top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
1D semiconducting hybrid nanostructures : synthesis and applications in gas sensing and optoelectronics / / edited by Arvind Kumar, Dinesh K. Aswal, Nirav Joshi
1D semiconducting hybrid nanostructures : synthesis and applications in gas sensing and optoelectronics / / edited by Arvind Kumar, Dinesh K. Aswal, Nirav Joshi
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (365 pages)
Disciplina 730
Soggetto topico Nanostructured materials
ISBN 3-527-83764-7
3-527-83766-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 One-Dimensional Semiconducting Hybrid Nanostructure: Gas Sensing and Optoelectronic Applications -- 1.1 Introduction -- 1.2 Synthesis of 1D Hybrid Nanostructures -- 1.2.1 Top-Down Approach -- 1.2.2 Bottom-Up Approach -- 1.2.2.1 Nanotubes -- 1.2.2.2 Nanowires -- 1.2.2.3 Nanorods -- 1.3 Applications of 1D Hybrid Nanostructures -- 1.3.1 Gas Sensing -- 1.3.1.1 Safety Monitoring of Exhaust Gases in Automobile -- 1.3.1.2 Health Monitoring -- 1.3.1.3 Environmental Monitoring -- 1.3.2 Optoelectronic Application -- 1.3.2.1 Photodetector -- 1.3.2.2 Solar Cell -- 1.3.2.3 Light-Emitting Diode -- 1.4 Conclusions -- Acknowledgment -- References -- Chapter 2 Synthesis and Gas-Sensing Application of 1D Semiconducting Hybrid Nanostructures -- 2.1 Introduction -- 2.2 Noble Metal-Functionalized 1D Metal Oxide Semiconductors for Gas Sensors -- 2.3 1D Metal Oxide/Metal Oxide Heterojunctions-Based Gas Sensors -- 2.4 Conducting Polymer/1D Metal Oxide Nanocomposites for Gas Sensors -- 2.5 Hybrid Conducting Polymer/Carbon Nanotube-Based Gas Sensors -- 2.6 Conclusion and Future Perspectives -- Acknowledgment -- References -- Chapter 3 Room-Temperature Gas-Sensing Properties of Metal Oxide Nanowire/Graphene Hybrid Structures -- 3.1 Introduction -- 3.2 Synthesis of Graphene and Graphene Oxide -- 3.2.1 Mechanical Exfoliation -- 3.2.2 Electrochemical Method -- 3.2.3 Sonication -- 3.2.4 Exfoliation of Graphite Oxide -- 3.2.5 Unzipping Carbon Nanotubes -- 3.2.6 Epitaxial Growth on Silicon Carbide (SiC) -- 3.2.7 Chemical Vapor Deposition -- 3.3 Graphene/Metal Oxide Nanowires Hybrid-Based Sensors -- 3.3.1 ZnO Nanowires Reduced Graphene Oxide-Based Hybrids for NH3 Detection -- 3.3.1.1 Influence of Weight Percentage on Ammonia-Sensing Characteristics.
3.3.2 NO2 Detection Using Metal Oxide Nanowires Hybrids with Reduced Graphene Oxide -- 3.3.2.1 Cu2O Nanowires/RGO-Based Hybrid -- 3.3.2.2 SnO2 Nanowires/RGO-Based Hybrid -- 3.3.3 H2S Detection Using SnO2 Quantum Wire/RGO-Based Hybrid -- 3.3.4 ZnO Nanowires-Graphene-Based H2 Sensor -- 3.3.5 ZnO Nanowires on Laser-Scribed Graphene-Based Devices for NO Gas Detection -- 3.3.6 UV Light-Activated NO2- and SO2-Gas-Sensing Using RGO/Hollow SnO2 Nanofibers -- 3.4 Conclusion -- References -- Chapter 4 Highly Sensitive Room-Temperature Gas Sensors Based on Organic-Inorganic Nanofibers -- 4.1 Introduction -- 4.2 Classification of Nanofibers for Gas-Sensing Application -- 4.2.1 Organic Nanofibers -- 4.2.2 Inorganic Nanofibers -- 4.2.3 Heterostructure-Based Organic-Inorganic Nanofibers -- 4.3 Different Configurations of Gas Sensors -- 4.4 Synthesis of NFs -- 4.4.1 Electrospinning and Coaxial Electrospinning Techniques -- 4.4.2 On-Chip Fabrication and Direct Writing of NFs-Based Gas Sensors -- 4.5 Role of Physicochemical Properties of Nanofibers in Gas Sensing -- 4.5.1 Surface-Dependent Properties -- 4.5.2 Interface-Dependent Properties -- 4.5.3 Morphology-Controlled Properties -- 4.5.4 Adsorption-Desorption Kinetics -- 4.6 Enhancement of Characteristics of Nanofibers-Based Sensor Performance -- 4.6.1 UV Light/High-Energy Beam Irradiation -- 4.6.2 Noble Metal Sensitizers -- 4.7 Recent Trends -- 4.7.1 Single-Nanofiber-based Gas Sensors Synthesized by Electrospinning -- 4.7.2 E-Noses and Nano-e-Noses Using NFs -- 4.7.3 On-Chip Fabrication of Aligned NFs Heterostructures -- 4.7.4 Wearable Devices -- 4.8 Conclusion and Future Perspectives -- Acknowledgment -- References -- Chapter 5 1D Hybrid Tin Oxide Nanostructures: Synthesis and Applications -- 5.1 Main Features of 1D Materials -- 5.2 Synthesis of 1D SnO, Sn3O4, and SnO2 Materials -- 5.2.1 Hydrothermal Method.
5.2.2 Electrospinning Method -- 5.2.3 Chemical Vapor Deposition (CVD) -- 5.2.4 Reactive Sputtering Method -- 5.3 Tin-Based Hybrid Nanostructures -- 5.3.1 SnO2-Based Hybrid Nanostructures -- 5.3.2 Sn3O4-Based Hybrid Nanostructures -- 5.3.3 SnO-Based Hybrid Nanostructures -- 5.4 Gas-Sensing Performance of 1D Tin Oxide-Based Hybrid Nanostructures -- 5.4.1 Pristine 1D Tin Oxide Nanostructures -- 5.4.2 Doping, Loading, and Surface Functionalization with Noble Metals -- 5.4.3 Heterostructures and the Effect of Heterojunctions in Gas-Sensing Performance -- 5.4.4 Composites with Carbon-Based Materials -- 5.4.5 Composites with Conducting Polymers -- 5.5 Photo(Electro)Catalytic Application of 1D Tin Oxide-Based Heterostructures and Doped Materials -- 5.5.1 Photocatalytic Degradation of Organic Pollutants and NO Gas and Photocatalytic Conversion of Benzyl Alcohol into Benzaldehyde Using 1D Tin Oxide-Based Materials -- 5.5.2 Photo(Electro)Catalytic Water Splitting with 1D Tin Oxide-Based Materials -- 5.6 Other Applications of 1D Tin Oxides -- 5.7 Final Considerations and Future Outlook -- Acknowledgments -- References -- Chapter 6 Recent Advances in Semiconducting Nanowires-Based Hybrid Structures for Solar Cell Application -- 6.1 Introduction -- 6.2 Semiconductor Materials -- 6.2.1 Classification Semiconductors -- 6.2.1.1 Intrinsic Semiconductor -- 6.2.1.2 Extrinsic Semiconductor -- 6.2.2 Solar Photovoltaic Systems -- 6.2.3 Nanomaterials as Semiconductors -- 6.2.4 Effect of Nanomaterial Morphology in Semiconductors Applications -- 6.3 Semiconductor Nanowires Synthesis -- 6.3.1 Advantages of Nanowire Morphology -- 6.3.2 Nanowire Synthesis -- 6.3.2.1 ZnO Nanowire -- 6.3.2.2 SiNWs Preparation -- 6.3.2.3 NaNbO3 Nanowire -- 6.3.2.4 TiO2 Nanowires -- 6.3.2.5 ZnS Nanowire -- 6.3.2.6 CdS Nanowires -- 6.3.3 Characterization.
6.4 Applications of Semiconductors in Solar Cells -- 6.4.1 Si-NWs for Solar Cells -- 6.4.2 ZnO Nanowires for Solar Cell -- 6.4.3 Ag-NWs for Solar Cells -- 6.4.4 III-V NWs -- 6.4.5 Cu-NWs for Solar Cell -- 6.5 Conclusion and Future Perspectives -- References -- Chapter 7 Introduction and Types of Semiconducting Hybrid Nanostructures for Optoelectronic Devices -- 7.1 Introduction -- 7.2 Synthesis of Nanostructured Materials -- 7.2.1 1D ZnO Nanostructures (Nanowires/Nanorods) -- 7.2.1.1 Hydrothermal Method: Experimental Steps for ZnO -- 7.2.2 Chemical Vapor Deposition: MoS2 Few Layer Structures -- 7.2.2.1 CVD: Experimental Steps for MoS2 -- 7.2.2.2 CVD: Experimental Steps for ZnO -- 7.2.3 Reduced Graphene Oxide (RGO) -- 7.2.3.1 Experimental Steps for RGO -- 7.2.3.2 Experimental Steps for ZnO/RGO Hybrid Structure -- 7.2.4 Experimental Steps for ZnO/MoS2 Hybrid Structure -- 7.3 Applications of ZnO-Graphene Heterostructure for Photon Detection -- 7.3.1 ZnO Nanowire/Graphene-Based Photodetector -- 7.3.2 Figure of Merits of a Photodetector -- 7.3.3 One-Dimensional Chalcogenide Material for Optoelectronic Applications -- 7.3.4 Heterostructure-Based Solar Cell -- 7.4 Conclusion and Summary -- References -- Chapter 8 One-Dimensional Si Nanostructure-Based Hybrid Systems: Surface-Enhanced Raman Spectroscopy and Photodetector Applications -- 8.1 Introduction -- 8.2 Si Nanostructures -- 8.3 Fabrication of 1D Si Nanostructures -- 8.3.1 Vapor-Liquid-Solid Growth -- 8.3.2 Dry Etching -- 8.3.3 Metal-Assisted Chemical Etching -- 8.4 Applications of 1D Si Nanostructures Hybrids in SERS and Photodetectors -- 8.4.1 SERS Applications of Si Nanostructure Hybrids -- 8.4.2 Si Nanostructure Hybrids for Photodetector Applications -- 8.4.2.1 Device Geometries of Photodetectors -- 8.4.2.2 1D Si Nanostructure Hybrids for Photodetectors -- 8.5 Conclusions -- References.
Chapter 9 Hybrid 1D Semiconducting ZnO and GaN Nanostructures for Light-Emitting Devices -- 9.1 Introduction About 1D Nanostructures -- 9.2 Synthesis Methods for the Growth of 1D Nanostructure -- 9.2.1 Hydrothermal Method for the Synthesis of 1D ZnO Nanorods -- 9.2.2 Pulsed Laser Deposition Method -- 9.2.3 Chemical Vapor Deposition Method -- 9.2.4 Metal Organic Chemical Vapor Deposition -- 9.3 Application of ZnO- and GaN-Based Hybrid 1D Nanostructure for Light-Emitting Devices -- 9.4 Conclusion -- References -- Chapter 10 Optoelectronic Properties of TiO2 Nanorods/Au Nanoparticles Heterostructure -- 10.1 Introduction -- 10.2 Theory of Electron Transfer -- 10.2.1 Description of Band Diagram -- 10.2.2 Extinction Estimation -- 10.3 Experimental -- 10.3.1 TiO2 Nanorods -- 10.3.2 Structural, Morphological, Elemental, and Optical Measurement -- 10.3.3 Amperometric Measurement -- 10.4 Results and Discussion -- 10.4.1 Morphology -- 10.4.2 Structural -- 10.4.3 Optical -- 10.4.4 Electrical -- 10.4.4.1 Electron Transfer Mechanism from AuNP to TiO2NR -- 10.4.4.2 Amperometric (Current-Time) -- 10.5 Conclusions -- Acknowledgments -- Compliance with Ethical Standards -- References -- Chapter 11 2D Materials with 1D Semiconducting Nanostructures for High-Performance Gas Sensor -- 11.1 Introduction -- 11.2 Enhanced Gas-Sensing Performances of 1D-Sensing Materials Composited with Different 2D Materials -- 11.2.1 Graphene or Reduced Graphene Oxide-based Composites -- 11.2.2 MoS2-based Composites -- 11.2.3 WS2-based Composite -- 11.2.4 ZnO-based Composite -- 11.2.5 NiO-based Composites -- 11.2.6 Other 2D material-decorated 1D nanomaterial -- 11.3 Remain Challenges and Possible Effective Ways to Explore High-Performance Gas Sensor -- 11.4 Conclusions -- Acknowledgments -- References.
Chapter 12 Recent Advancement in the Development of Optical Modulators Based on 1D and 2D Materials.
Record Nr. UNINA-9910686500803321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Addition reactions with unsaturated hydrocarbons / / Ruimao Hua
Addition reactions with unsaturated hydrocarbons / / Ruimao Hua
Autore Hua Ruimao
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (451 pages)
Disciplina 541.39
Soggetto topico Addition reactions
ISBN 3-527-80483-8
3-527-80482-X
3-527-80480-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555133503321
Hua Ruimao  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Addition reactions with unsaturated hydrocarbons / / Ruimao Hua
Addition reactions with unsaturated hydrocarbons / / Ruimao Hua
Autore Hua Ruimao
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (451 pages)
Disciplina 541.39
Soggetto topico Addition reactions
ISBN 3-527-80483-8
3-527-80482-X
3-527-80480-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830343803321
Hua Ruimao  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced biology
Advanced biology
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]-
Descrizione fisica 1 online resource
Soggetto topico Molecular biology
Systems biology
Biological systems
Biotechnology
Bioengineering
Biomedical engineering
Biological Science Disciplines
Soggetto genere / forma Periodical
Periodicals.
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNISA-996490372003316
Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]-
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced biology
Advanced biology
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]-
Descrizione fisica 1 online resource
Soggetto topico Molecular biology
Systems biology
Biological systems
Biotechnology
Bioengineering
Biomedical engineering
Biological Science Disciplines
Soggetto genere / forma Periodical
Periodicals.
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910431342003321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced chemical process control : putting theory into practice / / Morten Hovd
Advanced chemical process control : putting theory into practice / / Morten Hovd
Autore Hovd Morten
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (365 pages)
Disciplina 660.2815
Soggetto topico Chemical process control
ISBN 3-527-84249-7
3-527-84247-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830754403321
Hovd Morten  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced nanobiomed research
Advanced nanobiomed research
Pubbl/distr/stampa Weinheim : , : Wiley-VCH GmbH, , [2021]-
Descrizione fisica 1 online resource
Soggetto topico Nanomedicine
Nanostructures
Bioengineering
Biocompatible Materials
Soggetto genere / forma Periodical
Periodicals.
ISSN 2699-9307
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910492127703321
Weinheim : , : Wiley-VCH GmbH, , [2021]-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced nanobiomed research
Advanced nanobiomed research
Pubbl/distr/stampa Weinheim : , : Wiley-VCH GmbH, , [2021]-
Descrizione fisica 1 online resource
Soggetto topico Nanomedicine
Nanostructures
Bioengineering
Biocompatible Materials
Soggetto genere / forma Periodical
Periodicals.
ISSN 2699-9307
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNISA-996439349903316
Weinheim : , : Wiley-VCH GmbH, , [2021]-
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Amide bond activation : concepts and reactions / / edited by Michal Szostak
Amide bond activation : concepts and reactions / / edited by Michal Szostak
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (522 pages)
Disciplina 050
Soggetto topico Amides
ISBN 3-527-83025-1
3-527-83024-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830310803321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Asymptotic perturbation methods : for nonlinear differential equations in physics / / Attilio Maccari
Asymptotic perturbation methods : for nonlinear differential equations in physics / / Attilio Maccari
Autore Maccari Attilio
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (256 pages)
Disciplina 381
Soggetto topico Differential equations, Partial
ISBN 9783527841721
9783527414215
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Author -- Foreword -- Introduction -- Chapter 1 The Asymptotic Perturbation Method for Nonlinear Oscillators -- 1.1 Introduction -- 1.2 Nonlinear Dynamical Systems -- 1.3 The Approximate Solution -- 1.4 Comparison with the Results of the Numerical Integration -- 1.5 External Excitation in Resonance with the Oscillator -- 1.6 Conclusion -- Chapter 2 The Asymptotic Perturbation Method for Remarkable Nonlinear Systems -- 2.1 Introduction -- 2.2 Periodic Solutions and Their Stability -- 2.3 Global Analysis of the Model System -- 2.4 Infinite‐period Symmetric Homoclinic Bifurcation -- 2.5 A Few Considerations -- 2.6 A Peculiar Quasiperiodic Attractor -- 2.7 Building an Approximate Solution -- 2.8 Results from Numerical Simulation -- 2.9 Conclusion -- Chapter 3 The Asymptotic Perturbation Method for Vibration Control with Time‐delay State Feedback -- 3.1 Introduction -- 3.2 Time‐delay State Feedback -- 3.3 The Perturbation Method -- 3.4 Stability Analysis and Parametric Resonance Control -- 3.4.1 The Frequency-Response Curve Is -- 3.5 Suppression of the Two‐period Quasiperiodic Motion -- 3.6 Vibration Control for Other Nonlinear Systems -- Chapter 4 The Asymptotic Perturbation Method for Vibration Control by Nonlocal Dynamics -- 4.1 Introduction -- 4.2 Vibration Control for the van der Pol Equation -- 4.3 Stability Analysis and Parametric Resonance Control -- 4.4 Suppression of the Two‐period Quasiperiodic Motion -- 4.5 Conclusion -- Chapter 5 The Asymptotic Perturbation Method for Nonlinear Continuous Systems -- 5.1 Introduction -- 5.2 The Approximate Solution for the Primary Resonance of the nth Mode -- 5.3 The Approximate Solution for the Subharmonic Resonance of Order One‐half of the nth Mode -- 5.4 Conclusion.
Chapter 6 The Asymptotic Perturbation Method for Dispersive Nonlinear Partial Differential Equations -- 6.1 Introduction -- 6.2 Model Nonlinear PDES Obtained from the Kadomtsev-Petviashvili Equation -- 6.3 The Lax Pair for the Model Nonlinear PDE -- 6.4 A Few Remarks -- 6.5 A Generalized Hirota Equation in 2 + 1 Dimensions -- 6.6 Model Nonlinear PDEs Obtained from the KP Equation -- 6.7 The Lax Pair for the Hirota-Maccari Equation -- 6.8 Conclusion -- Chapter 7 The Asymptotic Perturbation Method for Physics Problems -- 7.1 Introduction -- 7.2 Derivation of the Model System -- 7.3 Integrability of the Model System of Equations -- 7.4 Exact Solutions for the C‐integrable Model Equation -- 7.4.1 Nonlinear Wave -- 7.4.2 Solitons -- 7.4.3 Dromions -- 7.4.4 Lumps -- 7.4.5 Ring Solitons -- 7.4.6 Instantons -- 7.4.7 Moving Breather‐Like Structures -- 7.5 Conclusion -- Chapter 8 The Asymptotic Perturbation Model for Elementary Particle Physics -- 8.1 Introduction -- 8.2 Derivation of the Model System -- 8.3 Integrability of the Model System of Equations -- 8.4 Exact Solutions for the C‐integrable Model Equation -- 8.4.1 Nonlinear Wave -- 8.4.2 Solitons -- 8.4.3 Dromions -- 8.4.4 Lumps -- 8.4.5 Ring Solitons -- 8.4.6 Instantons -- 8.4.7 Moving Breather‐like Structures -- 8.5 A Few Considerations -- 8.6 Hidden Symmetry Models -- 8.7 Derivation of the Model System -- 8.8 Coherent Solutions -- 8.8.1 Nonlinear Wave -- 8.8.2 Solitons -- 8.8.3 Dromions -- 8.8.4 Lumps -- 8.8.5 Ring Solitons -- 8.8.6 Instantons -- 8.8.7 Moving Breather‐like Structures -- 8.9 Chaotic and Fractal Solutions -- 8.9.1 Chaotic-Chaotic and Chaotic-Periodic Patterns -- 8.9.2 Chaotic Line Soliton Solutions -- 8.9.3 Chaotic Dromion and Lump Patterns -- 8.9.4 Nonlocal Fractal Solutions -- 8.9.5 Fractal Dromion and Lump Solutions -- 8.9.6 Stochastic Fractal Dromion and Lump Excitations.
8.10 Conclusion -- Chapter 9 The Asymptotic Perturbation Method for Rogue Waves -- 9.1 Introduction -- 9.2 The Mathematical Framework -- 9.3 The Maccari System -- 9.4 Rogue Wave Physical Explanation According to the Maccari System and Blowing Solutions -- 9.5 Conclusion -- Chapter 10 The Asymptotic Perturbation Method for Fractal and Chaotic Solutions -- 10.1 Introduction -- 10.2 A New Integrable System from the Dispersive Long‐wave Equation -- 10.3 Nonlinear Coherent Solutions -- 10.3.1 Nonlinear Wave -- 10.3.2 Solitons -- 10.3.3 Dromions -- 10.3.4 Lumps -- 10.3.5 Ring Solitons -- 10.3.6 Instantons -- 10.3.7 Moving Breather‐Like Structures -- 10.4 Chaotic and Fractal Solutions -- 10.4.1 Chaotic-Chaotic and Chaotic-Periodic Patterns -- 10.4.2 Chaotic Line Soliton Solutions -- 10.4.3 Chaotic Dromion and Lump Patterns -- 10.4.4 Nonlocal Fractal Solutions -- 10.4.5 Fractal Dromion and Lump Solutions -- 10.4.6 Stochastic Fractal Excitations -- 10.4.7 Stochastic Fractal Dromion and Lump Excitations -- 10.5 Conclusion -- Chapter 11 The Asymptotic Perturbation Method for Nonlinear Relativistic and Quantum Physics -- 11.1 Introduction -- 11.2 The NLS Equation for a1 > -- 0 -- 11.3 The NLS Equation for a1 < -- 0 -- 11.4 A Possible Extension -- 11.5 The Nonrelativistic Case -- 11.6 The Relativistic Case -- 11.7 Conclusion -- Chapter 12 Cosmology -- 12.1 Introduction -- 12.2 A New Field Equation -- 12.3 Exact Solution in the Robertson-Walker Metrics -- 12.4 Entropy Production -- 12.5 Conclusion -- Chapter 13 Confinement and Asymptotic Freedom in a Purely Geometric Framework -- 13.1 Introduction -- 13.2 The Uncertainty Principle -- 13.3 Confinement and Asymptotic Freedom for the Strong Interaction -- 13.4 The Motion of a Light Ray Into a Hadron -- 13.5 Conclusion.
Chapter 14 The Asymptotic Perturbation Method for a Reverse Infinite‐Period Bifurcation in the Nonlinear Schrodinger Equation -- 14.1 Introduction -- 14.2 Building an Approximate Solution -- 14.3 A Reverse Infinite‐Period Bifurcation -- 14.4 Conclusion -- Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910830136703321
Maccari Attilio  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui