2: Classical Field Theory / Walter Thirring ; Translated by Evans M. Harrell |
Autore | Thirring, Walter |
Edizione | [2. ed] |
Pubbl/distr/stampa | New York, : Springer, 1978 |
Descrizione fisica | x, 261 p. : ill. ; 24 cm |
Soggetto topico |
53-XX - Differential geometry [MSC 2020]
78-XX - Optics, electromagnetic theory [MSC 2020] 53B50 - Applications of local differential geometry to the sciences [MSC 2020] |
Soggetto non controllato |
Cosmology
Differential geometry Geometry Mathematical physics Theoretical Physics |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0268148 |
Thirring, Walter
![]() |
||
New York, : Springer, 1978 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
2: Classical Field Theory / Walter Thirring ; Translated by Evans M. Harrell |
Autore | Thirring, Walter |
Edizione | [2. ed] |
Pubbl/distr/stampa | New York, : Springer, 1978 |
Descrizione fisica | x, 261 p. : ill. ; 24 cm |
Soggetto topico |
53-XX - Differential geometry [MSC 2020]
53B50 - Applications of local differential geometry to the sciences [MSC 2020] 78-XX - Optics, electromagnetic theory [MSC 2020] |
Soggetto non controllato |
Cosmology
Differential geometry Geometry Mathematical physics Theoretical Physics |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00268148 |
Thirring, Walter
![]() |
||
New York, : Springer, 1978 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
4: Applications to Mathematical Physics / Eberhard Zeidler ; Transl. from the German by Juergen Quandt |
Autore | Zeidler, Eberhard |
Pubbl/distr/stampa | New York, : Springer, 1988 |
Descrizione fisica | xxiii, 993 p. : ill. ; 25 cm |
Soggetto topico |
47Hxx - Nonlinear operators and their properties [MSC 2020]
83C05 - Einstein's equations (general structure, canonical formalism, Cauchy problems) [MSC 2020] 53A15 - Affine differential geometry [MSC 2020] 53B50 - Applications of local differential geometry to the sciences [MSC 2020] 83Fxx - Cosmology [MSC 2020] 22E15 - General properties and structure of real Lie groups [MSC 2020] |
Soggetto non controllato |
Calculus
Convexity Differential equations Functional Analysis Mathematical physics Maximum Mechanics Potential Thermodynamics |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ita |
Record Nr. | UNICAMPANIA-VAN0269096 |
Zeidler, Eberhard
![]() |
||
New York, : Springer, 1988 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
4: Applications to Mathematical Physics / Eberhard Zeidler ; Transl. from the German by Juergen Quandt |
Autore | Zeidler, Eberhard |
Pubbl/distr/stampa | New York, : Springer, 1988 |
Descrizione fisica | xxiii, 993 p. : ill. ; 25 cm |
Soggetto topico |
22E15 - General properties and structure of real Lie groups [MSC 2020]
47Hxx - Nonlinear operators and their properties [MSC 2020] 53A15 - Affine differential geometry [MSC 2020] 53B50 - Applications of local differential geometry to the sciences [MSC 2020] 83C05 - Einstein's equations (general structure, canonical formalism, Cauchy problems) [MSC 2020] 83Fxx - Cosmology [MSC 2020] |
Soggetto non controllato |
Calculus
Convexity Differential equations Functional Analysis Mathematical physics Maximum Mechanics Potential Thermodynamics |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ita |
Record Nr. | UNICAMPANIA-VAN00269096 |
Zeidler, Eberhard
![]() |
||
New York, : Springer, 1988 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
An introduction to general relativity / L. P. Hughston and K. P. Tod |
Autore | Hughston, L. P. |
Pubbl/distr/stampa | Cambridge, : Cambridge university, 1990 |
Descrizione fisica | 183 p. ; 24 cm. |
Altri autori (Persone) | Tod, Kenneth P. |
Soggetto topico |
83-XX - Relativity and gravitational theory [MSC 2020]
53B50 - Applications of local differential geometry to the sciences [MSC 2020] |
ISBN | 978-05-213-3943-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-SUN0055452 |
Hughston, L. P.
![]() |
||
Cambridge, : Cambridge university, 1990 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
An introduction to general relativity / L. P. Hughston and K. P. Tod |
Autore | Hughston, Lane P. |
Pubbl/distr/stampa | Cambridge, : Cambridge university, 1990 |
Descrizione fisica | 183 p. ; 24 cm |
Altri autori (Persone) | Tod, Kenneth P. |
Soggetto topico |
83-XX - Relativity and gravitational theory [MSC 2020]
53B50 - Applications of local differential geometry to the sciences [MSC 2020] |
ISBN | 978-05-213-3943-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0055452 |
Hughston, Lane P.
![]() |
||
Cambridge, : Cambridge university, 1990 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
An introduction to general relativity / L. P. Hughston and K. P. Tod |
Autore | Hughston, Lane P. |
Pubbl/distr/stampa | Cambridge, : Cambridge university, 1990 |
Descrizione fisica | 183 p. ; 24 cm |
Altri autori (Persone) | Tod, Kenneth P. |
Soggetto topico |
53B50 - Applications of local differential geometry to the sciences [MSC 2020]
83-XX - Relativity and gravitational theory [MSC 2020] |
ISBN | 978-05-213-3943-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00055452 |
Hughston, Lane P.
![]() |
||
Cambridge, : Cambridge university, 1990 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential forms with applications to the physical sciences / Harley Flanders |
Autore | Flanders, Harley |
Pubbl/distr/stampa | New York, : Dover, 1989 |
Descrizione fisica | XV, 205 p. : ill. ; 22 cm. |
Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
53-XX - Differential geometry [MSC 2020] 53A45 - Differential geometric aspects in vector and tensor analysis [MSC 2020] 53B50 - Applications of local differential geometry to the sciences [MSC 2020] 58A10 - Differential forms in global analysis [MSC 2020] |
ISBN | 978-04-86661-69-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-SUN0056069 |
Flanders, Harley
![]() |
||
New York, : Dover, 1989 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential forms with applications to the physical sciences / Harley Flanders |
Autore | Flanders, Harley |
Pubbl/distr/stampa | New York, : Dover, 1989 |
Descrizione fisica | XV, 205 p. : ill. ; 22 cm |
Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
53-XX - Differential geometry [MSC 2020] 53A45 - Differential geometric aspects in vector and tensor analysis [MSC 2020] 53B50 - Applications of local differential geometry to the sciences [MSC 2020] 58A10 - Differential forms in global analysis [MSC 2020] |
ISBN | 978-04-86661-69-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0056069 |
Flanders, Harley
![]() |
||
New York, : Dover, 1989 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential forms with applications to the physical sciences / Harley Flanders |
Autore | Flanders, Harley |
Pubbl/distr/stampa | New York, : Dover, 1989 |
Descrizione fisica | XV, 205 p. : ill. ; 22 cm |
Soggetto topico |
53-XX - Differential geometry [MSC 2020]
53A45 - Differential geometric aspects in vector and tensor analysis [MSC 2020] 53B50 - Applications of local differential geometry to the sciences [MSC 2020] 58-XX - Global analysis, analysis on manifolds [MSC 2020] 58A10 - Differential forms in global analysis [MSC 2020] |
ISBN | 978-04-86661-69-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00056069 |
Flanders, Harley
![]() |
||
New York, : Dover, 1989 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|