top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fundamental directions in mathematical fluid mechanics / edited by Giovanni P. Galdi, John G. Heywood, Rolf Rannacher
Fundamental directions in mathematical fluid mechanics / edited by Giovanni P. Galdi, John G. Heywood, Rolf Rannacher
Pubbl/distr/stampa Basel, : Birkhäuser, 2000
Descrizione fisica VIII, 293 p. ; 24 cm.
Soggetto topico 35Q30 - Navier-Stokes equations [MSC 2020]
35-XX - Partial differential equations [MSC 2020]
76-XX - Fluid mechanics [MSC 2020]
37-XX - Dynamical systems and ergodic theory [MSC 2020]
76D05 - Navier-stokes equations for incompressible viscous fluids [MSC 2020]
76M10 - Finite element methods applied to problems in fluid mechanics [MSC 2020]
76N10 - Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics [MSC 2020]
37G10 - Bifurcations of singular points in dynamical systems [MSC 2020]
00B15 - Collections of articles of miscellaneous specific interest [MSC 2020]
ISBN 978-37-643-6414-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0056195
Basel, : Birkhäuser, 2000
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Fundamental directions in mathematical fluid mechanics / edited by Giovanni P. Galdi, John G. Heywood, Rolf Rannacher
Fundamental directions in mathematical fluid mechanics / edited by Giovanni P. Galdi, John G. Heywood, Rolf Rannacher
Pubbl/distr/stampa Basel, : Birkhäuser, 2000
Descrizione fisica VIII, 293 p. ; 24 cm
Soggetto topico 35Q30 - Navier-Stokes equations [MSC 2020]
35-XX - Partial differential equations [MSC 2020]
76-XX - Fluid mechanics [MSC 2020]
37-XX - Dynamical systems and ergodic theory [MSC 2020]
76D05 - Navier-stokes equations for incompressible viscous fluids [MSC 2020]
76M10 - Finite element methods applied to problems in fluid mechanics [MSC 2020]
76N10 - Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics [MSC 2020]
37G10 - Bifurcations of singular points in dynamical systems [MSC 2020]
00B15 - Collections of articles of miscellaneous specific interest [MSC 2020]
ISBN 978-37-643-6414-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0056195
Basel, : Birkhäuser, 2000
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Fundamental directions in mathematical fluid mechanics / edited by Giovanni P. Galdi, John G. Heywood, Rolf Rannacher
Fundamental directions in mathematical fluid mechanics / edited by Giovanni P. Galdi, John G. Heywood, Rolf Rannacher
Pubbl/distr/stampa Basel, : Birkhäuser, 2000
Descrizione fisica VIII, 293 p. ; 24 cm
Soggetto topico 00B15 - Collections of articles of miscellaneous specific interest [MSC 2020]
35-XX - Partial differential equations [MSC 2020]
35Q30 - Navier-Stokes equations [MSC 2020]
37-XX - Dynamical systems and ergodic theory [MSC 2020]
37G10 - Bifurcations of singular points in dynamical systems [MSC 2020]
76-XX - Fluid mechanics [MSC 2020]
76D05 - Navier-stokes equations for incompressible viscous fluids [MSC 2020]
76M10 - Finite element methods applied to problems in fluid mechanics [MSC 2020]
76N10 - Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics [MSC 2020]
ISBN 978-37-643-6414-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00056195
Basel, : Birkhäuser, 2000
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Local and semi-local bifurcations in Hamiltonian dynamical systems : results and examples / Heinz Hanssmann
Local and semi-local bifurcations in Hamiltonian dynamical systems : results and examples / Heinz Hanssmann
Autore Hanssmann, Heinz
Pubbl/distr/stampa Berlin, : Springer, 2007
Descrizione fisica XV, 237 p. ; 24 cm
Soggetto topico 70E20 - Perturbation methods for rigid body dynamics [MSC 2020]
34Cxx - Qualitative theory for ordinary differential equation [MSC 2020]
37J20 - Bifurcation problems for finite-dimensional Hamiltonian and Lagrangian systems [MSC 2020]
58K05 - Critical points of functions and mappings on manifolds [MSC 2020]
37J40 - Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion [MSC 2020]
70H33 - Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics [MSC 2020]
34D30 - Structural stability and analogous concepts of solutions to ordinary differential equation [MSC 2020]
70K30 - Nonlinear resonances for nonlinear problems in mechanics [MSC 2020]
37G10 - Bifurcations of singular points in dynamical systems [MSC 2020]
