3D printing in medicine / / edited by Dr. Deepak M. Kalaskar, Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, United Kingdom |
Autore | Kalaskar Deepak |
Edizione | [1st edition] |
Pubbl/distr/stampa | Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , [2017] |
Descrizione fisica | 1 online resource (vii, 226 pages) : illustrations (some color) |
Disciplina | 621.988 |
Collana | Woodhead Publishing series in biomaterials |
Soggetto topico |
Three-dimensional printing
Medical technology |
ISBN | 0-08-100726-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Introduction to 3D printing in medicine / Uday Kiran Roopavath and Deepak M. Kalaskar -- 2. 3D printing families : laser, powder, nozzle based techniques / Elena Provaggi and Deepak M. Kalaskar -- 3. Materials for 3D printing in medicine : metals, polymers, ceramics, hydrogels / Gowsihan Poologasundarampillai and Amy Nommeots-Nomm -- 4. Computational analyses and 3D printed models : a combined approach for patient-specific studies / Claudio Capelli and Silvia Schievano -- 5. Patient specific in situ 3D printing : Dana Akilbekova and Damel Mektepbayeva -- 6. 3D printed in vitro disease models / Shibu Chameettachal and Falguni Pati -- 7. 3D printers for surgical practice / Subha N. Rath and Sharanya Sankar -- 8. 3D printed pharmaceutical products / Simon Gaisford -- 9. High-resolution 3D printing for healthcare underpinned by small-scale fluidics / Feihuang Fang [and three others] -- 10. Four dimensional printing in healthcare / Rohit G. Jadhav and Apurba K. Das. |
Record Nr. | UNINA-9910583469303321 |
Kalaskar Deepak | ||
Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced mine ventilation : respirable coal dust, combustible gas and mine fire control / / Pramod Thakur |
Autore | Thakur Pramod |
Pubbl/distr/stampa | Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , [2019] |
Descrizione fisica | 1 online resource (530 pages) |
Disciplina | 622.42 |
Collana | Woodhead Publishing Series in Energy |
Soggetto topico |
Mine ventilation
Coal mines and mining - Dust control |
ISBN |
0-08-100458-3
9780081004579 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910583487603321 |
Thakur Pramod | ||
Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in agricultural animal welfare : science and practice / / edited by Joy A. Mench |
Pubbl/distr/stampa | Duxford : , : Woodhead Publishing, an imprint of Elsevier, , [2018] |
Descrizione fisica | 1 online resource (xviii, 269 pages) : illustrations (some color), maps |
Disciplina | 179.3 |
Collana | Woodhead Publishing Series in Food Science, Technology, and Nutrition |
Soggetto topico |
Animal welfare
Livestock - Housing |
ISBN | 0-08-101246-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | pt. 1. Advances in animal welfare science -- pt. 2. Animal welfare and sustainability of animal agriculture -- pt. 3. Translating science into policy and practice -- pt. 4. Animal welfare standards : are they globally achievable? -- pt. 5. Emerging issues. |
Record Nr. | UNINA-9910583485903321 |
Duxford : , : Woodhead Publishing, an imprint of Elsevier, , [2018] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in cattle welfare / / edited by Cassandra B. Tucker |
Autore | Tucker Cassandra |
Pubbl/distr/stampa | Duxford : , : Woodhead Publishing, an imprint of Elsevier, , [2018] |
Descrizione fisica | 1 online resource (xv, 250 pages) : color illustrations |
Disciplina | 636.2 |
Collana | Woodhead Publishing Series in Food Science, Technology and Nutrition |
Soggetto topico |
Cattle - Housing
Animal welfare |
ISBN | 0-08-102276-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Overview of cattle production systems / Marcia I. Endres and Karen Schwartzkopf-Genswein -- Assessment of cattle welfare: common animal-based measures / Nigel B. Cook -- Assessment of cattle welfare: approaches, goals, and next steps on farms / Christoph Winckler -- Human-animal interactions: effects, challenges, and progress / Lily N. Edwards-Callaway -- Cattle priorities: feed and water selection, ability to move freely and to access pasture / Karin E. Schütz, Caroline Lee and Trevor J. DeVries -- ; The role of social behavior in cattle welfare / Margit B. Jensen -- Painful procedures: when and what should we be measuring in cattle? / Sarah J.J. Adcock and Cassandra B. Tucker -- Disease and injury: beyond current thinking about top causes of cattle morbidity / Rachel Toaff-Rosenstein -- Metabolic challenge: how does it affect welfare? / John B. Gaughan. |
Record Nr. | UNINA-9910583483203321 |
Tucker Cassandra | ||
Duxford : , : Woodhead Publishing, an imprint of Elsevier, , [2018] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in grid-connected photovoltaic power conversion systems / / Yongheng Yang [and three others] |
Autore | Yang Yongheng |
Pubbl/distr/stampa | Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , [2019] |
Descrizione fisica | 1 online resource (216 pages) |
Disciplina | 621.31244 |
Collana | Woodhead Publishing Series in Energy |
Soggetto topico |
Photovoltaic power systems
Dwellings - Power supply Building-integrated photovoltaic systems |
ISBN |
0-08-102339-1
0-08-102340-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910583046003321 |
Yang Yongheng | ||
Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in poultry welfare / / edited by Joy A. Mench |
Pubbl/distr/stampa | Duxford : , : Woodhead Publishing, an imprint of Elsevier, , [2018] |
Descrizione fisica | 1 online resource (xix, 385 pages) : illustrations (some color) |
Disciplina | 636.5 |
Collana | Woodhead Publishing Series in Food Science, Technology and Nutrition |
Soggetto topico |
Poultry - Housing
Animal welfare |
ISBN | 0-08-100930-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | pt. 1. Introduction -- pt. 2. Management : hatch to slaughter -- pt. 3. Welfare assessment on the farm -- pt. 4. Continuing challenges -- pt. 5. Emerging issues. |
Record Nr. | UNINA-9910583360003321 |
Duxford : , : Woodhead Publishing, an imprint of Elsevier, , [2018] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Applications of nanocomposite materials in orthopedics / / edited by Inamuddin, Abdullah M. Asiri, Ali Mohammad |
Pubbl/distr/stampa | Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , [2019] |
Descrizione fisica | 1 online resource (332 pages) |
Disciplina | 617.3 |
Collana | Woodhead Publishing series in biomaterials |
Soggetto topico |
Orthopedics
Nanocomposites (Materials) Nanocomposites (Materials) - Therapeutic use |
ISBN | 0-12-813757-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover -- Applications of Nanocomposite Materials in Orthopedics -- Copyright -- Contents -- List of contributors -- Preface -- 1: Biodegradable polymer matrix nanocomposites for bone tissue engineering -- 1.1 Introduction -- 1.2 Tissue engineering -- 1.3 Bone tissue engineering -- 1.4 Biodegradable polymers used in the design of nanocomposites for bone tissue engineering -- 1.4.1 Natural biodegradable polymers -- 1.4.1.1 Chitosan -- 1.4.1.2 Alginates -- 1.4.1.3 Starches -- 1.4.1.4 Cellulose -- 1.4.1.5 Collagen -- 1.4.1.6 Gelatin -- 1.4.1.7 Hyaluronic acid (HA) -- 1.4.1.8 Dextran -- 1.4.2 Synthetic biodegradable polymers -- 1.4.2.1 Polylactic acid (PLA) -- 1.4.2.2 Poly(lactic-co-glycolic acid) (PLGA) -- 1.4.2.3 Poly(propylene fumarate) (PPF) -- 1.4.2.4 Poly(ε-caprolactone) (PCL) -- 1.5 Conclusion -- References -- 2: Electrospun hydrogels composites for bone tissue engineering -- 2.1 Introduction -- 2.1.1 General principles of electrospinning -- 2.2 Electrospun nanocomposites for medical applications -- 2.2.1 Electrospun nanocomposite for bone tissues regeneration via osteoconduction, osteoinduction, and osteogenesis -- 2.2.1.1 The effect of osteogenesis and osteoinduction on osteoconductive electrospun scaffolds -- 2.3 Electrospun biomaterials for bone tissue engineering -- 2.3.1 Electrospun nanofiber-reinforced hydrogels -- 2.3.2 Electrospun hydrogels with biological electrospray cells -- 2.3.3 Electrospun hydrogels with antimicrobial activity -- 2.4 Impact of various parameters on the electrospinning process for nanofiber morphology -- 2.4.1 Polymer solution parameters -- 2.4.2 Processing parameters -- 2.4.3 Ambient parameters -- 2.5 Inventions related to electrospun hydrogels for bone tissue engineering -- 2.6 Future applications of electrospun hydrogels -- 2.7 Conclusion -- References -- Further Reading.
3: Fabrication and applications of hydroxyapatite-based nanocomposites coating for bone tissue engineering -- 3.1 Introduction -- 3.2 Hydroxyapatite: Structure and properties -- 3.3 Conventional orthopedic implants -- 3.3.1 Metallic implants -- 3.3.2 Nonmetallic implants -- 3.4 Composites of hydroxyapatite with ceramics -- 3.4.1 Hydroxyapatite-Al2O3 composites -- 3.4.2 Hydroxyapatite-glass nanocomposites -- 3.4.3 Hydroxyapatite-mullite composites -- 3.4.4 Hydroxyapatite-YSZ nanocomposites -- 3.5 Composites of hydroxyapatite with metals -- 3.5.1 Hydroxyapatite-Pt nanocomposites -- 3.5.2 Hydroxyapatite-Ti nanocomposites -- 3.6 Composites of hydroxyapatite with polymers -- 3.6.1 Hydroxyapatite-epoxy composites -- 3.6.2 Hydroxyapatite-PVA nanocomposites -- 3.6.3 Hydroxyapatite-polyamide nanocomposites -- 3.6.4 Hydroxyapatite-PMMA composites -- 3.6.5 Hydroxyapatite-polylactide composites -- 3.6.6 Hydroxyapatite-PS composites -- 3.6.7 Hydroxyapatite-PE nanocomposites -- 3.6.8 Hydroxyapatite-collagen nanocomposites -- 3.6.9 Hydroxyapatite-PEEK nanocomposites -- 3.7 Conclusion -- References -- 4: Magnesium-based alloys and nanocomposites for biomedical application -- 4.1 Introduction -- 4.2 Magnesium-based biomaterials -- 4.2.1 Why magnesium and magnesium alloys? -- 4.2.2 Corrosion behavior of medical implants -- 4.2.2.1 Magnesium-Corrosion mechanism -- 4.2.3 Current research to overcome the challenges in Mg-based biomaterials -- 4.2.3.1 Corrosion -- 4.2.3.2 Effect of alloying elements on corrosion behavior of Mg materials -- 4.3 Magnesium for cardiovascular application -- 4.3.1 Limitations of bare metal stents and drug eluting stents -- 4.3.2 Biodegradable stents -- 4.3.2.1 Magnesium alloy biodegradable stents -- 4.4 Magnesium for orthopedic application. 4.4.1 Current status of Mg-based materials for orthopedic application -- 4.4.1.1 In vitro testing of Mg-based orthopedic biomaterials -- 4.4.1.2 Preclinical studies of Mg or its alloys for orthopedic application -- 4.5 Magnesium-based nanocomposites -- 4.5.1 Disintegrated melt deposition (DMD) technique -- 4.5.2 Electrochemical behavior of Mg nanocomposites -- 4.5.2.1 Potentiodynamic polarization -- 4.6 Surface modification of Mg alloys -- 4.6.1 Effect of surface modification -- 4.6.1.1 Functional coatings -- 4.6.1.2 Conversion coatings -- 4.6.1.3 Surface coating processes -- 4.7 Future aspects -- References -- 5: Multiwalled carbon nanotube-based nanocomposites for artificial bone grafting -- 5.1 Introduction -- 5.2 Artificial bone grafting -- 5.2.1 Strategies for artificial bone grafting -- 5.3 Carbon nanotube -- 5.4 Multiwalled CNT composite biomaterials for artificial bone grafting -- 5.4.1 Multiwalled CNT-polymer nanocomposite -- 5.4.2 CNT coating on the polymeric surface -- 5.4.3 Multiwalled CNT-collagen nanocomposite -- 5.4.4 Multiwalled CNT-polylactic acid nanocomposite -- 5.4.5 Multiwalled CNT-chitosan nanocomposite -- 5.4.6 Multiwalled CNT-polycaprolactone nanocomposites -- 5.4.7 CNT-HA nanocomposite -- 5.4.8 CNT-bioglass nanocomposite -- 5.5 Challenges and future directions -- 5.6 Conclusions -- Acknowledgments -- References -- 7: Nanocomposite materials for prosthetic devices -- 6.1 Introduction -- 6.2 Preparation of nanocomposites -- 6.3 Classification of nanocomposites -- 6.3.1 Nonpolymer-based nanocomposites -- 6.3.1.1 Metal-metal nanocomposites -- 6.3.1.2 Metal-ceramic nanocomposites -- 6.3.1.3 Ceramic-ceramic nanocomposites -- 6.3.2 Polymer-based nanocomposites -- 6.4 Application of nanocomposites -- 6.5 Prosthetics -- 6.5.1 Types of prosthetics -- 6.5.2 Limb prosthetics. 6.5.3 Patient course of action -- 6.5.4 Current innovation and assembling -- 6.5.5 Body-controlled arms -- 6.5.6 Lower-extremity prosthetics -- 6.5.6.1 Hands, hips, and knees -- 6.5.6.2 Socket -- 6.5.6.3 Shank and connectors -- 6.5.6.4 Foot -- 6.5.6.5 Knee joint -- 6.5.6.6 Microprocessor control -- 6.5.7 Myoelectric prosthetics -- 6.5.8 Orthopedic prosthetics -- 6.5.9 Robotic prostheses -- 6.6 Conclusion -- References -- 7: Nanocomposites for improved orthopedic and bone tissue engineering applications -- 7.1 Introduction -- 7.2 Biomedical nanocomposites -- 7.3 Nanocomposites in orthopedic drug delivery applications -- 7.4 Nanocomposites in bone tissue engineering applications -- 7.5 Conclusion -- References -- 8: Tailoring surface properties from nanotubes and anodic layers of titanium for biomedical applications -- 8.1 Introduction -- 8.1.1 Film formation by electrochemical process -- 8.1.1.1 Anodic oxidation and plasma electrolytic oxidation (PEO) -- 8.1.2 Nanotube arrays -- 8.2 Commercial applications -- 8.3 Mechanical stability of anodic layers -- 8.4 Conclusions -- References -- 9: Zirconia-alumina composite for orthopedic implant application -- 9.1 Introduction -- 9.1.1 Evolution of ceramic composite hip prostheses -- 9.2 The toughening mechanism in ceramic composite -- 9.2.1 Influence of platelets to inhibit crack propagation -- 9.2.2 Strengthening additives -- 9.3 Fabrication of ceramic composites -- 9.3.1 Densification process -- 9.3.1.1 Pressureless sintering -- 9.3.1.2 Pressure-assisted sintering -- 9.4 Wear of ceramic composite hip prosthesis -- 9.4.1 In vitro wear under standard conditions -- 9.4.2 In vitro wear under adverse conditions -- 9.5 Fracture-an ultimate challenge -- 9.6 Squeaking-a noise or concern -- 9.7 Clinical performance -- 9.8 Conclusions -- 9.9 Future aspects -- References. 10: Nanocomposites in total hip joint replacements -- 10.1 Introduction -- 10.2 Biomaterials and their essential characteristics -- 10.3 Tribological characteristics, the main issue for joint implant materials -- 10.4 Morphology and importance of hip joint replacements -- 10.5 Implantable material systems for THR -- 10.5.1 Metal-on-polymer -- 10.5.2 Metal on metal -- 10.5.3 Ceramic on ceramic -- 10.6 Nanotechnology, the innovative approach -- 10.7 Nanocomposites -- 10.8 Types of NCs used in hip implants -- 10.8.1 Polymer matrix NC -- 10.8.1.1 Ultrahigh molecular weight polyethylene -- 10.8.1.2 UHMWPE-based composites -- 10.8.1.3 Advanced NCs using graphene and nanocarbon reinforcements -- Graphene/UHMWPE NCs -- CNTs/UHMWPE NCs -- 10.8.2 Metal matrix NCs -- 10.8.2.1 Co-Cr based NCs -- 10.8.2.2 Titanium-based NCs -- 10.8.3 Ceramic matrix NCs -- 10.8.3.1 New ceramics NCs with nanocarbon reinforcements -- 10.9 Conclusion -- Acknowledgments -- References -- Further reading -- 11: Chitosan-based nanocomposites for cardiac, liver, and wound healing applications -- 11.1 Introduction -- 11.2 Tissue engineering -- 11.2.1 Chitosan nanocomposites in liver tissue engineering -- 11.2.2 Chitosan nanocomposites in cardiac tissue engineering -- 11.2.3 Chitosan nanocomposite in wound healing applications -- 11.3 Conclusion -- Acknowledgments -- References -- 12: Extracellular matrix: The ideal natural fibrous nanocomposite products -- 12.1 Introduction -- 12.2 ECM-cell interaction: Cell receptors and biochemical cues -- 12.3 ECM-cell interaction: Cell fate and biophysical cues -- 12.3.1 Stiffness and matrix elasticity -- 12.3.2 Tension and compression -- 12.3.3 Fluid shear stress -- 12.4 Cell perception of biophysical cues from the ECM microenvironment -- 12.4.1 Focal adhesions -- 12.4.2 The cytoskeletal. 12.4.3 The primary cilium. |
Record Nr. | UNINA-9910583012803321 |
Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Automation in garment manufacturing / / edited by Rajkishore Nayak, Rajiv Padhye |
Pubbl/distr/stampa | Duxford, England : , : Woodhead Publishing, an imprint of Elsevier, , 2018 |
Descrizione fisica | 1 online resource (428 pages) : illustrations, tables |
Disciplina | 677.028 |
Collana | The Textile Institute Book Series |
Soggetto topico | Textile industry - Automation |
ISBN |
0-08-101133-4
0-08-101211-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to automation in garment manufacturing -- Automation versus modeling and simulation -- Automation in production of yarns, woven, and knitted fabrics -- Automation in fabric inspection -- Artificial intelligence and its application in the apparel industry -- Automation in spreading and cutting -- Automation in material handling -- Application of robotics in garment manufacturing -- Automation in sewing technology -- 3D body scanning -- Computer-aided design: garment designing and patternmaking -- Advancements in production planning and control -- Use of advanced tools and equipment in industrial engineering -- automation in quality monitoring of fabrics and garment seams -- Recent developments in the garment supply chain. |
Record Nr. | UNINA-9910583488603321 |
Duxford, England : , : Woodhead Publishing, an imprint of Elsevier, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Bioenergy systems for the future : prospects for biofuels and biohydrogen / / edited by Franceso Dalena, Angelo Basile and Claudio Rossi |
Pubbl/distr/stampa | Duxford, United Kingdom ; ; Cambridge, Massachusetts : , : Woodhead Publishing, an imprint of Elsevier, , [2017] |
Descrizione fisica | 1 online resource (xvii, 610 pages) : illustrations (some color) |
Disciplina | 662.88 |
Collana | Woodhead Publishing Series in Energy |
Soggetto topico | Biomass energy |
ISBN | 0-08-101026-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Section A. Biomass to bioenergy -- Section B. Hydrogen production -- Section C. Bioenergy technology aspects/status. |
Record Nr. | UNINA-9910583365203321 |
Duxford, United Kingdom ; ; Cambridge, Massachusetts : , : Woodhead Publishing, an imprint of Elsevier, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biomedical, therapeutic and clinical applications of bioactive glasses / / edited by Gurbinder Kaur |
Pubbl/distr/stampa | Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , 2019 |
Descrizione fisica | 1 online resource (586 pages) |
Collana | Woodhead Publishing series in biomaterials |
Soggetto topico | Bioactive glasses |
ISBN |
0-08-102197-6
0-08-102196-8 9780081021965 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910583393703321 |
Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|