The Geometric Hopf Invariant and Surgery Theory / Michael Crabb, Andrew Ranicki
| The Geometric Hopf Invariant and Surgery Theory / Michael Crabb, Andrew Ranicki |
| Autore | Crabb, Michael |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | xvi, 397 p. : ill. ; 24 cm |
| Altri autori (Persone) | Ranicki, Andrew |
| Soggetto topico |
55Q25 - Hopf invariants [MSC 2020]
57R42 - Immersions in differential topology [MSC 2020] |
| Soggetto non controllato |
Algebraic surgery
Bordism theory Coordinate-free approach to stable homotopy theory Difference construction chain homotopy Difference construction homotopy Doube points of maps Double point theorem Geometric Hopf invariant Inner product spaces Manifolds Stable homotopy theory Surgery obstruction theory Z_2 equivariant homotopy |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0124339 |
Crabb, Michael
|
||
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
The Geometric Hopf Invariant and Surgery Theory / Michael Crabb, Andrew Ranicki
| The Geometric Hopf Invariant and Surgery Theory / Michael Crabb, Andrew Ranicki |
| Autore | Crabb, Michael C. |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | xvi, 397 p. : ill. ; 24 cm |
| Altri autori (Persone) | Ranicki, Andrew A. |
| Soggetto topico |
55Q25 - Hopf invariants [MSC 2020]
57R42 - Immersions in differential topology [MSC 2020] |
| Soggetto non controllato |
Algebraic surgery
Bordism theory Coordinate-free approach to stable homotopy theory Difference construction chain homotopy Difference construction homotopy Doube points of maps Double point theorem Geometric Hopf invariant Inner product spaces Manifolds Stable homotopy theory Surgery obstruction theory Z_2 equivariant homotopy |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00124339 |
Crabb, Michael C.
|
||
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
The Geometric Hopf Invariant and Surgery Theory / Michael Crabb, Andrew Ranicki
| The Geometric Hopf Invariant and Surgery Theory / Michael Crabb, Andrew Ranicki |
| Autore | Crabb, Michael |
| Edizione | [Cham : Springer, 2017] |
| Pubbl/distr/stampa | xvi, 397 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Altri autori (Persone) | Ranicki, Andrew |
| Soggetto topico |
55Q25 - Hopf invariants [MSC 2020]
57R42 - Immersions in differential topology [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0124339 |
Crabb, Michael
|
||
| xvi, 397 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Unstable Homotopy from the Stable Point of View / R. James Milgram
| Unstable Homotopy from the Stable Point of View / R. James Milgram |
| Autore | Milgram, R. James |
| Pubbl/distr/stampa | Berlin, : Springer, 1974 |
| Descrizione fisica | 109 p. : ill. ; 24 cm |
| Soggetto topico |
55-XX - Algebraic topology [MSC 2020]
55Pxx - Homotopy theory [MSC 2020] 55Qxx - Homotopy groups [MSC 2020] 55Q40 - Homotopy groups of spheres [MSC 2020] 55P20 - Eilenberg-Mac Lane spaces [MSC 2020] 55Q25 - Hopf invariants [MSC 2020] 55P35 - Loop spaces [MSC 2020] 55P40 - Suspensions [MSC 2020] 55Q10 - Stable homotopy groups [MSC 2020] 55Q20 - Homotopy groups of wedges, joins, and simple spaces [MSC 2020] |
| Soggetto non controllato |
Calculation
Cohomology Homology Homotopy Homotopy Groups Loop groups |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0256285 |
Milgram, R. James
|
||
| Berlin, : Springer, 1974 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Unstable Homotopy from the Stable Point of View / R. James Milgram
| Unstable Homotopy from the Stable Point of View / R. James Milgram |
| Autore | Milgram, R. James |
| Pubbl/distr/stampa | Berlin, : Springer, 1974 |
| Descrizione fisica | 109 p. : ill. ; 24 cm |
| Soggetto topico |
55-XX - Algebraic topology [MSC 2020]
55P20 - Eilenberg-Mac Lane spaces [MSC 2020] 55P35 - Loop spaces [MSC 2020] 55P40 - Suspensions [MSC 2020] 55Pxx - Homotopy theory [MSC 2020] 55Q10 - Stable homotopy groups [MSC 2020] 55Q20 - Homotopy groups of wedges, joins, and simple spaces [MSC 2020] 55Q25 - Hopf invariants [MSC 2020] 55Q40 - Homotopy groups of spheres [MSC 2020] 55Qxx - Homotopy groups [MSC 2020] |
| Soggetto non controllato |
Calculation
Cohomology Homology Homotopy Homotopy Groups Loop groups |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00256285 |
Milgram, R. James
|
||
| Berlin, : Springer, 1974 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Variations on a Theme of Euler : Quadratic Forms, Elliptic Curves, and Hopf Maps / Takashi Ono
| Variations on a Theme of Euler : Quadratic Forms, Elliptic Curves, and Hopf Maps / Takashi Ono |
| Autore | Ono, Takashi |
| Pubbl/distr/stampa | New York [etc.], : Springer, : Plenum, 1994 |
| Descrizione fisica | xi, 347 p. : ill. ; 24 cm |
| Soggetto topico |
11-XX - Number theory [MSC 2020]
11D09 - Quadratic and bilinear Diophantine equations [MSC 2020] 11E25 - Sums of squares and representations by other particular quadratic forms [MSC 2020] 11G05 - Elliptic curves over global fields [MSC 2020] 14-XX - Algebraic geometry [MSC 2020] 14H52 - Elliptic curves [MSC 2020] 55Q25 - Hopf invariants [MSC 2020] |
| Soggetto non controllato |
Algebra
Algebraic varieties Area Arithmetic Elliptic curves Forms Functions Invariants Mathematics Number theory Quadratic forms Systems Time Variables |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00293424 |
Ono, Takashi
|
||
| New York [etc.], : Springer, : Plenum, 1994 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||