70H08 - Nearly integrable Hamiltonian systems, KAM theory [MSC 2020]
37G05 - Normal forms for dynamical systems [MSC 2020]
37J35 - Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests [MSC 2020]
70K43 - Quasi-periodic motions and invariant tori for nonlinear problems in mechanics [MSC 2020]
58K70 - Symmetries, equivariance on manifolds [MSC 2020]
37C15 - Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems [MSC 2020]
Soggetto non controllato Cantor
Dynamical systems
Invariant
KAM Theory
Multiparameter bifurcation
Ordinary differential equations
Proofs
Ramified torus bundle
Symmetry reduction
Theorem
Versal unfolding
ISBN 978-35-403-8894-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0059220
Hanssmann, Heinz  
Berlin, : Springer, 2007
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Local and semi-local bifurcations in Hamiltonian dynamical systems : results and examples / Heinz Hanssmann
Local and semi-local bifurcations in Hamiltonian dynamical systems : results and examples / Heinz Hanssmann
Autore Hanssmann, Heinz
Pubbl/distr/stampa Berlin, : Springer, 2007
Descrizione fisica XV, 237 p. ; 24 cm
Soggetto topico 34Cxx - Qualitative theory for ordinary differential equation [MSC 2020]
34D30 - Structural stability and analogous concepts of solutions to ordinary differential equation [MSC 2020]
37C15 - Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems [MSC 2020]
37G05 - Normal forms for dynamical systems [MSC 2020]
37G10 - Bifurcations of singular points in dynamical systems [MSC 2020]
37J20 - Bifurcation problems for finite-dimensional Hamiltonian and Lagrangian systems [MSC 2020]
37J35 - Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests [MSC 2020]
37J40 - Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion [MSC 2020]
58K05 - Critical points of functions and mappings on manifolds [MSC 2020]
58K70 - Symmetries, equivariance on manifolds [MSC 2020]
70E20 - Perturbation methods for rigid body dynamics [MSC 2020]
70H08 - Nearly integrable Hamiltonian systems, KAM theory [MSC 2020]
70H33 - Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics [MSC 2020]
70K30 - Nonlinear resonances for nonlinear problems in mechanics [MSC 2020]
70K43 - Quasi-periodic motions and invariant tori for nonlinear problems in mechanics [MSC 2020]
Soggetto non controllato Cantor
Dynamical systems
Invariant
KAM Theory
Multiparameter bifurcation
Ordinary differential equations
Proofs
Ramified torus bundle
Symmetry reduction
Theorem
Versal unfolding
ISBN 978-35-403-8894-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00059220
Hanssmann, Heinz  
Berlin, : Springer, 2007
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Local and semi-local bifurcations in Hamiltonian dynamical systems : results and examples / Heinz Hanssmann
Local and semi-local bifurcations in Hamiltonian dynamical systems : results and examples / Heinz Hanssmann
Autore Hanssmann, Heinz
Edizione [Berlin : Springer]
Descrizione fisica Pubblicazione disponibile anche in formato elettronico.
Soggetto topico 70E20 - Perturbation methods for rigid body dynamics [MSC 2020]
34Cxx - Qualitative theory for ordinary differential equation [MSC 2020]
37J20 - Bifurcation problems for finite-dimensional Hamiltonian and Lagrangian systems [MSC 2020]
58K05 - Critical points of functions and mappings on manifolds [MSC 2020]
37J40 - Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion [MSC 2020]
70H33 - Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics [MSC 2020]
34D30 - Structural stability and analogous concepts of solutions to ordinary differential equation [MSC 2020]
70K30 - Nonlinear resonances for nonlinear problems in mechanics [MSC 2020]
37G10 - Bifurcations of singular points in dynamical systems [MSC 2020]
70H08 - Nearly integrable Hamiltonian systems, KAM theory [MSC 2020]
37G05 - Normal forms for dynamical systems [MSC 2020]
37J35 - Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests [MSC 2020]
70K43 - Quasi-periodic motions and invariant tori for nonlinear problems in mechanics [MSC 2020]
58K70 - Symmetries, equivariance on manifolds [MSC 2020]
37C15 - Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems [MSC 2020]
ISBN 35-403-8894-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0059220
Hanssmann, Heinz  
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui