Basic Monotonicity Methods with Some Applications / Marek Galewski |
Autore | Galewski, Marek |
Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2021 |
Descrizione fisica | x, 180 p. : ill. ; 24 cm |
Soggetto topico |
47-XX - Operator theory [MSC 2020]
47H05 - Monotone operators and generalizations [MSC 2020] 47N10 - Applications of operator theory in optimization, convex analysis, mathematical programming, economics [MSC 2020] 34-XX - Ordinary differential equations [MSC 2020] 47J05 - Equations involving nonlinear operators (general) [MSC 220] 65J15 - Numerical solutions to equations with nonlinear operators [MSC 2020] 47G40 - Potential operators [MSC 2020] |
Soggetto non controllato |
Browder Minty theorem
Dirichlet problems Monotone operators Ordinary differential equations Potential operators |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0274356 |
Galewski, Marek | ||
Cham, : Birkhäuser, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Basic Monotonicity Methods with Some Applications / Marek Galewski |
Autore | Galewski, Marek |
Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2021 |
Descrizione fisica | x, 180 p. : ill. ; 24 cm |
Soggetto topico |
34-XX - Ordinary differential equations [MSC 2020]
47-XX - Operator theory [MSC 2020] 47G40 - Potential operators [MSC 2020] 47H05 - Monotone operators and generalizations [MSC 2020] 47J05 - Equations involving nonlinear operators (general) [MSC 220] 47N10 - Applications of operator theory in optimization, convex analysis, mathematical programming, economics [MSC 2020] 65J15 - Numerical solutions to equations with nonlinear operators [MSC 2020] |
Soggetto non controllato |
Browder Minty theorem
Dirichlet problems Monotone operators Ordinary differential equations Potential operators |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00274356 |
Galewski, Marek | ||
Cham, : Birkhäuser, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Singularly Perturbed Boundary Value Problems : A Functional Analytic Approach / Matteo Dalla Riva, Massimo Lanza de Cristoforis, Paolo Musolino |
Autore | Dalla Riva, Matteo |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | xvi, 672 p. : ill. ; 24 cm |
Altri autori (Persone) |
Lanza de Cristoforis, Massimo
Musolino, Paolo |
Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
35J25 - Boundary value problems for second-order elliptic equations [MSC 2020] 45Pxx - Integral operators [MSC 2020] 35P15 - Estimation of eigenvalues in context of PDEs [MSC 2020] 42B20 - Singular and oscillatory integrals (Calderón-Zygmund, etc.) [MSC 2020] 35C15 - Integral representations of solutions to PDEs [MSC 2020] 46N20 - Applications of functional analysis to differential and integral equations [MSC 2020] 35B10 - Periodic solutions to PDEs [MSC 2020] 35B25 - Singular perturbations in context of PDEs [MSC 2020] 35J66 - Nonlinear boundary value problems for nonlinear elliptic equations [MSC 2020] 47H30 - Particular nonlinear operators (superposition, Hammerstein, Nemytskiĭ, Uryson, etc.) [MSC 2020] 35C20 - Asymptotic expansions of solutions to PDEs [MSC 2020] 35B30 - Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs [MSC 2020] 31B10 - Integral representations, integral operators, integral equations methods in higher dimensions [MSC 2020] 47G40 - Potential operators [MSC 2020] |
Soggetto non controllato |
Boundary integral operators
Boundary value problem Continuum Mechanics Fredholm alternative principle Functional Analytic Approach Geometric perturbations Green identities Harmonic Functions Helmholtz Equation Lame equations Laplace equation Perturbation Methods Potential theory |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0275287 |
Dalla Riva, Matteo | ||
Cham, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Singularly Perturbed Boundary Value Problems : A Functional Analytic Approach / Matteo Dalla Riva, Massimo Lanza de Cristoforis, Paolo Musolino |
Autore | Dalla Riva, Matteo |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | xvi, 672 p. : ill. ; 24 cm |
Altri autori (Persone) |
Lanza de Cristoforis, Massimo
Musolino, Paolo |
Soggetto topico |
31B10 - Integral representations, integral operators, integral equations methods in higher dimensions [MSC 2020]
35-XX - Partial differential equations [MSC 2020] 35B10 - Periodic solutions to PDEs [MSC 2020] 35B25 - Singular perturbations in context of PDEs [MSC 2020] 35B30 - Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs [MSC 2020] 35C15 - Integral representations of solutions to PDEs [MSC 2020] 35C20 - Asymptotic expansions of solutions to PDEs [MSC 2020] 35J25 - Boundary value problems for second-order elliptic equations [MSC 2020] 35J66 - Nonlinear boundary value problems for nonlinear elliptic equations [MSC 2020] 35P15 - Estimation of eigenvalues in context of PDEs [MSC 2020] 42B20 - Singular and oscillatory integrals (Calderón-Zygmund, etc.) [MSC 2020] 45Pxx - Integral operators [MSC 2020] 46N20 - Applications of functional analysis to differential and integral equations [MSC 2020] 47G40 - Potential operators [MSC 2020] 47H30 - Particular nonlinear operators (superposition, Hammerstein, Nemytskiĭ, Uryson, etc.) [MSC 2020] |
Soggetto non controllato |
Boundary integral operators
Boundary value problem Continuum Mechanics Fredholm alternative principle Functional Analytic Approach Geometric perturbations Green identities Harmonic Functions Helmholtz Equation Lame equations Laplace equation Perturbation Methods Potential theory |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00275287 |
Dalla Riva, Matteo | ||
Cham, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|