Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups / Nick Gill, Martin W. Liebeck, Pablo Spiga |
Autore | Gill, Nick |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | ix, 216 p. : ill. ; 24 cm |
Altri autori (Persone) |
Liebeck, Martin W.
Spiga, Pablo |
Soggetto topico |
20D06 - Simple groups: alternating groups and groups of Lie type [MSC 2020]
20B05 - General theory for finite permutation groups [MSC 2020] 03C13 - Model theory of finite structures [MSC 2020] |
Soggetto non controllato |
Almost Simple Groups
Binary Permutation Groups Binary Relational Structures Cherlin Conjecture Combinatorics Finite Primitive Groups Lachlan Theory on Homogeneous Structures Relational Complexity |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0260756 |
Gill, Nick | ||
Cham, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups / Nick Gill, Martin W. Liebeck, Pablo Spiga |
Autore | Gill, Nick |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | ix, 216 p. : ill. ; 24 cm |
Altri autori (Persone) |
Liebeck, Martin W.
Spiga, Pablo |
Soggetto topico |
03C13 - Model theory of finite structures [MSC 2020]
20B05 - General theory for finite permutation groups [MSC 2020] 20D06 - Simple groups: alternating groups and groups of Lie type [MSC 2020] |
Soggetto non controllato |
Almost Simple Groups
Binary Permutation Groups Binary Relational Structures Cherlin Conjecture Combinatorics Finite Primitive Groups Lachlan Theory on Homogeneous Structures Relational Complexity |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00260756 |
Gill, Nick | ||
Cham, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Finite group theory / Michael Aschbacher |
Autore | Aschbacher, Michael |
Pubbl/distr/stampa | Cambridge, : Cambridge university, 1986 |
Descrizione fisica | ix, 274 p. : ill. ; 24 cm. |
Soggetto topico | 20B05 - General theory for finite permutation groups [MSC 2020] |
ISBN | 978-05-214-5826-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-SUN0051849 |
Aschbacher, Michael | ||
Cambridge, : Cambridge university, 1986 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Finite group theory / Michael Aschbacher |
Autore | Aschbacher, Michael |
Pubbl/distr/stampa | Cambridge, : Cambridge university, 1986 |
Descrizione fisica | ix, 274 p. : ill. ; 24 cm |
Soggetto topico | 20B05 - General theory for finite permutation groups [MSC 2020] |
ISBN | 978-05-214-5826-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0051849 |
Aschbacher, Michael | ||
Cambridge, : Cambridge university, 1986 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Finite group theory / Michael Aschbacher |
Autore | Aschbacher, Michael |
Pubbl/distr/stampa | Cambridge, : Cambridge university, 1986 |
Descrizione fisica | ix, 274 p. : ill. ; 24 cm |
Soggetto topico | 20B05 - General theory for finite permutation groups [MSC 2020] |
ISBN | 978-05-214-5826-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00051849 |
Aschbacher, Michael | ||
Cambridge, : Cambridge university, 1986 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Generators and Relations for Discrete Groups / H. S. M. Coxeter, W. O. J. Moser |
Autore | Coxeter, Harold S. M. |
Edizione | [4. ed] |
Pubbl/distr/stampa | Berlin, : Springer, 1980 |
Descrizione fisica | ix, 172 p. : ill. ; 24 cm |
Altri autori (Persone) | Moser, William O. J. |
Soggetto topico |
20-XX - Group theory and generalizations [MSC 2020]
20F05 - Generators, relations, and presentations of groups [MSC 2020] 20B05 - General theory for finite permutation groups [MSC 2020] |
Soggetto non controllato |
Algebra
Finite Groups Permutation Transformations |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0261565 |
Coxeter, Harold S. M. | ||
Berlin, : Springer, 1980 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Generators and Relations for Discrete Groups / H. S. M. Coxeter, W. O. J. Moser |
Autore | Coxeter, Harold S. M. |
Edizione | [4. ed] |
Pubbl/distr/stampa | Berlin, : Springer, 1980 |
Descrizione fisica | ix, 172 p. : ill. ; 24 cm |
Altri autori (Persone) | Moser, William O. J. |
Soggetto topico |
20-XX - Group theory and generalizations [MSC 2020]
20B05 - General theory for finite permutation groups [MSC 2020] 20F05 - Generators, relations, and presentations of groups [MSC 2020] |
Soggetto non controllato |
Algebra
Finite Groups Permutation Transformations |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00261565 |
Coxeter, Harold S. M. | ||
Berlin, : Springer, 1980 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Mathematical concepts / Jürgen Jost |
Autore | Jost, Jürgen |
Pubbl/distr/stampa | [Cham], : Springer, 2015 |
Descrizione fisica | XV, 312 p. : ill. ; 24 cm |
Soggetto topico |
14-XX - Algebraic geometry [MSC 2020]
18-XX - Category theory; homological algebra [MSC 2020] 03-XX - Mathematical logic and foundations [MSC 2020] 18B25 - Topoi [MSC 2020] 00A06 - Mathematics for nonmathematicians (engineering, social sciences, etc.) [MSC 2020] 18Gxx - Homological algebra in category theory, derived categories and functors [MSC 2020] 92Bxx - Mathematical biology in general [MSC 2020] 00A05 - Mathematics in general [MSC 2020] 20C05 - Group rings of finite groups and their modules (group-theoretic aspects) [MSC 2020] 08Axx - Algebraic structures [MSC 2020] 54A05 - Topological spaces and generalizations (closure spaces, etc.) [MSC 2020] 53C21 - Methods of global Riemannian geometry, including PDE methods; curvature restrictions [MSC 2020] 14A15 - Schemes and morphisms [MSC 2020] 55Nxx - Homology and cohomology theories in algebraic topology [MSC 2020] 53B05 - Linear and affine connections [MSC 2020] 53B20 - Local Riemannian geometry [MSC 2020] 20B05 - General theory for finite permutation groups [MSC 2020] 55U10 - Simplicial sets and complexes in algebraic topology [MSC 2020] 58A05 - Differentiable manifolds, foundations [MSC 2020] 03G30 - Categorical logic, topoi [MSC 2020] 03B45 - Modal logic (including the logic of norms) [MSC 2020] 18Axx - General theory of categories and functors [MSC 2020] 01A65 - Contemporary [MSC 2020] 06Bxx - Lattices [MSC 2020] 51K10 - Synthetic differential geometry [MSC 2020] 20A05 - Axiomatics and elementary properties of groups [MSC 2020] 18Fxx - Categories in geometry and topology [MSC 2020] 55P10 - Homotopy equivalences in algebraic topology [MSC 2020] |
Soggetto non controllato |
Algebraic structures
Category Theory Manifolds Modal Logic Presheave Riemannian geometry Schemes Simplicial Complexes Topological spaces Topos |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0113670 |
Jost, Jürgen | ||
[Cham], : Springer, 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Mathematical concepts / Jürgen Jost |
Autore | Jost, Jürgen |
Pubbl/distr/stampa | [Cham], : Springer, 2015 |
Descrizione fisica | XV, 312 p. : ill. ; 24 cm |
Soggetto topico |
00A05 - Mathematics in general [MSC 2020]
00A06 - Mathematics for nonmathematicians (engineering, social sciences, etc.) [MSC 2020] 01A65 - Contemporary [MSC 2020] 03-XX - Mathematical logic and foundations [MSC 2020] 03B45 - Modal logic (including the logic of norms) [MSC 2020] 03G30 - Categorical logic, topoi [MSC 2020] 06Bxx - Lattices [MSC 2020] 08Axx - Algebraic structures [MSC 2020] 14-XX - Algebraic geometry [MSC 2020] 14A15 - Schemes and morphisms [MSC 2020] 18-XX - Category theory; homological algebra [MSC 2020] 18Axx - General theory of categories and functors [MSC 2020] 18B25 - Topoi [MSC 2020] 18Fxx - Categories in geometry and topology [MSC 2020] 18Gxx - Homological algebra in category theory, derived categories and functors [MSC 2020] 20A05 - Axiomatics and elementary properties of groups [MSC 2020] 20B05 - General theory for finite permutation groups [MSC 2020] 20C05 - Group rings of finite groups and their modules (group-theoretic aspects) [MSC 2020] 51K10 - Synthetic differential geometry [MSC 2020] 53B05 - Linear and affine connections [MSC 2020] 53B20 - Local Riemannian geometry [MSC 2020] 53C21 - Methods of global Riemannian geometry, including PDE methods; curvature restrictions [MSC 2020] 54A05 - Topological spaces and generalizations (closure spaces, etc.) [MSC 2020] 55Nxx - Homology and cohomology theories in algebraic topology [MSC 2020] 55P10 - Homotopy equivalences in algebraic topology [MSC 2020] 55U10 - Simplicial sets and complexes in algebraic topology [MSC 2020] 58A05 - Differentiable manifolds, foundations [MSC 2020] 92Bxx - Mathematical biology in general [MSC 2020] |
Soggetto non controllato |
Algebraic structures
Category Theory Manifolds Modal Logic Presheave Riemannian geometry Schemes Simplicial Complexes Topological spaces Topos |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00113670 |
Jost, Jürgen | ||
[Cham], : Springer, 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Mathematical concepts / Jürgen Jost |
Autore | Jost, Jürgen |
Edizione | [[Cham] : Springer, 2015] |
Pubbl/distr/stampa | XV, 312 p., : ill. ; 24 cm |
Descrizione fisica | Pubblicazione in formato elettronico |
Soggetto topico |
14-XX - Algebraic geometry [MSC 2020]
18-XX - Category theory; homological algebra [MSC 2020] 03-XX - Mathematical logic and foundations [MSC 2020] 18B25 - Topoi [MSC 2020] 00A06 - Mathematics for nonmathematicians (engineering, social sciences, etc.) [MSC 2020] 18Gxx - Homological algebra in category theory, derived categories and functors [MSC 2020] 92Bxx - Mathematical biology in general [MSC 2020] 00A05 - Mathematics in general [MSC 2020] 20C05 - Group rings of finite groups and their modules (group-theoretic aspects) [MSC 2020] 08Axx - Algebraic structures [MSC 2020] 54A05 - Topological spaces and generalizations (closure spaces, etc.) [MSC 2020] 53C21 - Methods of global Riemannian geometry, including PDE methods; curvature restrictions [MSC 2020] 14A15 - Schemes and morphisms [MSC 2020] 55Nxx - Homology and cohomology theories in algebraic topology [MSC 2020] 53B05 - Linear and affine connections [MSC 2020] 53B20 - Local Riemannian geometry [MSC 2020] 20B05 - General theory for finite permutation groups [MSC 2020] 55U10 - Simplicial sets and complexes in algebraic topology [MSC 2020] 58A05 - Differentiable manifolds, foundations [MSC 2020] 03G30 - Categorical logic, topoi [MSC 2020] 03B45 - Modal logic (including the logic of norms) [MSC 2020] 18Axx - General theory of categories and functors [MSC 2020] 01A65 - Contemporary [MSC 2020] 06Bxx - Lattices [MSC 2020] 51K10 - Synthetic differential geometry [MSC 2020] 20A05 - Axiomatics and elementary properties of groups [MSC 2020] 18Fxx - Categories in geometry and topology [MSC 2020] 55P10 - Homotopy equivalences in algebraic topology [MSC 2020] |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-SUN0113670 |
Jost, Jürgen | ||
XV, 312 p., : ill. ; 24 cm | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|