Chaos : An Introduction for Applied Mathematicians / Andrew Fowler, Mark McGuinness
| Chaos : An Introduction for Applied Mathematicians / Andrew Fowler, Mark McGuinness |
| Autore | Fowler, Andrew |
| Pubbl/distr/stampa | Cham, : Springer, 2019 |
| Descrizione fisica | xiv, 303 p. : ill. ; 24 cm |
| Altri autori (Persone) | McGuinness, Mark |
| Soggetto topico |
34C23 - Bifurcation theory for ordinary differential equation [MSC 2020]
37J40 - Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion [MSC 2020] 37D45 - Strange attractors, chaotic dynamics of systems with hyperbolic behavior [MSC 2020] 37E05 - Dynamical systems involving maps of the interval (piecewise continuous, continuous, smooth) [MSC 2020] 37B10 - Symbolic dynamics [MSC 2020] 34A34 - Nonlinear ordinary differential equations and systems, general theory [MSC 2020] 34C37 - Homoclinic and heteroclinic solutions to ordinary differential equation [MSC 2020] 34C28 - Complex behavior and chaotic systems of ordinary differential equation [MSC 2020] 37C29 - Homoclinic and heteroclinic orbits for dynamical systems [MSC 2020] |
| Soggetto non controllato |
Celestial Mechanics
Chaos Hamiltonian systems Homoclinic bifurcations Hopf bifurcation Nonlinear Dynamics One-dimensional maps |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0127409 |
Fowler, Andrew
|
||
| Cham, : Springer, 2019 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Chaos : An Introduction for Applied Mathematicians / Andrew Fowler, Mark McGuinness
| Chaos : An Introduction for Applied Mathematicians / Andrew Fowler, Mark McGuinness |
| Autore | Fowler, Andrew |
| Pubbl/distr/stampa | Cham, : Springer, 2019 |
| Descrizione fisica | xiv, 303 p. : ill. ; 24 cm |
| Altri autori (Persone) | McGuinness, Mark |
| Soggetto topico |
34A34 - Nonlinear ordinary differential equations and systems, general theory [MSC 2020]
34C23 - Bifurcation theory for ordinary differential equation [MSC 2020] 34C28 - Complex behavior and chaotic systems of ordinary differential equation [MSC 2020] 34C37 - Homoclinic and heteroclinic solutions to ordinary differential equation [MSC 2020] 37B10 - Symbolic dynamics [MSC 2020] 37C29 - Homoclinic and heteroclinic orbits for dynamical systems [MSC 2020] 37D45 - Strange attractors, chaotic dynamics of systems with hyperbolic behavior [MSC 2020] 37E05 - Dynamical systems involving maps of the interval (piecewise continuous, continuous, smooth) [MSC 2020] 37J40 - Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion [MSC 2020] |
| Soggetto non controllato |
Celestial Mechanics
Chaos Hamiltonian systems Homoclinic bifurcations Hopf bifurcation Nonlinear Dynamics One-dimensional maps |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00127409 |
Fowler, Andrew
|
||
| Cham, : Springer, 2019 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Chaos : An Introduction for Applied Mathematicians / Andrew Fowler, Mark McGuinness
| Chaos : An Introduction for Applied Mathematicians / Andrew Fowler, Mark McGuinness |
| Autore | Fowler, Andrew |
| Edizione | [Cham : Springer, 2019] |
| Pubbl/distr/stampa | xiv, 303 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Altri autori (Persone) | McGuinness, Mark |
| Soggetto topico |
34C23 - Bifurcation theory for ordinary differential equation [MSC 2020]
37J40 - Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion [MSC 2020] 37D45 - Strange attractors, chaotic dynamics of systems with hyperbolic behavior [MSC 2020] 37E05 - Dynamical systems involving maps of the interval (piecewise continuous, continuous, smooth) [MSC 2020] 37B10 - Symbolic dynamics [MSC 2020] 34A34 - Nonlinear ordinary differential equations and systems, general theory [MSC 2020] 34C37 - Homoclinic and heteroclinic solutions to ordinary differential equation [MSC 2020] 34C28 - Complex behavior and chaotic systems of ordinary differential equation [MSC 2020] 37C29 - Homoclinic and heteroclinic orbits for dynamical systems [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0127409 |
Fowler, Andrew
|
||
| xiv, 303 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Dynamical systems on 2- and 3-manifolds / Viacheslav Z. Grines, Timur V. Medvedev, Olga V. Pochinka
| Dynamical systems on 2- and 3-manifolds / Viacheslav Z. Grines, Timur V. Medvedev, Olga V. Pochinka |
| Autore | Grines, Viacheslav Z. |
| Pubbl/distr/stampa | [Cham], : Springer, 2016 |
| Descrizione fisica | XXVI, 295 p. : ill. ; 24 cm |
| Altri autori (Persone) |
Medvedev, Timur V.
Pochinka, Olga V. |
| Soggetto topico |
37C25 - Fixed points and periodic points of dynamical systems; fixed-point index theory, local dynamics [MSC 2020]
37B25 - Stability of topological dynamical systems [MSC 2020] 37D20 - Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.) [MSC 2020] 37C10 - Dynamics induced by flows and semiflows [MSC 2020] 37C15 - Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems [MSC 2020] 37C20 - Generic properties, structural stability of dynamical systems [MSC 2020] 37B35 - Gradient-like and recurrent behavior; isolated (locally maximal) invariant sets; attractors, repellers for topological dynamical systems [MSC 2020] 37C27 - Periodic orbits of vector fields and flows [MSC 2020] 37C29 - Homoclinic and heteroclinic orbits for dynamical systems [MSC 2020] 37D05 - Dynamical systems with hyperbolic orbits and sets [MSC 2020] 37D15 - Morse-Smale systems [MSC 2020] |
| Soggetto non controllato |
Diffeomorphisms on 2-manifolds
Diffeomorphisms on 3-manifolds Discrete dynamical systems Dynamical systems on manifolds Morse-Lyapunov functions Morse-Smale diffeomorphisms Ordinary differential equations Qualitative theory of differential equations |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0114648 |
Grines, Viacheslav Z.
|
||
| [Cham], : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Dynamical systems on 2- and 3-manifolds / Viacheslav Z. Grines, Timur V. Medvedev, Olga V. Pochinka
| Dynamical systems on 2- and 3-manifolds / Viacheslav Z. Grines, Timur V. Medvedev, Olga V. Pochinka |
| Autore | Grines, Viacheslav Z. |
| Pubbl/distr/stampa | [Cham], : Springer, 2016 |
| Descrizione fisica | XXVI, 295 p. : ill. ; 24 cm |
| Altri autori (Persone) |
Medvedev, Timur V.
Pochinka, Olga V. |
| Soggetto topico |
37B25 - Stability of topological dynamical systems [MSC 2020]
37B35 - Gradient-like and recurrent behavior; isolated (locally maximal) invariant sets; attractors, repellers for topological dynamical systems [MSC 2020] 37C10 - Dynamics induced by flows and semiflows [MSC 2020] 37C15 - Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems [MSC 2020] 37C20 - Generic properties, structural stability of dynamical systems [MSC 2020] 37C25 - Fixed points and periodic points of dynamical systems; fixed-point index theory, local dynamics [MSC 2020] 37C27 - Periodic orbits of vector fields and flows [MSC 2020] 37C29 - Homoclinic and heteroclinic orbits for dynamical systems [MSC 2020] 37D05 - Dynamical systems with hyperbolic orbits and sets [MSC 2020] 37D15 - Morse-Smale systems [MSC 2020] 37D20 - Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.) [MSC 2020] |
| Soggetto non controllato |
Diffeomorphisms on 2-manifolds
Diffeomorphisms on 3-manifolds Discrete dynamical systems Dynamical systems on manifolds Morse-Lyapunov functions Morse-Smale diffeomorphisms Ordinary Differential Equations Qualitative theory of differential equations |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00114648 |
Grines, Viacheslav Z.
|
||
| [Cham], : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Dynamical systems on 2- and 3-manifolds / Viacheslav Z. Grines, Timur V. Medvedev, Olga V. Pochinka
| Dynamical systems on 2- and 3-manifolds / Viacheslav Z. Grines, Timur V. Medvedev, Olga V. Pochinka |
| Autore | Grines, Viacheslav Z. |
| Edizione | [[Cham] : Springer, 2016] |
| Pubbl/distr/stampa | XXVI, 295 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Altri autori (Persone) |
Medvedev, Timur V.
Pochinka, Olga V. |
| Soggetto topico |
37C25 - Fixed points and periodic points of dynamical systems; fixed-point index theory, local dynamics [MSC 2020]
37B25 - Stability of topological dynamical systems [MSC 2020] 37D20 - Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.) [MSC 2020] 37C10 - Dynamics induced by flows and semiflows [MSC 2020] 37C15 - Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems [MSC 2020] 37C20 - Generic properties, structural stability of dynamical systems [MSC 2020] 37B35 - Gradient-like and recurrent behavior; isolated (locally maximal) invariant sets; attractors, repellers for topological dynamical systems [MSC 2020] 37C27 - Periodic orbits of vector fields and flows [MSC 2020] 37C29 - Homoclinic and heteroclinic orbits for dynamical systems [MSC 2020] 37D05 - Dynamical systems with hyperbolic orbits and sets [MSC 2020] 37D15 - Morse-Smale systems [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0114648 |
Grines, Viacheslav Z.
|
||
| XXVI, 295 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Elements of applied bifurcation theory / Yuri A. Kuznetsov
| Elements of applied bifurcation theory / Yuri A. Kuznetsov |
| Autore | Kuznetsov, Yuri A. |
| Edizione | [4. ed] |
| Pubbl/distr/stampa | Cham, : Springer, 2023 |
| Descrizione fisica | xxvi, 703 p. : ill. ; 24 cm |
| Soggetto topico |
34C23 - Bifurcation theory for ordinary differential equation [MSC 2020]
37-XX - Dynamical systems and ergodic theory [MSC 2020] 37C15 - Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems [MSC 2020] 37C20 - Generic properties, structural stability of dynamical systems [MSC 2020] 37C29 - Homoclinic and heteroclinic orbits for dynamical systems [MSC 2020] 37Gxx - Local and nonlocal bifurcation theory for dynamical systems [MSC 2020] 65P30 - Numerical bifurcation problems [MSC 2020] |
| Soggetto non controllato |
Applied Mathematics
Bifurcations Dynamical systems Mathematics Numerical Analysis Numerical methods Ordinary Differential Equations Stability |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00278789 |
Kuznetsov, Yuri A.
|
||
| Cham, : Springer, 2023 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||