top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Chaos : An Introduction for Applied Mathematicians / Andrew Fowler, Mark McGuinness
Chaos : An Introduction for Applied Mathematicians / Andrew Fowler, Mark McGuinness
Autore Fowler, Andrew
Pubbl/distr/stampa Cham, : Springer, 2019
Descrizione fisica xiv, 303 p. : ill. ; 24 cm
Altri autori (Persone) McGuinness, Mark
Soggetto topico 34C23 - Bifurcation theory for ordinary differential equation [MSC 2020]
37J40 - Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion [MSC 2020]
37D45 - Strange attractors, chaotic dynamics of systems with hyperbolic behavior [MSC 2020]
37E05 - Dynamical systems involving maps of the interval (piecewise continuous, continuous, smooth) [MSC 2020]
37B10 - Symbolic dynamics [MSC 2020]
34A34 - Nonlinear ordinary differential equations and systems, general theory [MSC 2020]
34C37 - Homoclinic and heteroclinic solutions to ordinary differential equation [MSC 2020]
34C28 - Complex behavior and chaotic systems of ordinary differential equation [MSC 2020]
37C29 - Homoclinic and heteroclinic orbits for dynamical systems [MSC 2020]
Soggetto non controllato Celestial Mechanics
Chaos
Hamiltonian systems
Homoclinic bifurcations
Hopf bifurcation
Nonlinear Dynamics
One-dimensional maps
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0127409
Fowler, Andrew  
Cham, : Springer, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Chaos : An Introduction for Applied Mathematicians / Andrew Fowler, Mark McGuinness
Chaos : An Introduction for Applied Mathematicians / Andrew Fowler, Mark McGuinness
Autore Fowler, Andrew
Pubbl/distr/stampa Cham, : Springer, 2019
Descrizione fisica xiv, 303 p. : ill. ; 24 cm
Altri autori (Persone) McGuinness, Mark
Soggetto topico 34A34 - Nonlinear ordinary differential equations and systems, general theory [MSC 2020]
34C23 - Bifurcation theory for ordinary differential equation [MSC 2020]
34C28 - Complex behavior and chaotic systems of ordinary differential equation [MSC 2020]
34C37 - Homoclinic and heteroclinic solutions to ordinary differential equation [MSC 2020]
37B10 - Symbolic dynamics [MSC 2020]
37C29 - Homoclinic and heteroclinic orbits for dynamical systems [MSC 2020]
37D45 - Strange attractors, chaotic dynamics of systems with hyperbolic behavior [MSC 2020]
37E05 - Dynamical systems involving maps of the interval (piecewise continuous, continuous, smooth) [MSC 2020]
37J40 - Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion [MSC 2020]
Soggetto non controllato Celestial Mechanics
Chaos
Hamiltonian systems
Homoclinic bifurcations
Hopf bifurcation
Nonlinear Dynamics
One-dimensional maps
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00127409
Fowler, Andrew  
Cham, : Springer, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Chaos : An Introduction for Applied Mathematicians / Andrew Fowler, Mark McGuinness
Chaos : An Introduction for Applied Mathematicians / Andrew Fowler, Mark McGuinness
Autore Fowler, Andrew
Edizione [Cham : Springer, 2019]
Pubbl/distr/stampa xiv, 303 p., : ill. ; 24 cm
Descrizione fisica Pubblicazione in formato elettronico
Altri autori (Persone) McGuinness, Mark
Soggetto topico 34C23 - Bifurcation theory for ordinary differential equation [MSC 2020]
37J40 - Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion [MSC 2020]
37D45 - Strange attractors, chaotic dynamics of systems with hyperbolic behavior [MSC 2020]
37E05 - Dynamical systems involving maps of the interval (piecewise continuous, continuous, smooth) [MSC 2020]
37B10 - Symbolic dynamics [MSC 2020]
34A34 - Nonlinear ordinary differential equations and systems, general theory [MSC 2020]
34C37 - Homoclinic and heteroclinic solutions to ordinary differential equation [MSC 2020]
34C28 - Complex behavior and chaotic systems of ordinary differential equation [MSC 2020]
37C29 - Homoclinic and heteroclinic orbits for dynamical systems [MSC 2020]
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0127409
Fowler, Andrew  
xiv, 303 p., : ill. ; 24 cm
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Dynamical systems on 2- and 3-manifolds / Viacheslav Z. Grines, Timur V. Medvedev, Olga V. Pochinka
Dynamical systems on 2- and 3-manifolds / Viacheslav Z. Grines, Timur V. Medvedev, Olga V. Pochinka
Autore Grines, Viacheslav Z.
Pubbl/distr/stampa [Cham], : Springer, 2016
Descrizione fisica XXVI, 295 p. : ill. ; 24 cm
Altri autori (Persone) Medvedev, Timur V.
Pochinka, Olga V.
Soggetto topico 37C25 - Fixed points and periodic points of dynamical systems; fixed-point index theory, local dynamics [MSC 2020]
37B25 - Stability of topological dynamical systems [MSC 2020]
37D20 - Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.) [MSC 2020]
37C10 - Dynamics induced by flows and semiflows [MSC 2020]
37C15 - Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems [MSC 2020]
37C20 - Generic properties, structural stability of dynamical systems [MSC 2020]
37B35 - Gradient-like and recurrent behavior; isolated (locally maximal) invariant sets; attractors, repellers for topological dynamical systems [MSC 2020]
37C27 - Periodic orbits of vector fields and flows [MSC 2020]
37C29 - Homoclinic and heteroclinic orbits for dynamical systems [MSC 2020]
37D05 - Dynamical systems with hyperbolic orbits and sets [MSC 2020]
37D15 - Morse-Smale systems [MSC 2020]
Soggetto non controllato Diffeomorphisms on 2-manifolds
Diffeomorphisms on 3-manifolds
Discrete dynamical systems
Dynamical systems on manifolds
Morse-Lyapunov functions
Morse-Smale diffeomorphisms
Ordinary differential equations
Qualitative theory of differential equations
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0114648
Grines, Viacheslav Z.  
[Cham], : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Dynamical systems on 2- and 3-manifolds / Viacheslav Z. Grines, Timur V. Medvedev, Olga V. Pochinka
Dynamical systems on 2- and 3-manifolds / Viacheslav Z. Grines, Timur V. Medvedev, Olga V. Pochinka
Autore Grines, Viacheslav Z.
Pubbl/distr/stampa [Cham], : Springer, 2016
Descrizione fisica XXVI, 295 p. : ill. ; 24 cm
Altri autori (Persone) Medvedev, Timur V.
Pochinka, Olga V.
Soggetto topico 37B25 - Stability of topological dynamical systems [MSC 2020]
37B35 - Gradient-like and recurrent behavior; isolated (locally maximal) invariant sets; attractors, repellers for topological dynamical systems [MSC 2020]
37C10 - Dynamics induced by flows and semiflows [MSC 2020]
37C15 - Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems [MSC 2020]
37C20 - Generic properties, structural stability of dynamical systems [MSC 2020]
37C25 - Fixed points and periodic points of dynamical systems; fixed-point index theory, local dynamics [MSC 2020]
37C27 - Periodic orbits of vector fields and flows [MSC 2020]
37C29 - Homoclinic and heteroclinic orbits for dynamical systems [MSC 2020]
37D05 - Dynamical systems with hyperbolic orbits and sets [MSC 2020]
37D15 - Morse-Smale systems [MSC 2020]
37D20 - Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.) [MSC 2020]
Soggetto non controllato Diffeomorphisms on 2-manifolds
Diffeomorphisms on 3-manifolds
Discrete dynamical systems
Dynamical systems on manifolds
Morse-Lyapunov functions
Morse-Smale diffeomorphisms
Ordinary differential equations
Qualitative theory of differential equations
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00114648
Grines, Viacheslav Z.  
[Cham], : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Dynamical systems on 2- and 3-manifolds / Viacheslav Z. Grines, Timur V. Medvedev, Olga V. Pochinka
Dynamical systems on 2- and 3-manifolds / Viacheslav Z. Grines, Timur V. Medvedev, Olga V. Pochinka
Autore Grines, Viacheslav Z.
Edizione [[Cham] : Springer, 2016]
Pubbl/distr/stampa XXVI, 295 p., : ill. ; 24 cm
Descrizione fisica Pubblicazione in formato elettronico
Altri autori (Persone) Medvedev, Timur V.
Pochinka, Olga V.
Soggetto topico 37C25 - Fixed points and periodic points of dynamical systems; fixed-point index theory, local dynamics [MSC 2020]
37B25 - Stability of topological dynamical systems [MSC 2020]
37D20 - Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.) [MSC 2020]
37C10 - Dynamics induced by flows and semiflows [MSC 2020]
37C15 - Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems [MSC 2020]
37C20 - Generic properties, structural stability of dynamical systems [MSC 2020]
37B35 - Gradient-like and recurrent behavior; isolated (locally maximal) invariant sets; attractors, repellers for topological dynamical systems [MSC 2020]
37C27 - Periodic orbits of vector fields and flows [MSC 2020]
37C29 - Homoclinic and heteroclinic orbits for dynamical systems [MSC 2020]
37D05 - Dynamical systems with hyperbolic orbits and sets [MSC 2020]
37D15 - Morse-Smale systems [MSC 2020]
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0114648
Grines, Viacheslav Z.  
XXVI, 295 p., : ill. ; 24 cm
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Elements of applied bifurcation theory / Yuri A. Kuznetsov
Elements of applied bifurcation theory / Yuri A. Kuznetsov
Autore Kuznetsov, Yuri A.
Edizione [4. ed]
Pubbl/distr/stampa Cham, : Springer, 2023
Descrizione fisica xxvi, 703 p. : ill. ; 24 cm
Soggetto topico 34C23 - Bifurcation theory for ordinary differential equation [MSC 2020]
37-XX - Dynamical systems and ergodic theory [MSC 2020]
37C15 - Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems [MSC 2020]
37C20 - Generic properties, structural stability of dynamical systems [MSC 2020]
37C29 - Homoclinic and heteroclinic orbits for dynamical systems [MSC 2020]
37Gxx - Local and nonlocal bifurcation theory for dynamical systems [MSC 2020]
65P30 - Numerical bifurcation problems [MSC 2020]
Soggetto non controllato Applied Mathematics
Bifurcation
Dynamical systems
Mathematics
Numerical Analysis
Numerical methods
Ordinary differential equations
Stability
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00278789
Kuznetsov, Yuri A.  
Cham, : Springer, 2023
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui