Vai al contenuto principale della pagina

Deep Belief Nets in C++ and CUDA C: Volume 2 : Autoencoding in the Complex Domain / / by Timothy Masters



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Masters Timothy Visualizza persona
Titolo: Deep Belief Nets in C++ and CUDA C: Volume 2 : Autoencoding in the Complex Domain / / by Timothy Masters Visualizza cluster
Pubblicazione: Berkeley, CA : , : Apress : , : Imprint : Apress, , 2018
Edizione: 1st ed. 2018.
Descrizione fisica: 1 online resource (XI, 258 p. 47 illus.)
Disciplina: 006
Soggetto topico: Artificial intelligence
Programming languages (Electronic computers)
Big data
Artificial Intelligence
Programming Languages, Compilers, Interpreters
Big Data
Big Data/Analytics
Note generali: Includes index.
Nota di contenuto: 0. Introduction -- 1. Embedded Class Labels -- 2. Signal Preprocessing -- 3. Image Preprocessing -- 4. Autoencoding -- 5. Deep Operating Manual.
Sommario/riassunto: Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You’ll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, you’ll learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable. At each step this book provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. You will: • Code for deep learning, neural networks, and AI using C++ and CUDA C • Carry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and more • Use the Fourier Transform for image preprocessing • Implement autoencoding via activation in the complex domain • Work with algorithms for CUDA gradient computation • Use the DEEP operating manual.
Altri titoli varianti: Autoencoding in the complex domain
Deep Belief Nets in C plus plus and CUDA C
Titolo autorizzato: Deep Belief Nets in C++ and CUDA C: Volume 2  Visualizza cluster
ISBN: 1-4842-3646-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910300744803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui