 - Finite transformation groups [MSC 2020] |
| Soggetto non controllato |
Algebra
Algebraic K-theory Algebraic Topology K-theory Transformation groups |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00266025 |
Lück, Wolfgang
|
||
| Berlin, : Springer, 1989 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||