p-Laplace equation in the Heisenberg group : regularity of solutions / Diego Ricciotti
| p-Laplace equation in the Heisenberg group : regularity of solutions / Diego Ricciotti |
| Autore | Ricciotti, Diego |
| Pubbl/distr/stampa | [Cham], : Springer, 2015 |
| Descrizione fisica | XIV, 87 p. ; 24 cm |
| Soggetto topico |
43A80 - Analysis on other specific Lie groups [MSC 2020]
43-XX - Abstract harmonic analysis [MSC 2020] 49N60 - Regularity of solutions in optimal control [MSC 2020] 35J92 - Quasilinear elliptic equations with $p$-Laplacian [MSC 2020] |
| Soggetto non controllato |
Heisenberg group
Ordinary differential equations P-Laplace equation Partial differential equations Regularity Subelliptic equations |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0113835 |
Ricciotti, Diego
|
||
| [Cham], : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
p-Laplace equation in the Heisenberg group : regularity of solutions / Diego Ricciotti
| p-Laplace equation in the Heisenberg group : regularity of solutions / Diego Ricciotti |
| Autore | Ricciotti, Diego |
| Pubbl/distr/stampa | [Cham], : Springer, 2015 |
| Descrizione fisica | XIV, 87 p. ; 24 cm |
| Soggetto topico |
35J92 - Quasilinear elliptic equations with $p$-Laplacian [MSC 2020]
43-XX - Abstract harmonic analysis [MSC 2020] 43A80 - Analysis on other specific Lie groups [MSC 2020] 49N60 - Regularity of solutions in optimal control [MSC 2020] |
| Soggetto non controllato |
Heisenberg group
Ordinary Differential Equations P-Laplace equation Partial Differential Equations Regularity Subelliptic equations |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00113835 |
Ricciotti, Diego
|
||
| [Cham], : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
p-Laplace equation in the Heisenberg group : regularity of solutions / Diego Ricciotti
| p-Laplace equation in the Heisenberg group : regularity of solutions / Diego Ricciotti |
| Autore | Ricciotti, Diego |
| Edizione | [[Cham] : Springer, 2015] |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
43A80 - Analysis on other specific Lie groups [MSC 2020]
43-XX - Abstract harmonic analysis [MSC 2020] 49N60 - Regularity of solutions in optimal control [MSC 2020] 35J92 - Quasilinear elliptic equations with $p$-Laplacian [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0113835 |
Ricciotti, Diego
|
||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Semilinear Elliptic Equations for Beginners : Existence Results via the Variational Approach / Marino Badiale, Enrico Serra
| Semilinear Elliptic Equations for Beginners : Existence Results via the Variational Approach / Marino Badiale, Enrico Serra |
| Autore | Badiale, Marino |
| Pubbl/distr/stampa | London, : Springer, 2011 |
| Descrizione fisica | vii, 199 p. ; 24 cm |
| Altri autori (Persone) | Serra, Enrico |
| Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
35J25 - Boundary value problems for second-order elliptic equations [MSC 2020] 35J15 - Second order elliptic equations [MSC 2020] 35A15 - Variational methods applied to PDEs [MSC 2020] 35J60 - Nonlinear elliptic equations [MSC 2020] 35J20 - Variational methods for second-order elliptic equations [MSC 2020] 35J92 - Quasilinear elliptic equations with $p$-Laplacian [MSC 2020] 35B38 - Critical points of functionals in context of PDEs (e.g., energy functionals) [MSC 2020] 35J61 - Semilinear elliptic equations [MSC 2020] |
| Soggetto non controllato |
Boundary Value Problems
Critical Points Elliptic equations Minimax methods Minimization Partial differential equations Variational methods |
| ISBN | 978-08-572-9226-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0276272 |
Badiale, Marino
|
||
| London, : Springer, 2011 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Semilinear Elliptic Equations for Beginners : Existence Results via the Variational Approach / Marino Badiale, Enrico Serra
| Semilinear Elliptic Equations for Beginners : Existence Results via the Variational Approach / Marino Badiale, Enrico Serra |
| Autore | Badiale, Marino |
| Pubbl/distr/stampa | London, : Springer, 2011 |
| Descrizione fisica | vii, 199 p. ; 24 cm |
| Altri autori (Persone) | Serra, Enrico |
| Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
35A15 - Variational methods applied to PDEs [MSC 2020] 35B38 - Critical points of functionals in context of PDEs (e.g., energy functionals) [MSC 2020] 35J15 - Second order elliptic equations [MSC 2020] 35J20 - Variational methods for second-order elliptic equations [MSC 2020] 35J25 - Boundary value problems for second-order elliptic equations [MSC 2020] 35J60 - Nonlinear elliptic equations [MSC 2020] 35J61 - Semilinear elliptic equations [MSC 2020] 35J92 - Quasilinear elliptic equations with $p$-Laplacian [MSC 2020] |
| Soggetto non controllato |
Boundary Value Problems
Critical Points Elliptic equations Minimax methods Minimization Partial Differential Equations Variational methods |
| ISBN | 978-08-572-9226-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00276272 |
Badiale, Marino
|
||
| London, : Springer, 2011 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||