Quasi-actions on trees II : finite depth Bass-Serre trees / / Lee Mosher, Michah Sageev, Kevin Whyte
| Quasi-actions on trees II : finite depth Bass-Serre trees / / Lee Mosher, Michah Sageev, Kevin Whyte |
| Autore | Mosher Lee <1957-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2011 |
| Descrizione fisica | 1 online resource (105 p.) |
| Disciplina | 512/.2 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Geometric group theory
Rigidity (Geometry) |
| ISBN | 1-4704-0625-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. Example applications""; ""1.2. The methods of proof: a special case""; ""1.3. The general setting""; ""1.4. Statements of results""; ""1.5. Structure of the paper""; ""Chapter 2. Preliminaries""; ""2.1. Coarse language""; ""2.2. Coarse properties of subgroups""; ""2.3. Coboundedness principle""; ""2.4. Bass-Serre trees and Bass-Serre complexes""; ""2.5. Irreducible graphs of groups""; ""2.6. Coarse PD(n) spaces and groups""; ""2.7. The methods of proof: the general case""; ""Chapter 3. Depth Zero Vertex Rigidity""
""3.1. A sufficient condition for depth zero vertex rigidity""""3.2. Proof of the Depth Zero Vertex Rigidity Theorem""; ""Chapter 4. Finite Depth Graphs of Groups""; ""4.1. Definitions and examples""; ""4.2. Proof of the Vertex�Edge Rigidity Theorem 2.11""; ""4.3. Reduction of finite depth graphs of groups""; ""Chapter 5. Tree Rigidity""; ""5.1. Examples and motivations""; ""5.2. Outline of the Tree Rigidity Theorem""; ""5.3. Special case: isolated edge spaces""; ""5.4. Special case: all edges have depth one""; ""5.4.1. Proof of Lemma 5.5: an action on a 2-complex"" ""5.4.2. Proof of the Tracks Theorem 5.7""""5.5. Proof of the Tree Rigidity Theorem""; ""Chapter 6. Main Theorems""; ""Chapter 7. Applications and Examples""; ""7.1. Patterns of edge spaces in a vertex space""; ""7.2. Hn vertex groups and Z edge groups""; ""7.3. H3 vertex groups and surface fiber edge groups""; ""7.4. Surface vertex groups and cyclic edge groups""; ""7.5. Graphs of abelian groups""; ""7.6. Quasi-isometry groups and classification""; ""Bibliography""; ""Index"" |
| Altri titoli varianti | Quasi-actions on trees 2 |
| Record Nr. | UNINA-9910788867403321 |
Mosher Lee <1957->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Quasi-actions on trees II : finite depth Bass-Serre trees / / Lee Mosher, Michah Sageev, Kevin Whyte
| Quasi-actions on trees II : finite depth Bass-Serre trees / / Lee Mosher, Michah Sageev, Kevin Whyte |
| Autore | Mosher Lee <1957-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2011 |
| Descrizione fisica | 1 online resource (105 p.) |
| Disciplina | 512/.2 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Geometric group theory
Rigidity (Geometry) |
| ISBN | 1-4704-0625-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. Example applications""; ""1.2. The methods of proof: a special case""; ""1.3. The general setting""; ""1.4. Statements of results""; ""1.5. Structure of the paper""; ""Chapter 2. Preliminaries""; ""2.1. Coarse language""; ""2.2. Coarse properties of subgroups""; ""2.3. Coboundedness principle""; ""2.4. Bass-Serre trees and Bass-Serre complexes""; ""2.5. Irreducible graphs of groups""; ""2.6. Coarse PD(n) spaces and groups""; ""2.7. The methods of proof: the general case""; ""Chapter 3. Depth Zero Vertex Rigidity""
""3.1. A sufficient condition for depth zero vertex rigidity""""3.2. Proof of the Depth Zero Vertex Rigidity Theorem""; ""Chapter 4. Finite Depth Graphs of Groups""; ""4.1. Definitions and examples""; ""4.2. Proof of the Vertex�Edge Rigidity Theorem 2.11""; ""4.3. Reduction of finite depth graphs of groups""; ""Chapter 5. Tree Rigidity""; ""5.1. Examples and motivations""; ""5.2. Outline of the Tree Rigidity Theorem""; ""5.3. Special case: isolated edge spaces""; ""5.4. Special case: all edges have depth one""; ""5.4.1. Proof of Lemma 5.5: an action on a 2-complex"" ""5.4.2. Proof of the Tracks Theorem 5.7""""5.5. Proof of the Tree Rigidity Theorem""; ""Chapter 6. Main Theorems""; ""Chapter 7. Applications and Examples""; ""7.1. Patterns of edge spaces in a vertex space""; ""7.2. Hn vertex groups and Z edge groups""; ""7.3. H3 vertex groups and surface fiber edge groups""; ""7.4. Surface vertex groups and cyclic edge groups""; ""7.5. Graphs of abelian groups""; ""7.6. Quasi-isometry groups and classification""; ""Bibliography""; ""Index"" |
| Altri titoli varianti | Quasi-actions on trees 2 |
| Record Nr. | UNINA-9910819084903321 |
Mosher Lee <1957->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||