Modules over valuation domains / Laszlo Fuchs, Luigi Salce
| Modules over valuation domains / Laszlo Fuchs, Luigi Salce |
| Autore | Fuchs, Laszlo |
| Pubbl/distr/stampa | New York, : Dekker, 1985 |
| Descrizione fisica | XI, 317 p. ; 26 cm. |
| Altri autori (Persone) | Salce, Luigi |
| Soggetto topico |
13-XX - Commutative algebra [MSC 2020]
13A18 - Valuations and their generalizations for commutative rings [MSC 2020] 13A05 - Divisibility and factorizations in commutative rings [MSC 2020] 13J10 - Complete rings, completion [MSC 2020] 13C11 - Injective and flat modules and ideals in commutative rings [MSC 2020] 13F05 - Dedekind, Prüfer, Krull and Mori rings and their generalizations [MSC 2020] |
| ISBN | 978-08-247-7326-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0029718 |
Fuchs, Laszlo
|
||
| New York, : Dekker, 1985 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Modules over valuation domains / Laszlo Fuchs, Luigi Salce
| Modules over valuation domains / Laszlo Fuchs, Luigi Salce |
| Autore | Fuchs, Laszlo |
| Pubbl/distr/stampa | New York, : Dekker, 1985 |
| Descrizione fisica | XI, 317 p. ; 26 cm |
| Altri autori (Persone) | Salce, Luigi |
| Soggetto topico |
13-XX - Commutative algebra [MSC 2020]
13A18 - Valuations and their generalizations for commutative rings [MSC 2020] 13A05 - Divisibility and factorizations in commutative rings [MSC 2020] 13J10 - Complete rings, completion [MSC 2020] 13C11 - Injective and flat modules and ideals in commutative rings [MSC 2020] 13F05 - Dedekind, Prüfer, Krull and Mori rings and their generalizations [MSC 2020] |
| ISBN | 978-08-247-7326-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0029718 |
Fuchs, Laszlo
|
||
| New York, : Dekker, 1985 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Modules over valuation domains / Laszlo Fuchs, Luigi Salce
| Modules over valuation domains / Laszlo Fuchs, Luigi Salce |
| Autore | Fuchs, Laszlo |
| Pubbl/distr/stampa | New York, : Dekker, 1985 |
| Descrizione fisica | XI, 317 p. ; 26 cm |
| Altri autori (Persone) | Salce, Luigi |
| Soggetto topico |
13-XX - Commutative algebra [MSC 2020]
13A05 - Divisibility and factorizations in commutative rings [MSC 2020] 13A18 - Valuations and their generalizations for commutative rings [MSC 2020] 13C11 - Injective and flat modules and ideals in commutative rings [MSC 2020] 13F05 - Dedekind, Prüfer, Krull and Mori rings and their generalizations [MSC 2020] 13J10 - Complete rings, completion [MSC 2020] |
| ISBN | 978-08-247-7326-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00029718 |
Fuchs, Laszlo
|
||
| New York, : Dekker, 1985 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Rings and factorization / David Sharpe
| Rings and factorization / David Sharpe |
| Autore | Sharpe, David |
| Edizione | [Reissued] |
| Pubbl/distr/stampa | New York, : Cambridge university, 1987 [stampa 2008] |
| Descrizione fisica | IX, 111 p. ; 22 cm. |
| Soggetto topico |
13A05 - Divisibility and factorizations in commutative rings [MSC 2020]
13B25 - Polynomials over commutative rings [MSC 2020] 13F15 - Commutative rings defined by factorization properties (e.g., atomic, factorial, half-factorial) [MSC 2020] |
| ISBN | 978-05-213-3718-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0119102 |
Sharpe, David
|
||
| New York, : Cambridge university, 1987 [stampa 2008] | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Rings and factorization / David Sharpe
| Rings and factorization / David Sharpe |
| Autore | Sharpe, David |
| Edizione | [Reissued] |
| Pubbl/distr/stampa | New York, : Cambridge university, 1987 [stampa 2008] |
| Descrizione fisica | IX, 111 p. ; 22 cm |
| Soggetto topico |
13A05 - Divisibility and factorizations in commutative rings [MSC 2020]
13B25 - Polynomials over commutative rings [MSC 2020] 13F15 - Commutative rings defined by factorization properties (e.g., atomic, factorial, half-factorial) [MSC 2020] |
| ISBN | 978-05-213-3718-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0119102 |
Sharpe, David
|
||
| New York, : Cambridge university, 1987 [stampa 2008] | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Rings and factorization / David Sharpe
| Rings and factorization / David Sharpe |
| Autore | Sharpe, David |
| Edizione | [Reissued] |
| Pubbl/distr/stampa | New York, : Cambridge university, 1987 [stampa 2008] |
| Descrizione fisica | IX, 111 p. ; 22 cm |
| Soggetto topico |
13A05 - Divisibility and factorizations in commutative rings [MSC 2020]
13B25 - Polynomials over commutative rings [MSC 2020] 13F15 - Commutative rings defined by factorization properties (e.g., atomic, factorial, half-factorial) [MSC 2020] |
| ISBN | 978-05-213-3718-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00119102 |
Sharpe, David
|
||
| New York, : Cambridge university, 1987 [stampa 2008] | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
The Characterization of Finite Elasticities : Factorization Theory in Krull Monoids via Convex Geometry / David J. Grynkiewicz
| The Characterization of Finite Elasticities : Factorization Theory in Krull Monoids via Convex Geometry / David J. Grynkiewicz |
| Autore | Grynkiewicz, David J. |
| Pubbl/distr/stampa | Cham, : Springer, 2022 |
| Descrizione fisica | xii, 282 p. : ill. ; 24 cm |
| Soggetto topico |
20-XX - Group theory and generalizations [MSC 2020]
13-XX - Commutative algebra [MSC 2020] 52-XX - Convex and discrete geometry [MSC 2020] 05-XX - Combinatorics [MSC 2020] 11B75 - Other combinatorial number theory [MSC 2020] 13A05 - Divisibility and factorizations in commutative rings [MSC 2020] 52A20 - Convex sets in $n$ dimensions (including convex hypersurfaces) [MSC 2020] 20M14 - Commutative semigroups [MSC 2020] 11B30 - Arithmetic combinatorics; higher degree uniformity [MSC 2020] 20M12 - Ideal theory for semigroups [MSC 2020] |
| Soggetto non controllato |
Carathéordory’s Theorem
Catenary degree Convex Cone Delta Set Elasticity Factorization Infinite Subsets of Lattice Points Krull Monoid Krull domain Lattice Minimal Positive Basis Positive Basis Primitive Partition Identities Sets of lengths Simplicial Fan Structure Theorem for Unions Transfer Krull Domain Well-quasi-ordering Zero-sum Zero-sum Sequence |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0260779 |
Grynkiewicz, David J.
|
||
| Cham, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
The Characterization of Finite Elasticities : Factorization Theory in Krull Monoids via Convex Geometry / David J. Grynkiewicz
| The Characterization of Finite Elasticities : Factorization Theory in Krull Monoids via Convex Geometry / David J. Grynkiewicz |
| Autore | Grynkiewicz, David J. |
| Pubbl/distr/stampa | Cham, : Springer, 2022 |
| Descrizione fisica | xii, 282 p. : ill. ; 24 cm |
| Soggetto topico |
05-XX - Combinatorics [MSC 2020]
11B30 - Arithmetic combinatorics; higher degree uniformity [MSC 2020] 11B75 - Other combinatorial number theory [MSC 2020] 13-XX - Commutative algebra [MSC 2020] 13A05 - Divisibility and factorizations in commutative rings [MSC 2020] 20-XX - Group theory and generalizations [MSC 2020] 20M12 - Ideal theory for semigroups [MSC 2020] 20M14 - Commutative semigroups [MSC 2020] 52-XX - Convex and discrete geometry [MSC 2020] 52A20 - Convex sets in $n$ dimensions (including convex hypersurfaces) [MSC 2020] |
| Soggetto non controllato |
Carathéordory’s Theorem
Catenary degree Convex Cone Delta Set Elasticity Factorization Infinite Subsets of Lattice Points Krull Monoid Krull domain Lattice Minimal Positive Basis Positive Basis Primitive Partition Identities Sets of lengths Simplicial Fan Structure Theorem for Unions Transfer Krull Domain Well-quasi-ordering Zero-sum Zero-sum Sequence |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00260779 |
Grynkiewicz, David J.
|
||
| Cham, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||