1.: General properties of continuous transformation groups. A contemporary approach and translation / Sophus Lie ; with the collaboration of Friedrich Engel ; Joël Merker editor and translator |
Pubbl/distr/stampa | Berlin ; Heidelberg, : Springer, 2015 |
Descrizione fisica | XV, 643 p. : ill. ; 24 cm |
Soggetto topico |
22-XX - Topological groups, Lie groups [MSC 2020]
14P05 - Real algebraic sets [MSC 2020] 12H05 - Differential algebra [MSC 2020] 14P15 - Real analytic and semianalytic sets [MSC 2020] 17B30 - Solvable, nilpotent (super)algebras [MSC 2020] 01A05 - General histories, source books [MSC 2020] 17B45 - Lie algebras of linear algebraic groups [MSC 2020] 22E05 - Local Lie groups [MSC 2020] 22E10 - General properties and structure of complex Lie groups [MSC 2020] 22E60 - Lie algebras of Lie groups [MSC 2020] 01A55 - History of mathematics in the 19th century [MSC 2020] 22F30 - Homogeneous spaces [MSC 2020] 17B40 - Automorphisms, derivations, other operators for Lie algebras and super algebras [MSC 2020] 17B56 - Cohomology of Lie (super)algebras [MSC 2020] 17B66 - Lie algebras of vector fields and related (super) algebras [MSC 2020] 17B70 - Graded Lie (super)algebras [MSC 2020] |
Soggetto non controllato |
Classifications of Lie Algebras
Complete systems of PDEs Continuous transformation groups General projective group Infinitesimal transformations Local holomorphic vector fields |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0113937 |
Berlin ; Heidelberg, : Springer, 2015 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
1.: General properties of continuous transformation groups. A contemporary approach and translation / Sophus Lie ; with the collaboration of Friedrich Engel ; Joël Merker editor and translator |
Pubbl/distr/stampa | Berlin ; Heidelberg, : Springer, 2015 |
Descrizione fisica | XV, 643 p. : ill. ; 24 cm |
Soggetto topico |
01A05 - General histories, source books [MSC 2020]
01A55 - History of mathematics in the 19th century [MSC 2020] 12H05 - Differential algebra [MSC 2020] 14P05 - Real algebraic sets [MSC 2020] 14P15 - Real analytic and semianalytic sets [MSC 2020] 17B30 - Solvable, nilpotent (super)algebras [MSC 2020] 17B40 - Automorphisms, derivations, other operators for Lie algebras and super algebras [MSC 2020] 17B45 - Lie algebras of linear algebraic groups [MSC 2020] 17B56 - Cohomology of Lie (super)algebras [MSC 2020] 17B66 - Lie algebras of vector fields and related (super) algebras [MSC 2020] 17B70 - Graded Lie (super)algebras [MSC 2020] 22-XX - Topological groups, Lie groups [MSC 2020] 22E05 - Local Lie groups [MSC 2020] 22E10 - General properties and structure of complex Lie groups [MSC 2020] 22E60 - Lie algebras of Lie groups [MSC 2020] 22F30 - Homogeneous spaces [MSC 2020] |
Soggetto non controllato |
Classifications of Lie Algebras
Complete systems of PDEs Continuous transformation groups General projective group Infinitesimal transformations Local holomorphic vector fields |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00113937 |
Berlin ; Heidelberg, : Springer, 2015 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
1: General properties of continuous transformation groups. A contemporary approach and translation / Sophus Lie ; with the collaboration of Friedrich Engel ; Joël Merker editor and translator |
Edizione | [Berlin] |
Pubbl/distr/stampa | XV, 643 p., : ill. ; 24 cm |
Descrizione fisica | Pubblicazione in formato elettronico |
Soggetto topico |
22-XX - Topological groups, Lie groups [MSC 2020]
14P05 - Real algebraic sets [MSC 2020] 12H05 - Differential algebra [MSC 2020] 14P15 - Real analytic and semianalytic sets [MSC 2020] 17B30 - Solvable, nilpotent (super)algebras [MSC 2020] 01A05 - General histories, source books [MSC 2020] 17B45 - Lie algebras of linear algebraic groups [MSC 2020] 22E05 - Local Lie groups [MSC 2020] 22E10 - General properties and structure of complex Lie groups [MSC 2020] 22E60 - Lie algebras of Lie groups [MSC 2020] 01A55 - History of mathematics in the 19th century [MSC 2020] 22F30 - Homogeneous spaces [MSC 2020] 17B40 - Automorphisms, derivations, other operators for Lie algebras and super algebras [MSC 2020] 17B56 - Cohomology of Lie (super)algebras [MSC 2020] 17B66 - Lie algebras of vector fields and related (super) algebras [MSC 2020] 17B70 - Graded Lie (super)algebras [MSC 2020] |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-SUN0113937 |
XV, 643 p., : ill. ; 24 cm | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential geometry, lie groups, and symmetric spaces / Sigurdur Helgason |
Autore | Helgason, Sigurdur |
Pubbl/distr/stampa | Providence (R.I.), : American Mathematical Society, 2001 |
Descrizione fisica | XXV, 641 p. ; 26 cm. |
Soggetto topico |
43A85 - Analysis on homogeneous spaces [MSC 2020]
53C35 - Differential geometry of symmetric spaces [MSC 2020] 32M15 - Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects) [MSC 2020] 43A90 - Harmonic analysis and spherical functions [MSC 2020] 22E46 - Semisimple Lie groups and their representations [MSC 2020] 22E15 - General properties and structure of real Lie groups [MSC 2020] 53B05 - Linear and affine connections [MSC 2020] 53B20 - Local Riemannian geometry [MSC 2020] 22E60 - Lie algebras of Lie groups [MSC 2020] 22F30 - Homogeneous spaces [MSC 2020] |
ISBN | 8-0-8218-2848-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-SUN0055222 |
Helgason, Sigurdur
![]() |
||
Providence (R.I.), : American Mathematical Society, 2001 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential geometry, lie groups, and symmetric spaces / Sigurdur Helgason |
Autore | Helgason, Sigurdur |
Pubbl/distr/stampa | Providence ( (R.I.), : American Mathematical Society, 2001 |
Descrizione fisica | XXV, 641 p. ; 26 cm |
Soggetto topico |
43A85 - Analysis on homogeneous spaces [MSC 2020]
53C35 - Differential geometry of symmetric spaces [MSC 2020] 32M15 - Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects) [MSC 2020] 43A90 - Harmonic analysis and spherical functions [MSC 2020] 22E46 - Semisimple Lie groups and their representations [MSC 2020] 22E15 - General properties and structure of real Lie groups [MSC 2020] 53B05 - Linear and affine connections [MSC 2020] 53B20 - Local Riemannian geometry [MSC 2020] 22E60 - Lie algebras of Lie groups [MSC 2020] 22F30 - Homogeneous spaces [MSC 2020] |
ISBN | 978-08-218-2848-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0055222 |
Helgason, Sigurdur
![]() |
||
Providence ( (R.I.), : American Mathematical Society, 2001 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential geometry, lie groups, and symmetric spaces / Sigurdur Helgason |
Autore | Helgason, Sigurdur |
Pubbl/distr/stampa | Providence ( (R.I.), : American Mathematical Society, 2001 |
Descrizione fisica | XXV, 641 p. ; 26 cm |
Soggetto topico |
22E15 - General properties and structure of real Lie groups [MSC 2020]
22E46 - Semisimple Lie groups and their representations [MSC 2020] 22E60 - Lie algebras of Lie groups [MSC 2020] 22F30 - Homogeneous spaces [MSC 2020] 32M15 - Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects) [MSC 2020] 43A85 - Analysis on homogeneous spaces [MSC 2020] 43A90 - Harmonic analysis and spherical functions [MSC 2020] 53B05 - Linear and affine connections [MSC 2020] 53B20 - Local Riemannian geometry [MSC 2020] 53C35 - Differential geometry of symmetric spaces [MSC 2020] |
ISBN | 978-08-218-2848-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00055222 |
Helgason, Sigurdur
![]() |
||
Providence ( (R.I.), : American Mathematical Society, 2001 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Introduction to lie algebras and representation theory / James E. Humphreys |
Autore | Humphreys, James E. |
Edizione | [7. corrected printing] |
Pubbl/distr/stampa | New York, : Springer, 1997 |
Descrizione fisica | XII, 173 p. : ill. ; 25 cm. |
Soggetto topico |
20G05 - Representation theory for linear algebraic groups [MSC 2020]
17Bxx - Lie algebras and Lie superalgebras [MSC 2020] 22E60 - Lie algebras of Lie groups [MSC 2020] |
ISBN |
03-87900-53-5
978-03-87900-53-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-SUN0055441 |
Humphreys, James E.
![]() |
||
New York, : Springer, 1997 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Introduction to lie algebras and representation theory / James E. Humphreys |
Autore | Humphreys, James E. |
Edizione | [7. corrected printing] |
Pubbl/distr/stampa | New York, : Springer, 1997 |
Descrizione fisica | XII, 173 p. : ill. ; 25 cm |
Soggetto topico |
20G05 - Representation theory for linear algebraic groups [MSC 2020]
17Bxx - Lie algebras and Lie superalgebras [MSC 2020] 22E60 - Lie algebras of Lie groups [MSC 2020] |
Soggetto non controllato |
Algebra
Algebraic Geometry Automorphisms Fields Homomorphism Lie Lie algebra Linear algebra Matrix Polynomials Representation Theory Transformation |
ISBN |
03-87900-53-5
978-03-87900-53-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0055441 |
Humphreys, James E.
![]() |
||
New York, : Springer, 1997 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Introduction to lie algebras and representation theory / James E. Humphreys |
Autore | Humphreys, James E. |
Edizione | [7. corrected printing] |
Pubbl/distr/stampa | New York, : Springer, 1997 |
Descrizione fisica | XII, 173 p. : ill. ; 25 cm |
Soggetto topico |
17Bxx - Lie algebras and Lie superalgebras [MSC 2020]
20G05 - Representation theory for linear algebraic groups [MSC 2020] 22E60 - Lie algebras of Lie groups [MSC 2020] |
Soggetto non controllato |
Algebra
Algebraic Geometry Automorphisms Fields Homomorphism Lie Lie Algebras Linear algebra Matrix Polynomials Representation Theory Transformation |
ISBN |
03-87900-53-5
978-03-87900-53-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00055441 |
Humphreys, James E.
![]() |
||
New York, : Springer, 1997 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Lie Groups / Luiz A. B. San Martin ; Translated from the Portuguese by José Emílio Maiorino and Carlos Augusto Bassani Varea |
Autore | San Martin, Luiz A. B. |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | xiv, 371 p. : ill. ; 24 cm |
Soggetto topico |
22-XX - Topological groups, Lie groups [MSC 2020]
17B30 - Solvable, nilpotent (super)algebras [MSC 2020] 22E46 - Semisimple Lie groups and their representations [MSC 2020] 22E45 - Representations of Lie and linear algebraic groups over real fields: analytic methods [MSC 2020] 22E25 - Nilpotent and solvable Lie groups [MSC 2020] 17B05 - Structure theory for Lie algebras and superalgebras [MSC 2020] 17B20 - Simple, semisimple, reductive (super)algebras [MSC 2020] 22E60 - Lie algebras of Lie groups [MSC 2020] 22Cxx - Compact groups [MSC 2020] 17B22 - Root systems [MSC 2020] |
Soggetto non controllato |
Compact groups
Enveloping algebras Haar measure Homomorphism Lie Algebras Lie group action Lie groups Nilpotent Topological groups |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0274881 |
San Martin, Luiz A. B.
![]() |
||
Cham, : Springer, 2021 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|