Introduction to Lipschitz Geometry of Singularities : Lecture Notes of the International School on Singularity Theory and Lipschitz Geometry, Cuernavaca, June 2018 / Walter Neumann, Anne Pichon editors
| Introduction to Lipschitz Geometry of Singularities : Lecture Notes of the International School on Singularity Theory and Lipschitz Geometry, Cuernavaca, June 2018 / Walter Neumann, Anne Pichon editors |
| Autore | International School on Singularity Theory and Lipschitz Geometry : 2018 |
| Pubbl/distr/stampa | Cham, : Springer, 2020 |
| Descrizione fisica | xvi, 344 p. : ill. ; 24 cm |
| Soggetto topico |
13A18 - Valuations and their generalizations for commutative rings [MSC 2020]
14B05 - Singularities in algebraic geometry [MSC 2020] 32S25 - Complex surface and hypersurface singularities [MSC 2020] 32S55 - Milnor fibration; relations with knot theory [MSC 2020] 57Mxx - General low-dimensional topology [MSC 2020] |
| Soggetto non controllato |
Equisingularity
Hölder Lipschitz Lipschitz Geometry Milnor Monodromy |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00132645 |
International School on Singularity Theory and Lipschitz Geometry : 2018
|
||
| Cham, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Introduction to Lipschitz Geometry of Singularities : Lecture Notes of the International School on Singularity Theory and Lipschitz Geometry, Cuernavaca, June 2018 / Walter Neumann, Anne Pichon editors
| Introduction to Lipschitz Geometry of Singularities : Lecture Notes of the International School on Singularity Theory and Lipschitz Geometry, Cuernavaca, June 2018 / Walter Neumann, Anne Pichon editors |
| Pubbl/distr/stampa | Cham, : Springer, 2020 |
| Descrizione fisica | xvi, 344 p. : ill. ; 24 cm |
| Soggetto topico |
57Mxx - General low-dimensional topology [MSC 2020]
13A18 - Valuations and their generalizations for commutative rings [MSC 2020] 32S25 - Complex surface and hypersurface singularities [MSC 2020] 14B05 - Singularities in algebraic geometry [MSC 2020] 32S55 - Milnor fibration; relations with knot theory [MSC 2020] |
| Soggetto non controllato |
Equisingularity
Hölder Lipschitz Lipschitz Geometry Milnor Monodromy |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0132645 |
| Cham, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Introduction to Lipschitz Geometry of Singularities : Lecture Notes of the International School on Singularity Theory and Lipschitz Geometry, Cuernavaca, June 2018 / Walter Neumann, Anne Pichon editors
| Introduction to Lipschitz Geometry of Singularities : Lecture Notes of the International School on Singularity Theory and Lipschitz Geometry, Cuernavaca, June 2018 / Walter Neumann, Anne Pichon editors |
| Edizione | [Cham : Springer, 2020] |
| Pubbl/distr/stampa | xvi, 344 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
57Mxx - General low-dimensional topology [MSC 2020]
13A18 - Valuations and their generalizations for commutative rings [MSC 2020] 32S25 - Complex surface and hypersurface singularities [MSC 2020] 14B05 - Singularities in algebraic geometry [MSC 2020] 32S55 - Milnor fibration; relations with knot theory [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0132645 |
| xvi, 344 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Lê Cycles and Hypersurface Singularities / David B. Massey
| Lê Cycles and Hypersurface Singularities / David B. Massey |
| Autore | Massey, David B. |
| Pubbl/distr/stampa | Berlin, : Springer, 1995 |
| Descrizione fisica | xi, 131 p. ; 24 cm |
| Soggetto topico |
32-XX - Several complex variables and analytic spaces [MSC 2020]
32S25 - Complex surface and hypersurface singularities [MSC 2020] 32S55 - Milnor fibration; relations with knot theory [MSC 2020] |
| Soggetto non controllato |
Dimensions
Fibrations |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00294116 |
Massey, David B.
|
||
| Berlin, : Springer, 1995 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Properties of Closed 3-Braids and Braid Representations of Links / Alexander Stoimenow
| Properties of Closed 3-Braids and Braid Representations of Links / Alexander Stoimenow |
| Autore | Stoimenow, Alexander |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | x, 110 p. : ill. ; 24 cm |
| Soggetto topico |
20C08 - Hecke algebras and their representations [MSC 2020]
20F36 - Braid groups; Artin groups [MSC 2020] 12D10 - Polynomials in real and complex fields: location of zeros (algebraic theorems) [MSC 2020] 32S55 - Milnor fibration; relations with knot theory [MSC 2020] |
| Soggetto non controllato |
Alexander polynomial
Applications of representation theory Burau representation Fibered Dean knots Gauss sum invariants Incompressible surface Jones polynomial Link polynomial Mahler measures Morton-Franks-Williams bound Positive braid Positivity of 3-braid links Recovering the Burau trace Seifert surface Strongly quasi-positive link |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0124251 |
Stoimenow, Alexander
|
||
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Properties of Closed 3-Braids and Braid Representations of Links / Alexander Stoimenow
| Properties of Closed 3-Braids and Braid Representations of Links / Alexander Stoimenow |
| Autore | Stoimenow, Alexander |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | x, 110 p. : ill. ; 24 cm |
| Soggetto topico |
12D10 - Polynomials in real and complex fields: location of zeros (algebraic theorems) [MSC 2020]
20C08 - Hecke algebras and their representations [MSC 2020] 20F36 - Braid groups; Artin groups [MSC 2020] 32S55 - Milnor fibration; relations with knot theory [MSC 2020] |
| Soggetto non controllato |
Alexander polynomial
Applications of representation theory Burau representation Fibered Dean knots Gauss sum invariants Incompressible surface Jones polynomial Link polynomial Mahler measures Morton-Franks-Williams bound Positive braid Positivity of 3-braid links Recovering the Burau trace Seifert surface Strongly quasi-positive link |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00124251 |
Stoimenow, Alexander
|
||
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Properties of Closed 3-Braids and Braid Representations of Links / Alexander Stoimenow
| Properties of Closed 3-Braids and Braid Representations of Links / Alexander Stoimenow |
| Autore | Stoimenow, Alexander |
| Edizione | [Cham : Springer, 2017] |
| Pubbl/distr/stampa | x, 110 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
20C08 - Hecke algebras and their representations [MSC 2020]
20F36 - Braid groups; Artin groups [MSC 2020] 12D10 - Polynomials in real and complex fields: location of zeros (algebraic theorems) [MSC 2020] 32S55 - Milnor fibration; relations with knot theory [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0124251 |
Stoimenow, Alexander
|
||
| x, 110 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||