Equivariant ordinary homology and cohomology / Steven R. Costenoble, Stefan Waner
| Equivariant ordinary homology and cohomology / Steven R. Costenoble, Stefan Waner |
| Autore | Costenoble, Steven R. |
| Pubbl/distr/stampa | [Cham], : Springer, 2016 |
| Descrizione fisica | XIV, 294 p. : ill. ; 24 cm |
| Altri autori (Persone) | Waner, Stefan |
| Soggetto topico |
55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020]
55P42 - Stable homotopy theory, spectra [MSC 2020] 55N91 - Equivariant homology and cohomology in algebraic topology [MSC 2020] 57R91 - Equivariant algebraic topology of manifolds [MSC 2020] 55N25 - Homology with local coefficients, equivariant cohomology [MSC 2020] 55P20 - Eilenberg-Mac Lane spaces [MSC 2020] 55R70 - Fibrewise topology [MSC 2020] 55R91 - Equivariant fiber spaces and bundles in algebraic topology [MSC 2020] |
| Soggetto non controllato |
Cell complex
Equivariant Homology Ordinary |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0110739 |
Costenoble, Steven R.
|
||
| [Cham], : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Equivariant ordinary homology and cohomology / Steven R. Costenoble, Stefan Waner
| Equivariant ordinary homology and cohomology / Steven R. Costenoble, Stefan Waner |
| Autore | Costenoble, Steven R. |
| Pubbl/distr/stampa | [Cham], : Springer, 2016 |
| Descrizione fisica | XIV, 294 p. : ill. ; 24 cm |
| Altri autori (Persone) | Waner, Stefan |
| Soggetto topico |
55N25 - Homology with local coefficients, equivariant cohomology [MSC 2020]
55N91 - Equivariant homology and cohomology in algebraic topology [MSC 2020] 55P20 - Eilenberg-Mac Lane spaces [MSC 2020] 55P42 - Stable homotopy theory, spectra [MSC 2020] 55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020] 55R70 - Fibrewise topology [MSC 2020] 55R91 - Equivariant fiber spaces and bundles in algebraic topology [MSC 2020] 57R91 - Equivariant algebraic topology of manifolds [MSC 2020] |
| Soggetto non controllato |
Cell complex
Equivariant Homology Ordinary |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00110739 |
Costenoble, Steven R.
|
||
| [Cham], : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Equivariant ordinary homology and cohomology / Steven R. Costenoble, Stefan Waner
| Equivariant ordinary homology and cohomology / Steven R. Costenoble, Stefan Waner |
| Autore | Costenoble, Steven R. |
| Edizione | [[Cham] : Springer, 2016] |
| Pubbl/distr/stampa | XIV, 294 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Altri autori (Persone) | Waner, Stefan |
| Soggetto topico |
55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020]
55P42 - Stable homotopy theory, spectra [MSC 2020] 55N91 - Equivariant homology and cohomology in algebraic topology [MSC 2020] 57R91 - Equivariant algebraic topology of manifolds [MSC 2020] 55N25 - Homology with local coefficients, equivariant cohomology [MSC 2020] 55P20 - Eilenberg-Mac Lane spaces [MSC 2020] 55R70 - Fibrewise topology [MSC 2020] 55R91 - Equivariant fiber spaces and bundles in algebraic topology [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0110739 |
Costenoble, Steven R.
|
||
| XIV, 294 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Equivariant Stable Homotopy Theory / L. Gaunce Lewis jr., J. Peter May, Mark Steinberger
| Equivariant Stable Homotopy Theory / L. Gaunce Lewis jr., J. Peter May, Mark Steinberger |
| Autore | Lewis, L. Gaunce jr. |
| Pubbl/distr/stampa | Berlin, : Springer, 1986 |
| Descrizione fisica | ix, 538 p. ; 24 cm |
| Altri autori (Persone) |
May, Peter
Steinberger, Mark |
| Soggetto topico |
55-XX - Algebraic topology [MSC 2020]
55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020] 57S10 - Compact groups of homeomorphisms [MSC 2020] 55P42 - Stable homotopy theory, spectra [MSC 2020] 18A40 - Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.) [MSC 2020] 55N20 - Generalized (extraordinary) homology and cohomology theories in algebraic topology [MSC 2020] |
| Soggetto non controllato |
Duality
Homology Homotopy Homotopy theory |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0263769 |
Lewis, L. Gaunce jr.
|
||
| Berlin, : Springer, 1986 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Equivariant Stable Homotopy Theory / L. Gaunce Lewis jr., J. Peter May, Mark Steinberger
| Equivariant Stable Homotopy Theory / L. Gaunce Lewis jr., J. Peter May, Mark Steinberger |
| Autore | Lewis, L. Gaunce jr. |
| Pubbl/distr/stampa | Berlin, : Springer, 1986 |
| Descrizione fisica | ix, 538 p. ; 24 cm |
| Altri autori (Persone) |
May, Peter
Steinberger, Mark |
| Soggetto topico |
18A40 - Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.) [MSC 2020]
55-XX - Algebraic topology [MSC 2020] 55N20 - Generalized (extraordinary) homology and cohomology theories in algebraic topology [MSC 2020] 55P42 - Stable homotopy theory, spectra [MSC 2020] 55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020] 57S10 - Compact groups of homeomorphisms [MSC 2020] |
| Soggetto non controllato |
Duality
Homology Homotopy Homotopy theory |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00263769 |
Lewis, L. Gaunce jr.
|
||
| Berlin, : Springer, 1986 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Fixed Point Theory of Parametrized Equivariant Maps / Hanno Ulrich
| Fixed Point Theory of Parametrized Equivariant Maps / Hanno Ulrich |
| Autore | Ulrich, Hanno |
| Pubbl/distr/stampa | Berlin, : Springer, 1988 |
| Descrizione fisica | x, 154 p. ; 24 cm |
| Soggetto topico |
55-XX - Algebraic topology [MSC 2020]
55M20 - Fixed-points and coincidences in algebraic topology [MSC 2020] 54H25 - Fixed-point and coincidence theorems (topological aspects) [MSC 2020] 55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020] 55N91 - Equivariant homology and cohomology in algebraic topology [MSC 2020] 55R91 - Equivariant fiber spaces and bundles in algebraic topology [MSC 2020] |
| Soggetto non controllato |
Algebraic Topology
Cohomology Cohomology theory Fibrations Fixed Point Theory Homology Homotopy Homotopy theory K-theory Point-set topology |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0265056 |
Ulrich, Hanno
|
||
| Berlin, : Springer, 1988 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Fixed Point Theory of Parametrized Equivariant Maps / Hanno Ulrich
| Fixed Point Theory of Parametrized Equivariant Maps / Hanno Ulrich |
| Autore | Ulrich, Hanno |
| Pubbl/distr/stampa | Berlin, : Springer, 1988 |
| Descrizione fisica | x, 154 p. ; 24 cm |
| Soggetto topico |
54H25 - Fixed-point and coincidence theorems (topological aspects) [MSC 2020]
55-XX - Algebraic topology [MSC 2020] 55M20 - Fixed-points and coincidences in algebraic topology [MSC 2020] 55N91 - Equivariant homology and cohomology in algebraic topology [MSC 2020] 55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020] 55R91 - Equivariant fiber spaces and bundles in algebraic topology [MSC 2020] |
| Soggetto non controllato |
Algebraic Topology
Cohomology Cohomology theory Fibrations Fixed Point Theory Homology Homotopy Homotopy theory K-theory Point-set topology |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00265056 |
Ulrich, Hanno
|
||
| Berlin, : Springer, 1988 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Topological methods for variational problems with symmetries / Thomas Bartsch
| Topological methods for variational problems with symmetries / Thomas Bartsch |
| Autore | Bartsch, Thomas |
| Pubbl/distr/stampa | Berlin, : Springer, 1993 |
| Descrizione fisica | X, 152 p. ; 24 cm. |
| Soggetto topico |
34Cxx - Qualitative theory for ordinary differential equation [MSC 2020]
55M30 - Lyusternik-Shnirel'man category of a space, topological complexity à la Farber, topological robotics (topological aspects) [MSC 2020] 55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020] 58Exx - Variational problems in infinite-dimensional spaces [MSC 2020] 35J20 - Variational methods for second-order elliptic equations [MSC 2020] |
| ISBN | 978-35-405-7378-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0052193 |
Bartsch, Thomas
|
||
| Berlin, : Springer, 1993 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Topological methods for variational problems with symmetries / Thomas Bartsch
| Topological methods for variational problems with symmetries / Thomas Bartsch |
| Autore | Bartsch, Thomas |
| Pubbl/distr/stampa | Berlin, : Springer, 1993 |
| Descrizione fisica | X, 152 p. ; 24 cm |
| Soggetto topico |
34Cxx - Qualitative theory for ordinary differential equation [MSC 2020]
55M30 - Lyusternik-Shnirel'man category of a space, topological complexity à la Farber, topological robotics (topological aspects) [MSC 2020] 55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020] 58Exx - Variational problems in infinite-dimensional spaces [MSC 2020] 35J20 - Variational methods for second-order elliptic equations [MSC 2020] |
| ISBN | 978-35-405-7378-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0052193 |
Bartsch, Thomas
|
||
| Berlin, : Springer, 1993 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Topological Methods for Variational Problems with Symmetries / Thomas Bartsch
| Topological Methods for Variational Problems with Symmetries / Thomas Bartsch |
| Autore | Bartsch, Thomas |
| Pubbl/distr/stampa | Berlin [etc.], : Springer-Verlag, 1993 |
| Descrizione fisica | X, 152 p. ; 24 cm |
| Soggetto topico |
34Cxx - Qualitative theory for ordinary differential equation [MSC 2020]
35J20 - Variational methods for second-order elliptic equations [MSC 2020] 55M30 - Lyusternik-Shnirel'man category of a space, topological complexity à la Farber, topological robotics (topological aspects) [MSC 2020] 55P91 - Equivariant homotopy theory in algebraic topology [MSC 2020] 58Exx - Variational problems in infinite-dimensional spaces [MSC 2020] |
| Soggetto non controllato |
Algebraic Topology
Bifurcation theory Critical point theory Dynamical systems Equivariant topology Minimum Variational problems |
| ISBN | 978-35-405-7378-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00052193 |
Bartsch, Thomas
|
||
| Berlin [etc.], : Springer-Verlag, 1993 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||