Mathematical models for suspension bridges : nonlinear structural instability / Filippo Gazzola
| Mathematical models for suspension bridges : nonlinear structural instability / Filippo Gazzola |
| Autore | Gazzola, Filippo |
| Pubbl/distr/stampa | [Cham], : Springer, 2015 |
| Descrizione fisica | XXI, 259 p. : ill. ; 24 cm |
| Soggetto topico |
65N30 - Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods for boundary value problems involving PDEs [MSC 2020]
35B05 - Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs [MSC 2020] 00A71 - General theory of mathematical modeling [MSC 2020] 74H45 - Vibrations in dynamical problems in solid mechanics [MSC 2020] 34A05 - Explicit solutions and reductions of ordinary differential equations [MSC 2020] 74S05 - Finite element methods applied to problems in solid mechanics [MSC 2020] 35Q74 - PDEs in connection with mechanics of deformable solids [MSC 2020] 35B44 - Blow-up in context of PDEs [MSC 2020] |
| Soggetto non controllato |
Dynamical systems
Instability and chaos Nonlinear elasticity Ordinary differential equations Partial differential equations Poincaré maps and Hill equation |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0113382 |
Gazzola, Filippo
|
||
| [Cham], : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Mathematical models for suspension bridges : nonlinear structural instability / Filippo Gazzola
| Mathematical models for suspension bridges : nonlinear structural instability / Filippo Gazzola |
| Autore | Gazzola, Filippo |
| Pubbl/distr/stampa | [Cham], : Springer, 2015 |
| Descrizione fisica | XXI, 259 p. : ill. ; 24 cm |
| Soggetto topico |
00A71 - General theory of mathematical modeling [MSC 2020]
34A05 - Explicit solutions and reductions of ordinary differential equations [MSC 2020] 35B05 - Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs [MSC 2020] 35B44 - Blow-up in context of PDEs [MSC 2020] 35Q74 - PDEs in connection with mechanics of deformable solids [MSC 2020] 65N30 - Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods for boundary value problems involving PDEs [MSC 2020] 74H45 - Vibrations in dynamical problems in solid mechanics [MSC 2020] 74S05 - Finite element methods applied to problems in solid mechanics [MSC 2020] |
| Soggetto non controllato |
Dynamical systems
Instability and chaos Nonlinear elasticity Ordinary Differential Equations Partial Differential Equations Poincaré maps and Hill equation |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00113382 |
Gazzola, Filippo
|
||
| [Cham], : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Mathematical models for suspension bridges : nonlinear structural instability / Filippo Gazzola
| Mathematical models for suspension bridges : nonlinear structural instability / Filippo Gazzola |
| Autore | Gazzola, Filippo |
| Edizione | [[Cham] : Springer, 2015] |
| Pubbl/distr/stampa | XXI, 259 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
65N30 - Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods for boundary value problems involving PDEs [MSC 2020]
35B05 - Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs [MSC 2020] 00A71 - General theory of mathematical modeling [MSC 2020] 74H45 - Vibrations in dynamical problems in solid mechanics [MSC 2020] 34A05 - Explicit solutions and reductions of ordinary differential equations [MSC 2020] 74S05 - Finite element methods applied to problems in solid mechanics [MSC 2020] 35Q74 - PDEs in connection with mechanics of deformable solids [MSC 2020] 35B44 - Blow-up in context of PDEs [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0113382 |
Gazzola, Filippo
|
||
| XXI, 259 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Nonlinear Wave Equations / Tatsien Li, Yi Zhou ; Translated by Yachun Li
| Nonlinear Wave Equations / Tatsien Li, Yi Zhou ; Translated by Yachun Li |
| Autore | Li, Tatsien |
| Pubbl/distr/stampa | Berlin, : Springer ; Shanghai, : Shanghai Scientific and Technical Publishers, 2017 |
| Descrizione fisica | xvi, 391 p. : ill. ; 24 cm |
| Altri autori (Persone) | Zhou, Yi |
| Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
35Axx - General topics in partial differential equations [MSC 2020] 35L15 - Initial value problems for second-order hyperbolic equations [MSC 2020] 35B44 - Blow-up in context of PDEs [MSC 2020] 35L72 - Second-order quasilinear hyperbolic equations [MSC 2020] |
| Soggetto non controllato |
Asymptotic stability
Blow-up phenomenon Cauchy problem Global iteration method Lower bound estimates of life-span Null solution Partial differential equations |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0124174 |
Li, Tatsien
|
||
| Berlin, : Springer ; Shanghai, : Shanghai Scientific and Technical Publishers, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Nonlinear Wave Equations / Tatsien Li, Yi Zhou ; Translated by Yachun Li
| Nonlinear Wave Equations / Tatsien Li, Yi Zhou ; Translated by Yachun Li |
| Autore | Li, Tatsien |
| Pubbl/distr/stampa | Berlin, : Springer ; Shanghai, : Shanghai Scientific and Technical Publishers, 2017 |
| Descrizione fisica | xvi, 391 p. : ill. ; 24 cm |
| Altri autori (Persone) | Zhou, Yi |
| Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
35Axx - General topics in partial differential equations [MSC 2020] 35B44 - Blow-up in context of PDEs [MSC 2020] 35L15 - Initial value problems for second-order hyperbolic equations [MSC 2020] 35L72 - Second-order quasilinear hyperbolic equations [MSC 2020] |
| Soggetto non controllato |
Asymptotic stability
Blow-up phenomenon Cauchy problem Global iteration method Lower bound estimates of life-span Null solution Partial Differential Equations |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00124174 |
Li, Tatsien
|
||
| Berlin, : Springer ; Shanghai, : Shanghai Scientific and Technical Publishers, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Nonlinear Wave Equations : volume 2 / Tatsien Li, Yi Zhou ; Translated by Yachun Li
| Nonlinear Wave Equations : volume 2 / Tatsien Li, Yi Zhou ; Translated by Yachun Li |
| Autore | Li, Tatsien |
| Edizione | [Berlin : Shanghai Scientific and Technical Publishers : Springer, 2017] |
| Pubbl/distr/stampa | xvi, 391 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Altri autori (Persone) | Zhou, Yi |
| Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
35Axx - General topics in partial differential equations [MSC 2020] 35L15 - Initial value problems for second-order hyperbolic equations [MSC 2020] 35B44 - Blow-up in context of PDEs [MSC 2020] 35L72 - Second-order quasilinear hyperbolic equations [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0124174 |
Li, Tatsien
|
||
| xvi, 391 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Parabolic equations in biology : growth, reaction, movement and diffusion / Benoît Perthame
| Parabolic equations in biology : growth, reaction, movement and diffusion / Benoît Perthame |
| Autore | Perthame, Benoit |
| Pubbl/distr/stampa | [Cham], : Springer, 2015 |
| Descrizione fisica | XII, 199 p. : ill. ; 24 cm |
| Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
92B05 - General biology and biomathematics [MSC 2020] 35K57 - Reaction-diffusion equations [MSC 2020] 35B36 - Pattern formation in context of PDEs [MSC 2020] 35C07 - Traveling wave solutions [MSC 2020] 35Q92 - PDEs in connection with biology, chemistry and other natural sciences [MSC 2020] 35Q84 - Fokker-Planck equations [MSC 2020] 35B44 - Blow-up in context of PDEs [MSC 2020] |
| Soggetto non controllato |
Fokker-Planck Equation
Mathematical biology Reaction-diffusion Traveling Waves Turing patterns |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0113627 |
Perthame, Benoit
|
||
| [Cham], : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Parabolic equations in biology : growth, reaction, movement and diffusion / Benoît Perthame
| Parabolic equations in biology : growth, reaction, movement and diffusion / Benoît Perthame |
| Autore | Perthame, Benoit |
| Pubbl/distr/stampa | [Cham], : Springer, 2015 |
| Descrizione fisica | XII, 199 p. : ill. ; 24 cm |
| Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
35B36 - Pattern formation in context of PDEs [MSC 2020] 35B44 - Blow-up in context of PDEs [MSC 2020] 35C07 - Traveling wave solutions [MSC 2020] 35K57 - Reaction-diffusion equations [MSC 2020] 35Q84 - Fokker-Planck equations [MSC 2020] 35Q92 - PDEs in connection with biology, chemistry and other natural sciences [MSC 2020] 92B05 - General biology and biomathematics [MSC 2020] |
| Soggetto non controllato |
Fokker-Planck Equation
Mathematical biology Reaction-diffusion Traveling Waves Turing patterns |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00113627 |
Perthame, Benoit
|
||
| [Cham], : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Parabolic equations in biology : growth, reaction, movement and diffusion / Benoît Perthame
| Parabolic equations in biology : growth, reaction, movement and diffusion / Benoît Perthame |
| Autore | Perthame, Benoit |
| Edizione | [[Cham] : Springer, 2015] |
| Pubbl/distr/stampa | XII, 199 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
92B05 - General biology and biomathematics [MSC 2020] 35K57 - Reaction-diffusion equations [MSC 2020] 35B36 - Pattern formation in context of PDEs [MSC 2020] 35C07 - Traveling wave solutions [MSC 2020] 35Q92 - PDEs in connection with biology, chemistry and other natural sciences [MSC 2020] 35Q84 - Fokker-Planck equations [MSC 2020] 35B44 - Blow-up in context of PDEs [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0113627 |
Perthame, Benoit
|
||
| XII, 199 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
The nonlinear Schrödinger equation : singular solutions and optical collapse / Gadi Fibich
| The nonlinear Schrödinger equation : singular solutions and optical collapse / Gadi Fibich |
| Autore | Fibich, Gabi |
| Pubbl/distr/stampa | [Cham], : Springer, 2015 |
| Descrizione fisica | XXXI, 862 p. : ill. ; 24 cm |
| Soggetto topico |
35Q55 - NLS equations (nonlinear Schroedinger equations) [MSC 2020]
74J30 - Nonlinear waves in solid mechanics [MSC 2020] 78A60 - Lasers, masers, optical bistability, nonlinear optics [MSC 2020] 35Q60 - PDEs in connection with optics and electromagnetic theory [MSC 2020] 35B44 - Blow-up in context of PDEs [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0113307 |
Fibich, Gabi
|
||
| [Cham], : Springer, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||