top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Infrared spectroscopy of symmetric and spherical top molecules for space observation 2 / / Pierre Richard Dahoo, Azzedine Lakhlifi
Infrared spectroscopy of symmetric and spherical top molecules for space observation 2 / / Pierre Richard Dahoo, Azzedine Lakhlifi
Autore Dahoo Pierre Richard
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , [2021]
Descrizione fisica 1 online resource (320 pages)
Disciplina 539.6
Collana Infrared spectroscopy set
Soggetto topico Molecular spectroscopy
Soggetto genere / forma Electronic books.
ISBN 1-119-86597-2
1-119-86598-0
1-119-86596-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- 1 IR Spectra in Space Observation -- 1.1. Introduction -- 1.2. Fourier transform spectroscopy -- 1.2.1. Principle of IR spectrum acquisition by interferometry -- 1.2.2. Design and operation of a long path difference interferometer -- 1.2.3. FTIR absorption spectroscopy in matrices -- 1.2.4. LIF and DR IR-IR spectroscopies in matrices -- 1.3. Resonant cavity laser absorption spectroscopy -- 1.3.1. Intracavity laser absorption spectroscopy (ICLAS) -- 1.3.2. Cavity ring-down spectroscopy (CRDS) -- 1.3.3. Frequency comb spectroscopy (FCS) -- 1.4. Spectroscopy for space observation -- 1.4.1. Spectroscopic ellipsometry for space observation -- 1.4.2. Space-borne spectroscopy -- 1.4.3. LIDAR spectroscopy for space observation -- 1.5. Conclusion -- 1.6. Appendices -- 1.6.1. Appendix 1: Measurement distortion and data processing -- 2 Interactions Between a Molecule and Its Solid Environment -- 2.1. Introduction -- 2.2. Active molecule - solid environment system -- 2.2.1. Binary interaction energy -- 2.2.2. Dispersion-repulsion contribution -- 2.2.3. Electrostatic contribution -- 2.2.4. Induction contribution -- 2.3. Two-center expansion of the term -- 2.4. Conclusion -- 2.5. Appendices -- 2.5.1. Appendix 1: Multipole moments and dipole polarizability of a molecule with respect to its fixed reference frame (G,X,Y,Z) -- 2.5.2. Appendix 2: Elements of the rotational matrix -- 2.5.3. Appendix 3: Clebsch-Gordan coefficients -- 3 Nanocage of Rare Gas Matrix -- 3.1. Introduction -- 3.2. Rare gases in solid state -- 3.3. Molecule inclusion and deformation of the doped crystal inclusion -- 3.3.1. Molecule -- 3.3.2. Deformation of the doped crystal -- 3.3.3. NH3 in an argon matrix -- 3.3.4. Renormalization of the system's Hamiltonian.
3.4. Motions of NH3 trapped in an argon matrix -- 3.4.1. Vibration-inversion mode v2 -- 3.4.2. Orientational motion -- 3.4.3. Translational motion -- 3.4.4. Orientational motion-heat bath coupling -- 3.5. Infrared spectra -- 3.5.1. Infrared absorption coefficient -- 3.5.2. Bar spectrum -- 3.5.3. Spectral profile -- 3.6. Appendices -- 3.6.1. Appendix 1: Normal modes of vibrations of a Bravais lattice with face centered cubic (fcc) symmetry -- 3.6.2. Appendix 2: Adjustment of the weakly perturbed rotational potential energy on the basis of the rotation matrix elements -- 3.6.3. Appendix 3: Expansion coefficients of the coupling between the orientation of the molecule and lattice vibrations (phonons) -- 4 Nanocages of Hydrate Clathrates -- 4.1. Introduction -- 4.2. The extended substitution model -- 4.3. Clathrate structures -- 4.4. Inclusion of a CH4 or NH3 molecule in a clathrate nanocage model -- 4.4.1. Inclusion -- 4.4.2. Interaction potential energy - equilibrium configuration -- 4.5. System Hamiltonian and separation of movements -- 4.6. Translational motion -- 4.6.1. CH4 - nanocages of the sI structure -- 4.6.2. NH3 - nanocages of the sI structure -- 4.7. Vibrational motions -- 4.7.1. CH4 - nanocages of the sI structure -- 4.7.2. NH3 - nanocages of the sI structure -- 4.8. Orientational motion -- 4.8.1. CH4 - nanocages of the sI structure -- 4.8.2. NH3 - nanocages of the sI structure -- 4.9. Bar spectra -- 4.9.1. Far infrared -- 4.9.2. Near infrared -- 4.10. Appendices -- 4.10.1. Appendix 1: Expressions of the orientational transition elements in the harmonic librators approximation -- 4.10.2. Appendix 2: Dipole moment as a function of dimensionless normal coordinates -- 5 Fullerene Nanocage -- 5.1. Introduction -- 5.2. Ammonia molecule trapped in a fullerene C60 nanocage -- 5.2.1. Structure of the fullerene C60 nanocage.
5.2.2. Inclusion of NH3 in a fullerene C60 nanocage -- 5.2.3. Interaction potential energy - equilibrium configuration -- 5.3. Potential energy surfaces - inertial model -- 5.3.1. Orientation-translational motion -- 5.3.2. Translational motion -- 5.3.3. Vibration-inversion-translational motion -- 5.3.4. Kinetic Lagrangian -- 5.4. Quantum treatment -- 5.4.1. Vibrational modes - frequency shifts -- 5.4.2. Vibration-inversion mode -- 5.4.3. Orientational motions -- 5.5. Bar spectra -- 5.5.1. Far infrared and microwaves -- 5.5.2. Near infrared -- 5.6. Appendices -- 5.6.1. Appendix 1: FORTRAN program -- 5.6.2. Appendix 2: Expressions of the components of the dipole moment vector and its derivatives with respect to the normal vibrational coordinates -- 6 Adsorption on a Graphite Substrate -- 6.1. Introduction -- 6.2. "NH3 molecule-substrate" system interaction energy -- 6.2.1. Description of the system -- 6.3. Equilibrium configuration and potential energy surfaces -- 6.3.1. Adsorption energy -- 6.4. Hamiltonian of the system -- 6.4.1. Separation of movements -- 6.4.2. Renormalized Hamiltonians -- 6.4.3. Translational motions -- 6.4.4. Vibrational motions -- 6.4.5. Orientational motion -- 6.4.6. Orientational motion - heat bath dynamic coupling -- 6.5. Infrared spectra of the NH3 molecule adsorbed on the graphite substrate -- 6.5.1. Far-infrared spectrum -- 6.5.2. Near-infrared spectrum -- 6.6. Conclusion -- 6.7. Appendices -- 6.7.1. Appendix 1: FORTRAN program -- 6.7.2. Appendix 2: Expressions of the molecule orientation - heat bath phonons coupling terms -- 6.7.3. Appendix 3: Expressions of the components of the dipole moment vector and its derivatives with respect to the normal vibration coordinates -- References -- Index -- Other titles from iSTE in Waves -- EULA.
Altri titoli varianti Infrared spectroscopy of symmetric and spherical top molecules for space observation two
Record Nr. UNINA-9910555110603321
Dahoo Pierre Richard  
London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Infrared spectroscopy of symmetric and spherical top molecules for space observation 2 / / Pierre Richard Dahoo, Azzedine Lakhlifi
Infrared spectroscopy of symmetric and spherical top molecules for space observation 2 / / Pierre Richard Dahoo, Azzedine Lakhlifi
Autore Dahoo Pierre Richard
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , [2021]
Descrizione fisica 1 online resource (320 pages)
Disciplina 539.6
Collana Infrared spectroscopy set
Soggetto topico Infrared spectroscopy
ISBN 1-119-86597-2
1-119-86598-0
1-119-86596-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- 1 IR Spectra in Space Observation -- 1.1. Introduction -- 1.2. Fourier transform spectroscopy -- 1.2.1. Principle of IR spectrum acquisition by interferometry -- 1.2.2. Design and operation of a long path difference interferometer -- 1.2.3. FTIR absorption spectroscopy in matrices -- 1.2.4. LIF and DR IR-IR spectroscopies in matrices -- 1.3. Resonant cavity laser absorption spectroscopy -- 1.3.1. Intracavity laser absorption spectroscopy (ICLAS) -- 1.3.2. Cavity ring-down spectroscopy (CRDS) -- 1.3.3. Frequency comb spectroscopy (FCS) -- 1.4. Spectroscopy for space observation -- 1.4.1. Spectroscopic ellipsometry for space observation -- 1.4.2. Space-borne spectroscopy -- 1.4.3. LIDAR spectroscopy for space observation -- 1.5. Conclusion -- 1.6. Appendices -- 1.6.1. Appendix 1: Measurement distortion and data processing -- 2 Interactions Between a Molecule and Its Solid Environment -- 2.1. Introduction -- 2.2. Active molecule - solid environment system -- 2.2.1. Binary interaction energy -- 2.2.2. Dispersion-repulsion contribution -- 2.2.3. Electrostatic contribution -- 2.2.4. Induction contribution -- 2.3. Two-center expansion of the term -- 2.4. Conclusion -- 2.5. Appendices -- 2.5.1. Appendix 1: Multipole moments and dipole polarizability of a molecule with respect to its fixed reference frame (G,X,Y,Z) -- 2.5.2. Appendix 2: Elements of the rotational matrix -- 2.5.3. Appendix 3: Clebsch-Gordan coefficients -- 3 Nanocage of Rare Gas Matrix -- 3.1. Introduction -- 3.2. Rare gases in solid state -- 3.3. Molecule inclusion and deformation of the doped crystal inclusion -- 3.3.1. Molecule -- 3.3.2. Deformation of the doped crystal -- 3.3.3. NH3 in an argon matrix -- 3.3.4. Renormalization of the system's Hamiltonian.
3.4. Motions of NH3 trapped in an argon matrix -- 3.4.1. Vibration-inversion mode v2 -- 3.4.2. Orientational motion -- 3.4.3. Translational motion -- 3.4.4. Orientational motion-heat bath coupling -- 3.5. Infrared spectra -- 3.5.1. Infrared absorption coefficient -- 3.5.2. Bar spectrum -- 3.5.3. Spectral profile -- 3.6. Appendices -- 3.6.1. Appendix 1: Normal modes of vibrations of a Bravais lattice with face centered cubic (fcc) symmetry -- 3.6.2. Appendix 2: Adjustment of the weakly perturbed rotational potential energy on the basis of the rotation matrix elements -- 3.6.3. Appendix 3: Expansion coefficients of the coupling between the orientation of the molecule and lattice vibrations (phonons) -- 4 Nanocages of Hydrate Clathrates -- 4.1. Introduction -- 4.2. The extended substitution model -- 4.3. Clathrate structures -- 4.4. Inclusion of a CH4 or NH3 molecule in a clathrate nanocage model -- 4.4.1. Inclusion -- 4.4.2. Interaction potential energy - equilibrium configuration -- 4.5. System Hamiltonian and separation of movements -- 4.6. Translational motion -- 4.6.1. CH4 - nanocages of the sI structure -- 4.6.2. NH3 - nanocages of the sI structure -- 4.7. Vibrational motions -- 4.7.1. CH4 - nanocages of the sI structure -- 4.7.2. NH3 - nanocages of the sI structure -- 4.8. Orientational motion -- 4.8.1. CH4 - nanocages of the sI structure -- 4.8.2. NH3 - nanocages of the sI structure -- 4.9. Bar spectra -- 4.9.1. Far infrared -- 4.9.2. Near infrared -- 4.10. Appendices -- 4.10.1. Appendix 1: Expressions of the orientational transition elements in the harmonic librators approximation -- 4.10.2. Appendix 2: Dipole moment as a function of dimensionless normal coordinates -- 5 Fullerene Nanocage -- 5.1. Introduction -- 5.2. Ammonia molecule trapped in a fullerene C60 nanocage -- 5.2.1. Structure of the fullerene C60 nanocage.
5.2.2. Inclusion of NH3 in a fullerene C60 nanocage -- 5.2.3. Interaction potential energy - equilibrium configuration -- 5.3. Potential energy surfaces - inertial model -- 5.3.1. Orientation-translational motion -- 5.3.2. Translational motion -- 5.3.3. Vibration-inversion-translational motion -- 5.3.4. Kinetic Lagrangian -- 5.4. Quantum treatment -- 5.4.1. Vibrational modes - frequency shifts -- 5.4.2. Vibration-inversion mode -- 5.4.3. Orientational motions -- 5.5. Bar spectra -- 5.5.1. Far infrared and microwaves -- 5.5.2. Near infrared -- 5.6. Appendices -- 5.6.1. Appendix 1: FORTRAN program -- 5.6.2. Appendix 2: Expressions of the components of the dipole moment vector and its derivatives with respect to the normal vibrational coordinates -- 6 Adsorption on a Graphite Substrate -- 6.1. Introduction -- 6.2. "NH3 molecule-substrate" system interaction energy -- 6.2.1. Description of the system -- 6.3. Equilibrium configuration and potential energy surfaces -- 6.3.1. Adsorption energy -- 6.4. Hamiltonian of the system -- 6.4.1. Separation of movements -- 6.4.2. Renormalized Hamiltonians -- 6.4.3. Translational motions -- 6.4.4. Vibrational motions -- 6.4.5. Orientational motion -- 6.4.6. Orientational motion - heat bath dynamic coupling -- 6.5. Infrared spectra of the NH3 molecule adsorbed on the graphite substrate -- 6.5.1. Far-infrared spectrum -- 6.5.2. Near-infrared spectrum -- 6.6. Conclusion -- 6.7. Appendices -- 6.7.1. Appendix 1: FORTRAN program -- 6.7.2. Appendix 2: Expressions of the molecule orientation - heat bath phonons coupling terms -- 6.7.3. Appendix 3: Expressions of the components of the dipole moment vector and its derivatives with respect to the normal vibration coordinates -- References -- Index -- Other titles from iSTE in Waves -- EULA.
Altri titoli varianti Infrared spectroscopy of symmetric and spherical top molecules for space observation two
Record Nr. UNINA-9910829939203321
Dahoo Pierre Richard  
London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui