Plastics to energy : fuel, chemicals, and sustainability implications / / edited by S. M. Al-Salem
| Plastics to energy : fuel, chemicals, and sustainability implications / / edited by S. M. Al-Salem |
| Pubbl/distr/stampa | Oxford, United Kingdom ; ; Cambridge, MA : , : William Andrew, Applied Science Publishers, , [2019] |
| Descrizione fisica | 1 online resource (560 pages) |
| Disciplina | 668.4 |
| Collana | PDL handbook series |
| Soggetto topico |
Plastics
Plastic scrap Refuse and refuse disposal |
| ISBN |
0-12-813141-1
0-12-813140-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover -- Plastics to Energy -- Copyright Page -- Dedication -- Contents -- List of Contributors -- About the Authors -- Preface -- What Distinguishes This Book From Others Touching on the Topic at Hand? -- Recommendations for Incorporating This Book in Academic Curricula -- Acknowledgments -- Potential Impact of This Book -- I. Plastics and Plastic Solid Waste (PSW) -- 1 Introduction -- 1.1 Introductory Remark: Dependency on Plastics -- 1.2 The Nature of Plastics and Impact on Waste Management -- 1.3 Plastics and Polymers: Technical Aspects and Difference Between Both Terms -- 1.4 Sustainable Production of Polymeric Articles -- 1.5 History of Plastics to Fuel and Sustainability -- 1.6 Polymer Waste Generation/Collection Logistics and Socio-Economic Factors -- 1.7 Summary -- List of Abbreviations -- References -- Further Reading -- 2 Major Technologies Implemented for Chemicals and Fuel Recovery -- 2.1 Sources of Plastic Solid Waste -- 2.2 The Nature of Organic Waste -- 2.3 A Note on Logistics, Collection, and Generation -- 2.4 Plastic Solid Waste Management Hierarchy -- 2.5 Physical Treatment of Plastic Waste -- 2.6 Chemicals and Energy Production Technologies -- 2.6.1 Main Mechanisms of Degradation -- 2.6.2 Chemical Treatment of Pure Nature -- 2.6.3 Thermo-Chemical Treatment of Polymers -- 2.6.4 Energy Recovery From Plastics Via Incineration Processes -- 2.7 Summary -- List of Abbreviations -- References -- 3 Energy Production From Plastic Solid Waste (PSW) -- 3.1 Key Concepts -- 3.2 Types of Incineration Units -- 3.3 Incineration of Plastics -- 3.4 Governing Regulations and Key Criteria -- 3.5 Notes and Case History Success Stories -- List of Abbreviations -- References -- 4 The Sustainability Challenge in the Context of Polymer Degradation -- 4.1 The Fate of Products From Polymers Degradation and Faced Challenges.
4.2 Environmental Considerations and Tools -- 4.2.1 Background, Definitions and Terminology of LCA -- 4.2.2 Methodology of LCA Execution -- 4.2.3 Distinguishing LCA Types -- 4.2.4 Evaluation of Alternatives and Associated Burdens -- 4.3 Economical and Socioeconomical Aspect of Facilities Encompassing Polymer Degradation -- 4.4 Case Study: Offsetting Environmental Burdens Associated with Downstream Industry -- 4.4.1 Benefits of Thermo-Chemical Treatment (TCT) of Plastics -- 4.4.2 Assumptions and Scenarios Description -- 4.4.3 Life Cycle Inventory (LCI) and Results -- 4.4.4 Sustainable Practice Recommendations -- 4.5 Case Study: Exposure to Mercury From Waste With High Content of Plastic in Incineration Plants -- 4.5.1 Rationale and Justification -- 4.5.2 Country Specific Description -- 4.5.3 Methods -- 4.5.4 Assessment and Observations -- 4.5.5 Summary and Concluding Notes -- 4.6 Concluding Notes -- List of Abbreviations -- References -- Further Reading -- II. Products Recovery From Plastics -- 5 Feedstock and Optimal Operation for Plastics to Fuel Conversion in Pyrolysis -- 5.1 Overview of Concept and Key Issues -- 5.1.1 Technology Review Encompassing Other Techniques -- 5.1.2 Advantages of Pyrolysis Over Other Technologies -- 5.2 Type of Materials and Units Used in the Pyrolysis Process -- 5.2.1 Materials Properties and Impact -- 5.2.2 Units and Main Reactor Vessels Used -- 5.3 Process Conditions -- 5.4 A Note on Limitations -- 5.5 The Pyrolysis of End of Life Tires -- 5.5.1 Importance of Managing End of Life Tires -- 5.5.2 Origin and Recycling of End of Life Tires -- 5.6 Case Study: Commissioning a Novel Bench Scale Reactor Unit-SULTAN 1 -- 5.6.1 Work Motivation -- 5.6.2 Materials -- 5.6.3 Bench Scale Pyrolysis System Description -- 5.6.4 Conducted Pyrolysis Reactions -- 5.6.5 Gas Chromatography Analysis Laboratory Protocol. 5.6.6 Obtained Results -- List of Abbreviations -- Acknowledgments -- References -- Further Reading -- 6 Catalytic Conversion and Chemical Recovery -- 6.1 Introduction -- 6.2 Catalytic Versus Noncatalytic Pyrolysis -- 6.2.1 Noncatalytic Pyrolysis -- 6.2.2 Catalytic Pyrolysis -- 6.2.3 Differences Between Catalytic and Noncatalytic Pyrolysis -- 6.2.4 Catalysts -- 6.2.4.1 Homogeneous Catalytic Process -- 6.2.4.2 Heterogeneous Catalytic Process -- 6.3 Effect of Operation Variables -- 6.3.1 Reaction Temperature -- 6.3.2 Polymer-to-Catalyst Ratio -- 6.3.3 Polymer Waste Composition -- 6.3.4 Reaction and Residence Time -- 6.3.5 Mass and Heat Transfer -- 6.4 Reactor Types -- 6.4.1 Fixed and Fluidized Bed Reactors -- 6.4.2 Conical Spouted Bed Reactor -- 6.4.3 Batch and Semibatch Reactors -- 6.4.4 Microwave Assisted Technology -- 6.5 Processing -- 6.5.1 Direct Catalytic Pyrolysis -- 6.5.2 Thermal Pyrolysis With Catalytic Upgrading of Pyrolysis Oil -- 6.6 Co-processing of Plastics -- 6.7 Concluding Remarks -- References -- 7 Fuel Properties Associated With Catalytic Conversion of Plastics -- 7.1 Introduction -- 7.2 Pyrolysis Basics -- 7.2.1 Kinetics -- 7.2.2 Thermal Degradation -- 7.2.3 Catalytic Degradation -- 7.3 Analytical Quantitative and Qualitative Determination of Pyrolysis -- 7.3.1 Thermogravimetric Analysis -- 7.3.2 Pyrolysis-GC/MS -- 7.3.2.1 Polypropylene and Polyethylene -- 7.3.2.2 Polystyrene -- 7.3.2.3 Polyurethane -- 7.4 Pyrolysis Study of Polypropylene and Polyethylene -- 7.4.1 Polypropylene -- 7.4.1.1 Fuel Properties -- 7.4.1.2 Gasoline and Diesel Products From Distillation of Medicine Bottles-Polypropylene -- 7.4.1.3 Size Exclusion Chromatography Analysis -- 7.4.1.4 Simulated Distillation by GC-FID -- 7.4.1.5 Chemical Characterization of Plastic Oil Fractions -- 7.4.1.5.1 NMR and IR Analysis. 7.4.1.5.2 Properties of Gasoline and Diesel Fractions -- 7.4.1.5.3 Hydroprocessing -- 7.4.2 Polyethylene -- 7.4.2.1 Gasoline and Diesel Products From Distillation of Green Plastics-High-Density Polyethylene -- 7.4.2.2 Size Exclusion Chromatography Analysis -- 7.4.2.3 Elemental Analysis -- 7.4.2.4 Simulated Distillation -- 7.4.2.5 Fuel Analysis -- 7.4.2.5.1 NMR and FT-IR Analysis -- 7.4.2.5.2 Properties of Gasoline and Diesel Fractions -- 7.4.2.5.3 Hydroprocessing -- 7.5 Comparison of Pyrolysis Oil Fuel Blends With Commercial Fuel -- 7.5.1 Properties of Pyrolyzed Polypropylene Samples and Comparison to Ultra-Low Sulfur Diesel -- 7.5.2 Properties of Blends With Ultra-Low Sulfur Diesel -- 7.6 Techno-Economic Analysis -- 7.6.1 Estimation of Capital Investment -- 7.6.2 Major Equipment -- 7.6.3 Manufacturing Costs -- 7.6.4 Variable Production Cost -- 7.6.4.1 Materials Cost -- 7.6.4.2 Utilities -- 7.6.4.3 Operation/Maintenance Cost -- 7.6.4.4 Labor Costs -- 7.6.4.5 Fixed Charges -- 7.6.4.6 Cash Flow -- 7.7 Conclusions and Future prospects -- References -- Further Reading -- 8 Design and Limitations in Polymer Cracking Fluidized Beds for Energy Recovery -- 8.1 Introduction -- 8.2 Fluidization Phenomena and Fluidized Bed Reactors -- 8.3 Advantages and Limitations of Using the Fluidized Beds for Pyrolysis of Plastic Waste -- 8.4 Factors Affecting Thermal and Catalytic Pyrolysis in Fluidised Beds -- 8.5 Thermal Pyrolysis of Municipal Solid Waste in the Fluidized Bed Reactor -- 8.6 Conclusions -- References -- 9 Kinetic Studies Related to Polymer Degradation and Stability -- 9.1 Importance and Concept of Degradation Kinetics -- 9.1.1 Major Influencing Variables and Mathematical Derivation -- 9.1.2 Main Kinetics Analysis Methods -- 9.1.3 Multiple Step Degradation Kinetics -- 9.2 Limitations and Considerations in Procedures for Kinetic Experiments. 9.3 Plastics Degradation Kinetics in Various Reaction Conditions -- 9.3.1 Kinetic Parameters and Degradation Mechanism Modeling of Polymers Pyrolysis -- 9.3.2 Kinetic Analysis In Laboratory Scale Experiments -- 9.3.3 Kinetic Analysis In Reactive Atmospheres -- 9.4 Case Study: Isothermal Degradation Reaction Kinetics of Polyethylene in Pyrolysis TG -- 9.4.1 Review of Isothermal Kinetics in Context of Polymer Degradation -- 9.4.2 Materials and Experimental Set-up -- 9.4.3 Polymer Loss and Product Formation Patterns -- 9.4.4 Mathematical Modeling and Kinetic Parameters Estimation -- 9.4.5 Main Results of Case Study -- List of Abbreviations -- References -- 10 Gasification of Plastic Solid Waste and Competitive Technologies -- 10.1 Introduction -- 10.2 Gasification -- 10.2.1 Types of Gasifier -- 10.2.1.1 Fixed/Moving Bed Gasifier -- 10.2.1.2 Fluidized Bed Gasifier -- 10.2.1.3 Spouted Bed Gasifier -- 10.2.2 Gasification Operating Conditions -- 10.2.2.1 Equivalence Ratio -- 10.2.2.2 Operating Temperature -- 10.2.2.3 Gasifying Agents -- 10.2.2.4 Operating Pressure -- 10.2.2.5 Feedstock -- 10.2.3 Challenges in Gasification of Plastic Waste -- 10.2.3.1 Tar Removal, Gas Cleaning Techniques and Agglomeration Solution -- 10.2.3.2 Development of Two-Stage Gasifier for Plastic Gasification -- 10.2.3.3 Cogasification of Plastic with Other Solid Fuels -- 10.3 Pyrolysis of Plastic Wastes -- 10.3.1 Characterization of Products from Pyrolysis -- 10.3.2 Factors Affecting Plastic Pyrolysis -- 10.3.2.1 Temperature -- 10.3.2.2 Type of Plastic -- 10.3.2.3 Residence Time -- 10.3.2.4 Pressure -- 10.3.2.5 Catalysts -- 10.3.2.6 Reactor Type -- 10.4 Plasma Gasification -- 10.4.1 Effects of Operating Parameters on Plasma Gasification -- 10.5 Summary -- List of Abbreviations -- Acknowledgment -- References. 11 The Valorization of Plastic Via Thermal Means: Industrial Scale Combustion Methods. |
| Record Nr. | UNINA-9910583324103321 |
| Oxford, United Kingdom ; ; Cambridge, MA : , : William Andrew, Applied Science Publishers, , [2019] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Preparation, characterization, properties and application of nanofluid / / I. M. Mahbubul
| Preparation, characterization, properties and application of nanofluid / / I. M. Mahbubul |
| Autore | Mahbubul I. M. |
| Pubbl/distr/stampa | Oxford, United Kingdom ; ; Cambridge, MA : , : William Andrew, Applied Science Publishers, , [2019] |
| Descrizione fisica | 1 online resource (375 pages) : illustrations |
| Disciplina | 620.106 |
| Soggetto topico |
Nanofluids
Fluid mechanics |
| ISBN |
0-12-813299-X
0-12-813245-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910583452503321 |
Mahbubul I. M.
|
||
| Oxford, United Kingdom ; ; Cambridge, MA : , : William Andrew, Applied Science Publishers, , [2019] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||