top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
p-Laplace equation in the Heisenberg group : regularity of solutions / Diego Ricciotti
p-Laplace equation in the Heisenberg group : regularity of solutions / Diego Ricciotti
Autore Ricciotti, Diego
Pubbl/distr/stampa [Cham], : Springer, 2015
Descrizione fisica XIV, 87 p. ; 24 cm
Soggetto topico 43A80 - Analysis on other specific Lie groups [MSC 2020]
43-XX - Abstract harmonic analysis [MSC 2020]
49N60 - Regularity of solutions in optimal control [MSC 2020]
35J92 - Quasilinear elliptic equations with $p$-Laplacian [MSC 2020]
Soggetto non controllato Heisenberg group
Ordinary differential equations
P-Laplace equation
Partial differential equations
Regularity
Subelliptic equations
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0113835
Ricciotti, Diego  
[Cham], : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
p-Laplace equation in the Heisenberg group : regularity of solutions / Diego Ricciotti
p-Laplace equation in the Heisenberg group : regularity of solutions / Diego Ricciotti
Autore Ricciotti, Diego
Pubbl/distr/stampa [Cham], : Springer, 2015
Descrizione fisica XIV, 87 p. ; 24 cm
Soggetto topico 35J92 - Quasilinear elliptic equations with $p$-Laplacian [MSC 2020]
43-XX - Abstract harmonic analysis [MSC 2020]
43A80 - Analysis on other specific Lie groups [MSC 2020]
49N60 - Regularity of solutions in optimal control [MSC 2020]
Soggetto non controllato Heisenberg group
Ordinary Differential Equations
P-Laplace equation
Partial Differential Equations
Regularity
Subelliptic equations
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00113835
Ricciotti, Diego  
[Cham], : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
p-Laplace equation in the Heisenberg group : regularity of solutions / Diego Ricciotti
p-Laplace equation in the Heisenberg group : regularity of solutions / Diego Ricciotti
Autore Ricciotti, Diego
Edizione [[Cham] : Springer, 2015]
Descrizione fisica Pubblicazione in formato elettronico
Soggetto topico 43A80 - Analysis on other specific Lie groups [MSC 2020]
43-XX - Abstract harmonic analysis [MSC 2020]
49N60 - Regularity of solutions in optimal control [MSC 2020]
35J92 - Quasilinear elliptic equations with $p$-Laplacian [MSC 2020]
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0113835
Ricciotti, Diego  
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Semilinear Elliptic Equations for Beginners : Existence Results via the Variational Approach / Marino Badiale, Enrico Serra
Semilinear Elliptic Equations for Beginners : Existence Results via the Variational Approach / Marino Badiale, Enrico Serra
Autore Badiale, Marino
Pubbl/distr/stampa London, : Springer, 2011
Descrizione fisica vii, 199 p. ; 24 cm
Altri autori (Persone) Serra, Enrico
Soggetto topico 35-XX - Partial differential equations [MSC 2020]
35J25 - Boundary value problems for second-order elliptic equations [MSC 2020]
35J15 - Second order elliptic equations [MSC 2020]
35A15 - Variational methods applied to PDEs [MSC 2020]
35J60 - Nonlinear elliptic equations [MSC 2020]
35J20 - Variational methods for second-order elliptic equations [MSC 2020]
35J92 - Quasilinear elliptic equations with $p$-Laplacian [MSC 2020]
35B38 - Critical points of functionals in context of PDEs (e.g., energy functionals) [MSC 2020]
35J61 - Semilinear elliptic equations [MSC 2020]
Soggetto non controllato Boundary Value Problems
Critical Points
Elliptic equations
Minimax methods
Minimization
Partial differential equations
Variational methods
ISBN 978-08-572-9226-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0276272
Badiale, Marino  
London, : Springer, 2011
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Semilinear Elliptic Equations for Beginners : Existence Results via the Variational Approach / Marino Badiale, Enrico Serra
Semilinear Elliptic Equations for Beginners : Existence Results via the Variational Approach / Marino Badiale, Enrico Serra
Autore Badiale, Marino
Pubbl/distr/stampa London, : Springer, 2011
Descrizione fisica vii, 199 p. ; 24 cm
Altri autori (Persone) Serra, Enrico
Soggetto topico 35-XX - Partial differential equations [MSC 2020]
35A15 - Variational methods applied to PDEs [MSC 2020]
35B38 - Critical points of functionals in context of PDEs (e.g., energy functionals) [MSC 2020]
35J15 - Second order elliptic equations [MSC 2020]
35J20 - Variational methods for second-order elliptic equations [MSC 2020]
35J25 - Boundary value problems for second-order elliptic equations [MSC 2020]
35J60 - Nonlinear elliptic equations [MSC 2020]
35J61 - Semilinear elliptic equations [MSC 2020]
35J92 - Quasilinear elliptic equations with $p$-Laplacian [MSC 2020]
Soggetto non controllato Boundary Value Problems
Critical Points
Elliptic equations
Minimax methods
Minimization
Partial Differential Equations
Variational methods
ISBN 978-08-572-9226-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00276272
Badiale, Marino  
London, : Springer, 2011
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui