top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
A variational approach to Lyapunov type inequalities : from ODEs to PDEs / Antonio Cañada, Salvador Villegas
A variational approach to Lyapunov type inequalities : from ODEs to PDEs / Antonio Cañada, Salvador Villegas
Autore Cañada, Antonio
Pubbl/distr/stampa [Cham], : Springer, 2015
Descrizione fisica XVIII, 120 p. ; 24 cm
Altri autori (Persone) Villegas, Salvador
Soggetto topico 35J25 - Boundary value problems for second-order elliptic equations [MSC 2020]
35J65 - Nonlinear boundary value problems for linear elliptic equations [MSC 2020]
34B05 - Linear boundary value problems for ordinary differential equations [MSC 2020]
49Rxx - Variational methods for eigenvalues of operators [MSC 2020]
34L15 - Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators [MSC 2020]
34C10 - Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equation [MSC 2020]
35J20 - Variational methods for second-order elliptic equations [MSC 2020]
34B15 - Nonlinear boundary value problems for ordinary differential equations [MSC 2020]
Soggetto non controllato Dirichlet boundary conditions
Lyapunov-type inequalities
Neumann boundary conditions
Ordinary differential equations
Partial differential equations
Periodic and antiperiodic boundary conditions
Radial higher eigenvalues
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0113873
Cañada, Antonio  
[Cham], : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
A variational approach to Lyapunov type inequalities : from ODEs to PDEs / Antonio Cañada, Salvador Villegas
A variational approach to Lyapunov type inequalities : from ODEs to PDEs / Antonio Cañada, Salvador Villegas
Autore Cañada, Antonio
Pubbl/distr/stampa [Cham], : Springer, 2015
Descrizione fisica XVIII, 120 p. ; 24 cm
Altri autori (Persone) Villegas, Salvador
Soggetto topico 34B05 - Linear boundary value problems for ordinary differential equations [MSC 2020]
34B15 - Nonlinear boundary value problems for ordinary differential equations [MSC 2020]
34C10 - Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equation [MSC 2020]
34L15 - Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators [MSC 2020]
35J20 - Variational methods for second-order elliptic equations [MSC 2020]
35J25 - Boundary value problems for second-order elliptic equations [MSC 2020]
35J65 - Nonlinear boundary value problems for linear elliptic equations [MSC 2020]
49Rxx - Variational methods for eigenvalues of operators [MSC 2020]
Soggetto non controllato Dirichlet boundary conditions
Lyapunov-type inequalities
Neumann boundary conditions
Ordinary Differential Equations
Partial Differential Equations
Periodic and antiperiodic boundary conditions
Radial higher eigenvalues
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00113873
Cañada, Antonio  
[Cham], : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
A variational approach to Lyapunov type inequalities : from ODEs to PDEs / Antonio Cañada, Salvador Villegas
A variational approach to Lyapunov type inequalities : from ODEs to PDEs / Antonio Cañada, Salvador Villegas
Autore Cañada, Antonio
Edizione [[Cham] : Springer, 2015]
Descrizione fisica Pubblicazione in formato elettronico
Altri autori (Persone) Villegas, Salvador
Soggetto topico 35J25 - Boundary value problems for second-order elliptic equations [MSC 2020]
35J65 - Nonlinear boundary value problems for linear elliptic equations [MSC 2020]
34B05 - Linear boundary value problems for ordinary differential equations [MSC 2020]
49Rxx - Variational methods for eigenvalues of operators [MSC 2020]
34L15 - Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators [MSC 2020]
34C10 - Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equation [MSC 2020]
35J20 - Variational methods for second-order elliptic equations [MSC 2020]
34B15 - Nonlinear boundary value problems for ordinary differential equations [MSC 2020]
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0113873
Cañada, Antonio  
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
An Introduction to the Topological Derivative Method / Antonio André Novotny, Jan Sokołowski
An Introduction to the Topological Derivative Method / Antonio André Novotny, Jan Sokołowski
Autore Novotny, Antonio André
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica x, 114 p. : ill. ; 24 cm
Altri autori (Persone) Sokołowski, Jan
Soggetto topico 49-XX - Calculus of variations and optimal control; optimization [MSC 2020]
65-XX - Numerical analysis [MSC 2020]
65K10 - Numerical optimization and variational techniques [MSC 2020]
49J20 - Existence theories for optimal control problems involving partial differential equations [MSC 2020]
90-XX - Operations research, mathematical programming [MSC 2020]
49Q10 - Optimization of shapes other than minimal surfaces [MSC 2020]
94A08 - Image processing (compression, reconstruction, etc.) in information and communication theory [MSC 2020]
35J20 - Variational methods for second-order elliptic equations [MSC 2020]
49Q12 - Sensitivity analysis for optimization problems on manifolds [MSC 2020]
74A45 - Theories of fracture and damage [MSC 2020]
54C56 - Shape theory in general topology [MSC 2020]
Soggetto non controllato Asymptotic analysis
Necessary optimality condition
Nonconvex optimization
Partial differential equations
Sensitivity analysis
Shape Optimization
Topological derivatives
Topology optimization
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0248682
Novotny, Antonio André  
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
An Introduction to the Topological Derivative Method / Antonio André Novotny, Jan Sokołowski
An Introduction to the Topological Derivative Method / Antonio André Novotny, Jan Sokołowski
Autore Novotny, Antonio André
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica x, 114 p. : ill. ; 24 cm
Altri autori (Persone) Sokołowski, Jan
Soggetto topico 35J20 - Variational methods for second-order elliptic equations [MSC 2020]
49-XX - Calculus of variations and optimal control; optimization [MSC 2020]
49J20 - Existence theories for optimal control problems involving partial differential equations [MSC 2020]
49Q10 - Optimization of shapes other than minimal surfaces [MSC 2020]
49Q12 - Sensitivity analysis for optimization problems on manifolds [MSC 2020]
54C56 - Shape theory in general topology [MSC 2020]
65-XX - Numerical analysis [MSC 2020]
65K10 - Numerical optimization and variational techniques [MSC 2020]
74A45 - Theories of fracture and damage [MSC 2020]
90-XX - Operations research, mathematical programming [MSC 2020]
94A08 - Image processing (compression, reconstruction, etc.) in information and communication theory [MSC 2020]
Soggetto non controllato Asymptotic analysis
Necessary optimality condition
Nonconvex optimization
Partial Differential Equations
Sensitivity analysis
Shape Optimization
Topological derivatives
Topology optimization
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00248682
Novotny, Antonio André  
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Convex variational problems : linear, nearly linear and anisotropic growth conditions / Michael Bildhauer
Convex variational problems : linear, nearly linear and anisotropic growth conditions / Michael Bildhauer
Autore Bildhauer, Michael
Pubbl/distr/stampa Berlin [etc.], : Springer, 2003
Descrizione fisica X, 217 p. ; 24 cm.
Soggetto topico 49-XX - Calculus of variations and optimal control; optimization [MSC 2020]
35-XX - Partial differential equations [MSC 2020]
49N60 - Regularity of solutions in optimal control [MSC 2020]
49N15 - Duality theory (optimization) [MSC 2020]
35J50 - Variational methods for elliptic systems [MSC 2020]
35J20 - Variational methods for second-order elliptic equations [MSC 2020]
ISBN 8-3-540-40298-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0052623
Bildhauer, Michael  
Berlin [etc.], : Springer, 2003
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Convex variational problems : linear, nearly linear and anisotropic growth conditions / Michael Bildhauer
Convex variational problems : linear, nearly linear and anisotropic growth conditions / Michael Bildhauer
Autore Bildhauer, Michael
Pubbl/distr/stampa Berlin, : Springer, 2003
Descrizione fisica X, 217 p. ; 24 cm
Soggetto topico 49-XX - Calculus of variations and optimal control; optimization [MSC 2020]
35-XX - Partial differential equations [MSC 2020]
49N60 - Regularity of solutions in optimal control [MSC 2020]
49N15 - Duality theory (optimization) [MSC 2020]
35J50 - Variational methods for elliptic systems [MSC 2020]
35J20 - Variational methods for second-order elliptic equations [MSC 2020]
Soggetto non controllato Anisotropic growth
Linear growth
Minimizers
Non-standard growth
Partial differential equations
Regularity
Smooth function
ISBN 978-35-404-0298-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0052623
Bildhauer, Michael  
Berlin, : Springer, 2003
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Convex variational problems : linear, nearly linear and anisotropic growth conditions / Michael Bildhauer
Convex variational problems : linear, nearly linear and anisotropic growth conditions / Michael Bildhauer
Autore Bildhauer, Michael
Pubbl/distr/stampa Berlin, : Springer, 2003
Descrizione fisica X, 217 p. ; 24 cm
Soggetto topico 35-XX - Partial differential equations [MSC 2020]
35J20 - Variational methods for second-order elliptic equations [MSC 2020]
35J50 - Variational methods for elliptic systems [MSC 2020]
49-XX - Calculus of variations and optimal control; optimization [MSC 2020]
49N15 - Duality theory (optimization) [MSC 2020]
49N60 - Regularity of solutions in optimal control [MSC 2020]
Soggetto non controllato Anisotropic growth
Linear growth
Minimizers
Non-standard growth
Partial Differential Equations
Regularity
Smooth function
ISBN 978-35-404-0298-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00052623
Bildhauer, Michael  
Berlin, : Springer, 2003
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Elliptic Differential Equations and Obstacle Problems / Giovanni Maria Troianiello
Elliptic Differential Equations and Obstacle Problems / Giovanni Maria Troianiello
Autore Troianiello, Giovanni Maria
Pubbl/distr/stampa New York, : Springer, 1987
Descrizione fisica xvi, 354 p. ; 24 cm
Soggetto topico 35-XX - Partial differential equations [MSC 2020]
35J25 - Boundary value problems for second-order elliptic equations [MSC 2020]
35J65 - Nonlinear boundary value problems for linear elliptic equations [MSC 2020]
35B65 - Smoothness and regularity of solutions to PDEs [MSC 2020]
35J20 - Variational methods for second-order elliptic equations [MSC 2020]
Soggetto non controllato Applied Mathematics
Differential equations
Equations
Functions
Mathematics
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0268939
Troianiello, Giovanni Maria  
New York, : Springer, 1987
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Elliptic Differential Equations and Obstacle Problems / Giovanni Maria Troianiello
Elliptic Differential Equations and Obstacle Problems / Giovanni Maria Troianiello
Autore Troianiello, Giovanni Maria
Pubbl/distr/stampa New York, : Springer, 1987
Descrizione fisica xvi, 354 p. ; 24 cm
Soggetto topico 35-XX - Partial differential equations [MSC 2020]
35B65 - Smoothness and regularity of solutions to PDEs [MSC 2020]
35J20 - Variational methods for second-order elliptic equations [MSC 2020]
35J25 - Boundary value problems for second-order elliptic equations [MSC 2020]
35J65 - Nonlinear boundary value problems for linear elliptic equations [MSC 2020]
Soggetto non controllato Applied Mathematics
Differential equations
Equations
Functions
Mathematics
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00268939
Troianiello, Giovanni Maria  
New York, : Springer, 1987
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui