top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Topological Insulator Materials
Advanced Topological Insulator Materials
Autore Tiwari Ashutosh
Pubbl/distr/stampa Wiley-Scrivener
ISBN 1-119-40733-8
1-119-40731-1
1-119-40732-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555141103321
Tiwari Ashutosh  
Wiley-Scrivener
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced topological insulators / / edited by Huixia Luo, School of Materials Science and Engineering, Sun Yat-Sen University, China
Advanced topological insulators / / edited by Huixia Luo, School of Materials Science and Engineering, Sun Yat-Sen University, China
Pubbl/distr/stampa Wiley-Scrivener
Disciplina 621.3815/4
Soggetto topico Topological insulators
Superconductors
Dielectrics
Solid state physics
Electronic apparatus and appliances - Materials
ISBN 1-119-40733-8
1-119-40731-1
1-119-40732-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830546903321
Wiley-Scrivener
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced topological insulators / / edited by Huixia Luo, School of Materials Science and Engineering, Sun Yat-Sen University, China
Advanced topological insulators / / edited by Huixia Luo, School of Materials Science and Engineering, Sun Yat-Sen University, China
Pubbl/distr/stampa Wiley-Scrivener
Disciplina 621.3815/4
Soggetto topico Topological insulators
Superconductors
Dielectrics
Solid state physics
Electronic apparatus and appliances - Materials
ISBN 1-119-40733-8
1-119-40731-1
1-119-40732-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910841047903321
Wiley-Scrivener
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Ambient intelligence and Internet of Things : convergent technologies / / edited by Rashid Mahmood [and four others]
Ambient intelligence and Internet of Things : convergent technologies / / edited by Rashid Mahmood [and four others]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-Scrivener, , [2023]
Descrizione fisica 1 online resource (421 pages)
Disciplina 004.019
Soggetto topico Ambient intelligence
Internet of things
ISBN 1-119-82183-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Ambient Intelligence and Internet of Things: An Overview -- 1.1 Introduction -- 1.2 Ambient Intelligent System -- 1.3 Characteristics of AmI Systems -- 1.4 Driving Force for Ambient Computing -- 1.5 Ambient Intelligence Contributing Technologies -- 1.6 Architecture Overview -- 1.7 The Internet of Things -- 1.8 IoT as the New Revolution -- 1.9 IoT Challenges -- 1.10 Role of Artificial Intelligence in the Internet of Things (IoT) -- 1.11 IoT in Various Domains -- 1.12 Healthcare -- 1.13 Home Automation -- 1.14 Smart City -- 1.15 Security -- 1.16 Industry -- 1.17 Education -- 1.18 Agriculture -- 1.19 Tourism -- 1.20 Environment Monitoring -- 1.21 Manufacturing and Retail -- 1.22 Logistics -- 1.23 Conclusion -- References -- Chapter 2 An Overview of Internet of Things Related Protocols, Technologies, Challenges and Application -- 2.1 Introduction -- 2.1.1 History of IoT -- 2.1.2 Definition of IoT -- 2.1.3 Characteristics of IoT -- 2.2 Messaging Protocols -- 2.2.1 Constrained Application Protocol -- 2.2.2 Message Queue Telemetry Transport -- 2.2.3 Extensible Messaging and Presence Protocol -- 2.2.4 Advance Message Queuing Protocol (AMQP) -- 2.3 Enabling Technologies -- 2.3.1 Wireless Sensor Network -- 2.3.2 Cloud Computing -- 2.3.3 Big Data Analytics -- 2.3.4 Embedded System -- 2.4 IoT Architecture -- 2.5 Applications Area -- 2.6 Challenges and Security Issues -- 2.7 Conclusion -- References -- Chapter 3 Ambient Intelligence Health Services Using IoT -- 3.1 Introduction -- 3.2 Background of AML -- 3.2.1 What is AML? -- 3.3 AmI Future -- 3.4 Applications of Ambient Intelligence -- 3.4.1 Transforming Hospitals and Enhancing Patient Care With the Help of Ambient Intelligence -- 3.4.2 With Technology, Life After the COVID-19 Pandemic -- 3.5 COVID-19 -- 3.5.1 Prevention.
3.5.2 Symptoms -- 3.6 Coronavirus Worldwide -- 3.7 Proposed Framework for COVID-19 -- 3.8 Hardware and Software -- 3.8.1 Hardware -- 3.8.2 Heartbeat Sensor -- 3.8.3 Principle -- 3.8.4 Working -- 3.8.5 Temperature Sensor -- 3.8.6 Principle -- 3.8.7 Working -- 3.8.8 BP Sensor -- 3.8.9 Principle -- 3.8.10 Working -- 3.9 Mini Breadboard -- 3.10 Node MCU -- 3.11 Advantages -- 3.12 Conclusion -- References -- Chapter 4 Security in Ambient Intelligence and Internet of Things -- 4.1 Introduction -- 4.2 Research Areas -- 4.3 Security Threats and Requirements -- 4.3.1 Ad Hoc Network Security Threats and Requirements -- 4.3.1.1 Availability -- 4.3.1.2 Confidentiality -- 4.3.1.3 Integrity -- 4.3.1.4 Key Management and Authorization -- 4.3.2 Security Threats and Requirements Due to Sensing Capability in the Network -- 4.3.2.1 Availability -- 4.3.2.2 Confidentiality -- 4.3.2.3 Integrity -- 4.3.2.4 Key Distribution and Management -- 4.3.2.5 Resilience to Node Capture -- 4.3.3 Security Threats and Requirements in AmI and IoT Based on Sensor Network -- 4.3.3.1 Availability -- 4.3.3.2 Confidentiality -- 4.3.3.3 Confidentiality of Location -- 4.3.3.4 Integrity -- 4.3.3.5 Nonrepudiation -- 4.3.3.6 Fabrication -- 4.3.3.7 Intrusion Detection -- 4.3.3.8 Confidentiality -- 4.3.3.9 Trust Management -- 4.4 Security Threats in Existing Routing Protocols that are Designed With No Focus on Security in AmI and IoT Based on Sensor Networks -- 4.4.1 Infrastructureless -- 4.4.1.1 Dissemination-Based Routing -- 4.4.1.2 Context-Based Routing -- 4.4.2 Infrastructure-Based -- 4.4.2.1 Network with Fixed Infrastructure -- 4.4.2.2 New Routing Strategy for Wireless Sensor Networks to Ensure Source Location Privacy -- 4.5 Protocols Designed for Security Keeping Focus on Security at Design Time for AmI and IoT Based on Sensor Network -- 4.5.1 Secure Routing Algorithms.
4.5.1.1 Identity-Based Encryption (I.B.E.) Scheme -- 4.5.1.2 Policy-Based Cryptography and Public Encryption with Keyword Search -- 4.5.1.3 Secure Content-Based Routing -- 4.5.1.4 Secure Content-Based Routing Using Local Key Management Scheme -- 4.5.1.5 Trust Framework Using Mobile Traces -- 4.5.1.6 Policy-Based Authority Evaluation Scheme -- 4.5.1.7 Optimized Millionaire's Problem -- 4.5.1.8 Security in Military Operations -- 4.5.1.9 A Security Framework Application Based on Wireless Sensor Networks -- 4.5.1.10 Trust Evaluation Using Multifactor Method -- 4.5.1.11 Prevention of Spoofing Attacks -- 4.5.1.12 QoS Routing Protocol -- 4.5.1.13 Network Security Virtualization -- 4.5.2 Comparison of Routing Algorithms and Impact on Security -- 4.5.3 Inducing Intelligence in IoT Networks Using Artificial Intelligence -- 4.5.3.1 Fuzzy Logic-1 -- 4.5.3.2 Fuzzy Logic-2 -- 4.6 Introducing Hybrid Model in Military Application for Enhanced Security -- 4.6.1 Overall System Architecture -- 4.6.2 Best Candidate Selection -- 4.6.3 Simulation Results in Omnet++ -- 4.6 Conclusion -- References -- Chapter 5 Futuristic AI Convergence of Megatrends: IoT and Cloud Computing -- 5.1 Introduction -- 5.1.1 Our Contribution -- 5.2 Methodology -- 5.2.1 Statistical Information -- 5.3 Artificial Intelligence of Things -- 5.3.1 Application Areas of IoT Technologies -- 5.3.1.1 Energy Management -- 5.3.1.2 5G/Wireless Systems -- 5.3.1.3 Risk Assessment -- 5.3.1.4 Smart City -- 5.3.1.5 Health Sectors -- 5.4 AI Transforming Cloud Computing -- 5.4.1 Application Areas of Cloud Computing -- 5.4.2 Energy/Resource Management -- 5.4.3 Edge Computing -- 5.4.4 Distributed Edge Computing and Edge-of-Things (EoT) -- 5.4.5 Fog Computing in Cloud Computing -- 5.4.6 Soft Computing and Others -- 5.5 Conclusion -- References.
Chapter 6 Analysis of Internet of Things Acceptance Dimensions in Hospitals -- 6.1 Introduction -- 6.2 Literature Review -- 6.2.1 Overview of Internet of Things -- 6.2.2 Internet of Things in Healthcare -- 6.2.3 Research Hypothesis -- 6.2.3.1 Technological Context (TC) -- 6.2.3.2 Organizational Context (OC) -- 6.2.3.3 Environmental Concerns (EC) -- 6.3 Research Methodology -- 6.3.1 Demographics of the Respondents -- 6.4 Data Analysis -- 6.4.1 Reliability and Validity -- 6.4.1.1 Cronbach's Alpha -- 6.4.1.2 Composite Reliability -- 6.4.2 Exploratory Factor Analysis (EFA) -- 6.4.3 Confirmatory Factor Analysis Results -- 6.4.3.1 Divergent or Discriminant Validity -- 6.4.4 Structural Equation Modeling -- 6.5 Discussion -- 6.5.1 Technological Context -- 6.5.2 Organizational Context -- 6.5.3 Environmental Context -- 6.6 Conclusion -- References -- Chapter 7 Role of IoT in Sustainable Healthcare Systems -- 7.1 Introduction -- 7.2 Basic Structure of IoT Implementation in the Healthcare Field -- 7.3 Different Technologies of IoT for the Healthcare Systems -- 7.3.1 On the Basis of the Node Identification -- 7.3.2 On the Basis of the Communication Method -- 7.3.3 Depending on the Location of the Object -- 7.4 Applications and Examples of IoT in the Healthcare Systems -- 7.4.1 IoT-Based Healthcare System to Encounter COVID-19 Pandemic Situations -- 7.4.2 Wearable Devices -- 7.4.3 IoT-Enabled Patient Monitoring Devices From Remote Locations -- 7.4.3.1 Pulse Rate Sensor -- 7.4.3.2 Respiratory Rate Sensors -- 7.4.3.3 Body Temperature Sensors -- 7.4.3.4 Blood Pressure Sensing -- 7.4.3.5 Pulse Oximetry Sensors -- 7.5 Companies Associated With IoT and Healthcare Sector Worldwide -- 7.6 Conclusion and Future Enhancement in the Healthcare System With IoT -- References -- Chapter 8 Fog Computing Paradigm for Internet of Things Applications -- 8.1 Introduction.
8.2 Challenges -- 8.3 Fog Computing: The Emerging Era of Computing Paradigm -- 8.3.1 Definition of Fog Computing -- 8.3.2 Fog Computing Characteristic -- 8.3.3 Comparison Between Cloud and Fog Computing Paradigm -- 8.3.4 When to Use Fog Computing -- 8.3.5 Fog Computing Architecture for Internet of Things -- 8.3.6 Fog Assistance to Address the New IoT Challenges -- 8.3.7 Devices Play a Role of Fog Computing Node -- 8.4 Related Work -- 8.5 Fog Computing Challenges -- 8.6 Fog Supported IoT Applications -- 8.7 Summary and Conclusion -- References -- Chapter 9 Application of Internet of Things in Marketing Management -- 9.1 Introduction -- 9.2 Literature Review -- 9.2.1 Customer Relationship Management -- 9.2.2 Product Life Cycle (PLC) -- 9.2.3 Business Process Management (BPM) -- 9.2.4 Ambient Intelligence (AmI) -- 9.2.5 IoT and CRM Integration -- 9.2.6 IoT and BPM Integration -- 9.2.7 IoT and Product Life Cycle -- 9.2.8 IoT in MMgnt -- 9.2.9 Impacts of AmI on Marketing Paradigms -- 9.3 Research Methodology -- 9.4 Discussion -- 9.4.1 Research Proposition 1 -- 9.4.2 Research Proposition 2 -- 9.4.3 Research Proposition 3 -- 9.4.4 Research Proposition 4 -- 9.4.5 Research Proposition 5 -- 9.5 Results -- 9.4 Conclusions -- References -- Chapter 10 Healthcare Internet of Things: A New Revolution -- 10.1 Introduction -- 10.2 Healthcare IoT Architecture (IoT) -- 10.3 Healthcare IoT Technologies -- 10.3.1 Technology for Identification -- 10.3.2 Location Technology -- 10.3.2.1 Mobile-Based IoT -- 10.3.2.2 Wearable Devices -- 10.3.2.3 Ambient-Assisted Living (AAL) -- 10.3.3 Communicative Systems -- 10.3.3.1 Radiofrequency Identification -- 10.3.3.2 Bluetooth -- 10.3.3.3 Zigbee -- 10.3.3.4 Near Field Communication -- 10.3.3.5 Wireless Fidelity (Wi-Fi) -- 10.3.3.6 Satellite Communication -- 10.4 Community-Based Healthcare Services -- 10.5 Cognitive Computation.
10.6 Adverse Drug Reaction.
Record Nr. UNINA-9910830479603321
Hoboken, New Jersey : , : Wiley-Scrivener, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied water science / / edited by Mohd Imran Ahamed [and three others]
Applied water science / / edited by Mohd Imran Ahamed [and three others]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-Scrivener, , [2021]
Descrizione fisica 1 online resource (560 pages)
Disciplina 333.91
Soggetto topico Water-supply
Water - Purification
Soggetto genere / forma Electronic books.
ISBN 1-119-72522-4
1-119-72523-2
1-119-72526-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Sorbent-Based Microextraction Techniques for the Analysis of Phthalic Acid Esters in Water Samples -- 1.1 Introduction -- 1.2 Solid-Phase Microextraction -- 1.3 Stir Bar Sorptive Extraction -- 1.4 Solid-Phase Extraction -- 1.5 Others Minor Sorbent-Based Microextraction Techniques -- 1.6 Conclusions -- Acknowledgements -- References -- 2 Occurrence, Human Health Risks, and Removal of Pharmaceuticals in Aqueous Systems: Current Knowledge and Future Perspectives -- 2.1 Introduction -- 2.2 Occurrence and Behaviour of Pharmaceutics in Aquatic Systems -- 2.2.1 Nature and Sources -- 2.2.2 Dissemination and Occurrence in Aquatic Systems -- 2.2.3 Behaviour in Aquatic Systems -- 2.3 Human Health Risks and Their Mitigation -- 2.3.1 Human Exposure Pathways -- 2.3.2 Potential Human Health Risks -- 2.3.3 Human Health Risks: A Developing World Perspective -- 2.3.4 Removal of Pharmaceuticals -- 2.3.4.1 Conventional Removal Methods -- 2.3.4.2 Advanced Removal Methods -- 2.3.4.3 Hybrid Removal Processes -- 2.4 Knowledge Gaps and Future Research Directions -- 2.4.1 Increasing Africa's Research Footprint -- 2.4.2 Hotspot Sources and Reservoirs -- 2.4.3 Behaviour and Fate in Aquatic Systems -- 2.4.4 Ecotoxicology of Pharmaceuticals and Metabolites -- 2.4.5 Human Exposure Pathways -- 2.4.6 Human Toxicology and Epidemiology -- 2.4.7 Removal Capacity of Low-Cost Water Treatment Processes -- 2.5 Summary, Conclusions, and Outlook -- Author Contributions -- References -- 3 Oil-Water Separations -- 3.1 Introduction -- 3.2 Sources and Composition -- 3.3 Common Oil-Water Separation Techniques -- 3.4 Oil-Water Separation Technologies -- 3.4.1 Advancement in the Technology of Membrane -- 3.4.1.1 Polymer-Based Membranes -- 3.4.1.2 Ceramic-Based Membranes.
3.5 Separation of Oil/Water Utilizing Meshes -- 3.5.1 Mechanism Involved -- 3.5.2 Meshes Functionalization -- 3.5.2.1 Inorganic Materials -- 3.5.2.2 Organic Materials -- 3.6 Separation of Oil-Water Mixture Using Bioinspired Surfaces -- 3.6.1 Nature's Lesson -- 3.6.2 Superhydrophilic/Phobic and Superoleophilic/Phobic Porous Surfaces -- 3.7 Conclusion -- Acknowledgment -- References -- 4 Microplastics Pollution -- 4.1 Introduction and General Considerations -- 4.2 Key Scientific Issues Concerning Water and Microplastics Pollution -- 4.3 Marine Microplastics: From the Anthropogenic Litter to the Plastisphere -- 4.4 Social and Human Perspectives: From Sustainable Development to Civil Science -- 4.5 Conclusions and Future Projections -- References -- 5 Chloramines Formation, Toxicity, and Monitoring Methods in Aqueous Environments -- 5.1 Introduction -- 5.2 Inorganic Chloramines Formation and Toxicity -- 5.3 Analytical Methods for Inorganic Chloramines -- 5.3.1 Colorimetric and Batch Methods -- 5.3.2 Chromatographic Methods -- 5.3.3 Membrane Inlet Mass Spectrometry -- 5.4 Organic Chloramines Formation and Toxicity -- 5.5 Analytical Methods for Organic Chloramines -- 5.6 Conclusions -- References -- 6 Clay-Based Adsorbents for the Analysis of Dye Pollutants -- 6.1 Introduction -- 6.1.1 Biological Method -- 6.1.2 Physical Method -- 6.1.3 Why Only Clays? -- 6.1.4 Clay-Based Adsorbents -- 6.1.4.1 Kaolinite -- 6.1.4.2 Rectorite -- 6.1.4.3 Halloysite -- 6.1.4.4 Montmorillonite -- 6.1.4.5 Sepiolite -- 6.1.4.6 Laponite -- 6.1.4.7 Bentonite -- 6.1.4.8 Zeolites -- 6.2 Membrane Filtration -- 6.3 Chemical Treatment -- 6.3.1 Fenton and Photo-Fenton Process -- 6.3.2 Mechanism Using Acid and Base Catalyst -- 6.4 Photo-Catalytic Oxidation -- 6.5 Conclusions -- Acknowledgments -- References -- 7 Biochar-Supported Materials for Wastewater Treatment -- 7.1 Introduction.
7.2 Generalities of Biochar: Structure, Production, and Properties -- 7.2.1 Biochar Structure -- 7.2.2 Biochar Production -- 7.2.2.1 Pyrolysis -- 7.2.2.2 Gasification -- 7.2.2.3 Hydrothermal Carbonization -- 7.2.3 Biochar Properties -- 7.2.3.1 Porosity -- 7.2.3.2 Surface Area -- 7.2.3.3 Surface Functional Groups -- 7.2.3.4 Cation Exchange Capacity -- 7.2.3.5 Aromaticity -- 7.3 Biochar-Supported Materials -- 7.3.1 Magnetic Biochar Composites -- 7.3.2 Nano-Metal Oxide/Hydroxide-Biochar Composites -- 7.3.3 Functional Nanoparticles-Coated Biochar Composites -- 7.4 Conclusion -- References -- 8 Biological Swine Wastewater Treatment -- 8.1 Introduction -- 8.2 Swine Wastewater Characteristics -- 8.3 Microorganisms of Biological Swine Wastewater Treatment -- 8.4 Classification of Biological Swine Wastewater Treatment -- 8.5 Biological Processes For Swine Wastewater Treatment -- 8.5.1 Suspended Growth Processes -- 8.5.1.1 Activated Sludge Process -- 8.5.1.2 Sequential Batch Reactor -- 8.5.1.3 Sequencing Batch Membrane Bioreactor -- 8.5.1.4 Anaerobic Contact Process -- 8.5.1.5 Anaerobic Digestion -- 8.5.2 Attached Growth Processes -- 8.5.2.1 Rotating Biological Contactor -- 8.5.2.2 Upflow Anaerobic Sludge Blanket -- 8.5.2.3 Anaerobic Filter -- 8.5.2.4 Hybrid Anaerobic Reactor -- 8.6 Challenges and Future Prospects in Swine Wastewater Treatment -- References -- 9 Determination of Heavy Metal Ions From Water -- 9.1 Introduction -- 9.2 Detection of Heavy Metal Ions -- 9.2.1 Atomic Absorption Spectroscopy -- 9.2.2 Nanomaterials -- 9.2.3 High-Resolution Surface Plasmon Resonance Spectroscopy with Anodic Stripping Voltammetry -- 9.2.4 Biosensors -- 9.2.4.1 Enzyme-Based Biosensors -- 9.2.4.2 Electrochemical Sensors -- 9.2.4.3 Polymer-Based Biosensors -- 9.2.4.4 Bacterial-Based Sensors -- 9.2.4.5 Protein-Based Sensors -- 9.2.5 Attenuated Total Reflectance.
9.2.6 High-Resolution Differential Surface Plasmon Resonance Sensor -- 9.2.7 Hydrogels -- 9.2.8 Chelating Agents -- 9.2.9 Ionic Liquids -- 9.2.10 Polymers -- 9.2.10.1 Dendrimers -- 9.2.11 Macrocylic Compounds -- 9.2.12 Inductively Coupled Plasma Mass Spectrometry -- 9.3 Conclusions -- References -- 10 The Production and Role of Hydrogen-Rich Water in Medical Applications -- 10.1 Introduction -- 10.2 Functional Water -- 10.3 Reduced Water -- 10.4 Production of Hydrogen-Rich Water -- 10.5 Mechanism of Hydrogen Molecules During Reactive Oxygen Species Scavenging -- 10.6 Hydrogen-Rich Water Effects on the Human Body -- 10.6.1 Anti-Inflammatory Effects -- 10.6.2 Anti-Radiation Effects -- 10.6.3 Wound Healing Effects -- 10.6.4 Anti-Diabetic Effects -- 10.6.5 Anti-Neurodegenerative Effects -- 10.6.6 Anti-Cancer Effects -- 10.6.7 Anti-Arteriosclerosis Effects -- 10.7 Other Effects of Hydrogenated Water -- 10.7.1 Effect of Hydrogen-Rich Water in Hemodialysis -- 10.7.2 Effect on Anti-Cancer Drug Side Effects -- 10.8 Applications of Hydrogen-Rich Water -- 10.8.1 In Health Care -- 10.8.2 In Sports Science -- 10.8.3 In Therapeutic Applications and Delayed Progression of Diseases -- 10.9 Safety of Using Hydrogen-Rich Water -- 10.10 Concluding Remarks -- References -- 11 Hydrosulphide Treatment -- 11.1 Introduction -- 11.1.1 Agriculture -- 11.1.2 Medical -- 11.1.3 Industrial -- 11.2 Conclusions -- References -- 12 Radionuclides: Availability, Effect, and Removal Techniques -- 12.1 Introduction -- 12.1.1 Available Radionuclides in the Environment -- 12.1.1.1 Uranium -- 12.1.1.2 Thorium (Z = 90) -- 12.1.1.3 Radium (Z = 88) -- 12.1.1.4 Radon (Z = 86) -- 12.1.1.5 Polonium and Lead -- 12.1.2 Presence of Radionuclide in Drinking Water -- 12.1.2.1 Health Impacts of Radionuclides -- 12.1.2.2 Health Issues Caused Due to Uranium -- 12.1.2.3 Health Issues Caused Due to Radium.
12.1.2.4 Health Issues Caused Due to Radon -- 12.1.2.5 Health Issues Caused Due to Lead and Polonium -- 12.2 Existing Techniques and Materials Involved in Removal of Radionuclide -- 12.2.1 Ion Exchange -- 12.2.2 Reverse Osmosis -- 12.2.3 Aeration -- 12.2.4 Granulated Activated Carbon -- 12.2.5 Filtration -- 12.2.6 Lime Softening, Coagulation, and Co-Precipitation -- 12.2.7 Flocculation -- 12.2.8 Nanofilteration -- 12.2.9 Greensand Filteration -- 12.2.10 Nanomaterials -- 12.2.10.1 Radionuclides Sequestration by MOFs -- 12.2.10.2 Radionuclides Removal by COFs -- 12.2.10.3 Elimination of Radionuclides by GOs -- 12.2.10.4 Radionuclide Sequestration by CNTs -- 12.2.11 Ionic Liquids -- 12.3 Summary of Various Nanomaterial and Efficiency of Water Treating Technology -- 12.4 Management of Radioactive Waste -- 12.5 Conclusion -- References -- 13 Applications of Membrane Contactors for Water Treatment -- 13.1 Introduction -- 13.2 Characteristics of Membrane Contactors -- 13.3 Membrane Module Configurations -- 13.4 Mathematical Aspects of Membrane Contactors -- 13.5 Advantages and Limitations of Membrane Contactors -- 13.5.1 Advantages -- 13.5.1.1 High Interfacial Contact -- 13.5.1.2 Absence of Flooding and Loading -- 13.5.1.3 Minimization of Back Mixing and Emulsification -- 13.5.1.4 Freedom for Solvent Selection -- 13.5.1.5 Reduction in Solvent Inventory -- 13.5.1.6 Modularity -- 13.5.2 Limitations -- 13.6 Membrane Contactors as Alternatives to Conventional Unit Operations -- 13.6.1 Liquid-Liquid Extraction -- 13.6.2 Membrane Distillation -- 13.6.3 Osmotic Distillation -- 13.6.4 Membrane Crystallization -- 13.6.5 Membrane Emulsification -- 13.6.6 Supported Liquid Membranes -- 13.6.7 Membrane Bioreactors -- 13.7 Applications -- 13.7.1 Wastewater Treatment -- 13.7.2 Metal Recovery From Aqueous Streams -- 13.7.3 Desalination.
13.7.4 Concentration of Products in Food and Biotechnological Industries.
Record Nr. UNINA-9910554873803321
Hoboken, New Jersey : , : Wiley-Scrivener, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied water science . Volume 1 Fundamentals and applications / / edited by Inamuddin, Mohd Imran Ahamed, Rajender Boddula, and Tauseef Ahmad Rangreez
Applied water science . Volume 1 Fundamentals and applications / / edited by Inamuddin, Mohd Imran Ahamed, Rajender Boddula, and Tauseef Ahmad Rangreez
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-Scrivener, , [2021]
Descrizione fisica 1 online resource (560 pages)
Disciplina 333.91
Soggetto topico Water-supply
Water - Purification
ISBN 1-119-72522-4
1-119-72523-2
1-119-72526-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Sorbent-Based Microextraction Techniques for the Analysis of Phthalic Acid Esters in Water Samples -- 1.1 Introduction -- 1.2 Solid-Phase Microextraction -- 1.3 Stir Bar Sorptive Extraction -- 1.4 Solid-Phase Extraction -- 1.5 Others Minor Sorbent-Based Microextraction Techniques -- 1.6 Conclusions -- Acknowledgements -- References -- 2 Occurrence, Human Health Risks, and Removal of Pharmaceuticals in Aqueous Systems: Current Knowledge and Future Perspectives -- 2.1 Introduction -- 2.2 Occurrence and Behaviour of Pharmaceutics in Aquatic Systems -- 2.2.1 Nature and Sources -- 2.2.2 Dissemination and Occurrence in Aquatic Systems -- 2.2.3 Behaviour in Aquatic Systems -- 2.3 Human Health Risks and Their Mitigation -- 2.3.1 Human Exposure Pathways -- 2.3.2 Potential Human Health Risks -- 2.3.3 Human Health Risks: A Developing World Perspective -- 2.3.4 Removal of Pharmaceuticals -- 2.3.4.1 Conventional Removal Methods -- 2.3.4.2 Advanced Removal Methods -- 2.3.4.3 Hybrid Removal Processes -- 2.4 Knowledge Gaps and Future Research Directions -- 2.4.1 Increasing Africa's Research Footprint -- 2.4.2 Hotspot Sources and Reservoirs -- 2.4.3 Behaviour and Fate in Aquatic Systems -- 2.4.4 Ecotoxicology of Pharmaceuticals and Metabolites -- 2.4.5 Human Exposure Pathways -- 2.4.6 Human Toxicology and Epidemiology -- 2.4.7 Removal Capacity of Low-Cost Water Treatment Processes -- 2.5 Summary, Conclusions, and Outlook -- Author Contributions -- References -- 3 Oil-Water Separations -- 3.1 Introduction -- 3.2 Sources and Composition -- 3.3 Common Oil-Water Separation Techniques -- 3.4 Oil-Water Separation Technologies -- 3.4.1 Advancement in the Technology of Membrane -- 3.4.1.1 Polymer-Based Membranes -- 3.4.1.2 Ceramic-Based Membranes.
3.5 Separation of Oil/Water Utilizing Meshes -- 3.5.1 Mechanism Involved -- 3.5.2 Meshes Functionalization -- 3.5.2.1 Inorganic Materials -- 3.5.2.2 Organic Materials -- 3.6 Separation of Oil-Water Mixture Using Bioinspired Surfaces -- 3.6.1 Nature's Lesson -- 3.6.2 Superhydrophilic/Phobic and Superoleophilic/Phobic Porous Surfaces -- 3.7 Conclusion -- Acknowledgment -- References -- 4 Microplastics Pollution -- 4.1 Introduction and General Considerations -- 4.2 Key Scientific Issues Concerning Water and Microplastics Pollution -- 4.3 Marine Microplastics: From the Anthropogenic Litter to the Plastisphere -- 4.4 Social and Human Perspectives: From Sustainable Development to Civil Science -- 4.5 Conclusions and Future Projections -- References -- 5 Chloramines Formation, Toxicity, and Monitoring Methods in Aqueous Environments -- 5.1 Introduction -- 5.2 Inorganic Chloramines Formation and Toxicity -- 5.3 Analytical Methods for Inorganic Chloramines -- 5.3.1 Colorimetric and Batch Methods -- 5.3.2 Chromatographic Methods -- 5.3.3 Membrane Inlet Mass Spectrometry -- 5.4 Organic Chloramines Formation and Toxicity -- 5.5 Analytical Methods for Organic Chloramines -- 5.6 Conclusions -- References -- 6 Clay-Based Adsorbents for the Analysis of Dye Pollutants -- 6.1 Introduction -- 6.1.1 Biological Method -- 6.1.2 Physical Method -- 6.1.3 Why Only Clays? -- 6.1.4 Clay-Based Adsorbents -- 6.1.4.1 Kaolinite -- 6.1.4.2 Rectorite -- 6.1.4.3 Halloysite -- 6.1.4.4 Montmorillonite -- 6.1.4.5 Sepiolite -- 6.1.4.6 Laponite -- 6.1.4.7 Bentonite -- 6.1.4.8 Zeolites -- 6.2 Membrane Filtration -- 6.3 Chemical Treatment -- 6.3.1 Fenton and Photo-Fenton Process -- 6.3.2 Mechanism Using Acid and Base Catalyst -- 6.4 Photo-Catalytic Oxidation -- 6.5 Conclusions -- Acknowledgments -- References -- 7 Biochar-Supported Materials for Wastewater Treatment -- 7.1 Introduction.
7.2 Generalities of Biochar: Structure, Production, and Properties -- 7.2.1 Biochar Structure -- 7.2.2 Biochar Production -- 7.2.2.1 Pyrolysis -- 7.2.2.2 Gasification -- 7.2.2.3 Hydrothermal Carbonization -- 7.2.3 Biochar Properties -- 7.2.3.1 Porosity -- 7.2.3.2 Surface Area -- 7.2.3.3 Surface Functional Groups -- 7.2.3.4 Cation Exchange Capacity -- 7.2.3.5 Aromaticity -- 7.3 Biochar-Supported Materials -- 7.3.1 Magnetic Biochar Composites -- 7.3.2 Nano-Metal Oxide/Hydroxide-Biochar Composites -- 7.3.3 Functional Nanoparticles-Coated Biochar Composites -- 7.4 Conclusion -- References -- 8 Biological Swine Wastewater Treatment -- 8.1 Introduction -- 8.2 Swine Wastewater Characteristics -- 8.3 Microorganisms of Biological Swine Wastewater Treatment -- 8.4 Classification of Biological Swine Wastewater Treatment -- 8.5 Biological Processes For Swine Wastewater Treatment -- 8.5.1 Suspended Growth Processes -- 8.5.1.1 Activated Sludge Process -- 8.5.1.2 Sequential Batch Reactor -- 8.5.1.3 Sequencing Batch Membrane Bioreactor -- 8.5.1.4 Anaerobic Contact Process -- 8.5.1.5 Anaerobic Digestion -- 8.5.2 Attached Growth Processes -- 8.5.2.1 Rotating Biological Contactor -- 8.5.2.2 Upflow Anaerobic Sludge Blanket -- 8.5.2.3 Anaerobic Filter -- 8.5.2.4 Hybrid Anaerobic Reactor -- 8.6 Challenges and Future Prospects in Swine Wastewater Treatment -- References -- 9 Determination of Heavy Metal Ions From Water -- 9.1 Introduction -- 9.2 Detection of Heavy Metal Ions -- 9.2.1 Atomic Absorption Spectroscopy -- 9.2.2 Nanomaterials -- 9.2.3 High-Resolution Surface Plasmon Resonance Spectroscopy with Anodic Stripping Voltammetry -- 9.2.4 Biosensors -- 9.2.4.1 Enzyme-Based Biosensors -- 9.2.4.2 Electrochemical Sensors -- 9.2.4.3 Polymer-Based Biosensors -- 9.2.4.4 Bacterial-Based Sensors -- 9.2.4.5 Protein-Based Sensors -- 9.2.5 Attenuated Total Reflectance.
9.2.6 High-Resolution Differential Surface Plasmon Resonance Sensor -- 9.2.7 Hydrogels -- 9.2.8 Chelating Agents -- 9.2.9 Ionic Liquids -- 9.2.10 Polymers -- 9.2.10.1 Dendrimers -- 9.2.11 Macrocylic Compounds -- 9.2.12 Inductively Coupled Plasma Mass Spectrometry -- 9.3 Conclusions -- References -- 10 The Production and Role of Hydrogen-Rich Water in Medical Applications -- 10.1 Introduction -- 10.2 Functional Water -- 10.3 Reduced Water -- 10.4 Production of Hydrogen-Rich Water -- 10.5 Mechanism of Hydrogen Molecules During Reactive Oxygen Species Scavenging -- 10.6 Hydrogen-Rich Water Effects on the Human Body -- 10.6.1 Anti-Inflammatory Effects -- 10.6.2 Anti-Radiation Effects -- 10.6.3 Wound Healing Effects -- 10.6.4 Anti-Diabetic Effects -- 10.6.5 Anti-Neurodegenerative Effects -- 10.6.6 Anti-Cancer Effects -- 10.6.7 Anti-Arteriosclerosis Effects -- 10.7 Other Effects of Hydrogenated Water -- 10.7.1 Effect of Hydrogen-Rich Water in Hemodialysis -- 10.7.2 Effect on Anti-Cancer Drug Side Effects -- 10.8 Applications of Hydrogen-Rich Water -- 10.8.1 In Health Care -- 10.8.2 In Sports Science -- 10.8.3 In Therapeutic Applications and Delayed Progression of Diseases -- 10.9 Safety of Using Hydrogen-Rich Water -- 10.10 Concluding Remarks -- References -- 11 Hydrosulphide Treatment -- 11.1 Introduction -- 11.1.1 Agriculture -- 11.1.2 Medical -- 11.1.3 Industrial -- 11.2 Conclusions -- References -- 12 Radionuclides: Availability, Effect, and Removal Techniques -- 12.1 Introduction -- 12.1.1 Available Radionuclides in the Environment -- 12.1.1.1 Uranium -- 12.1.1.2 Thorium (Z = 90) -- 12.1.1.3 Radium (Z = 88) -- 12.1.1.4 Radon (Z = 86) -- 12.1.1.5 Polonium and Lead -- 12.1.2 Presence of Radionuclide in Drinking Water -- 12.1.2.1 Health Impacts of Radionuclides -- 12.1.2.2 Health Issues Caused Due to Uranium -- 12.1.2.3 Health Issues Caused Due to Radium.
12.1.2.4 Health Issues Caused Due to Radon -- 12.1.2.5 Health Issues Caused Due to Lead and Polonium -- 12.2 Existing Techniques and Materials Involved in Removal of Radionuclide -- 12.2.1 Ion Exchange -- 12.2.2 Reverse Osmosis -- 12.2.3 Aeration -- 12.2.4 Granulated Activated Carbon -- 12.2.5 Filtration -- 12.2.6 Lime Softening, Coagulation, and Co-Precipitation -- 12.2.7 Flocculation -- 12.2.8 Nanofilteration -- 12.2.9 Greensand Filteration -- 12.2.10 Nanomaterials -- 12.2.10.1 Radionuclides Sequestration by MOFs -- 12.2.10.2 Radionuclides Removal by COFs -- 12.2.10.3 Elimination of Radionuclides by GOs -- 12.2.10.4 Radionuclide Sequestration by CNTs -- 12.2.11 Ionic Liquids -- 12.3 Summary of Various Nanomaterial and Efficiency of Water Treating Technology -- 12.4 Management of Radioactive Waste -- 12.5 Conclusion -- References -- 13 Applications of Membrane Contactors for Water Treatment -- 13.1 Introduction -- 13.2 Characteristics of Membrane Contactors -- 13.3 Membrane Module Configurations -- 13.4 Mathematical Aspects of Membrane Contactors -- 13.5 Advantages and Limitations of Membrane Contactors -- 13.5.1 Advantages -- 13.5.1.1 High Interfacial Contact -- 13.5.1.2 Absence of Flooding and Loading -- 13.5.1.3 Minimization of Back Mixing and Emulsification -- 13.5.1.4 Freedom for Solvent Selection -- 13.5.1.5 Reduction in Solvent Inventory -- 13.5.1.6 Modularity -- 13.5.2 Limitations -- 13.6 Membrane Contactors as Alternatives to Conventional Unit Operations -- 13.6.1 Liquid-Liquid Extraction -- 13.6.2 Membrane Distillation -- 13.6.3 Osmotic Distillation -- 13.6.4 Membrane Crystallization -- 13.6.5 Membrane Emulsification -- 13.6.6 Supported Liquid Membranes -- 13.6.7 Membrane Bioreactors -- 13.7 Applications -- 13.7.1 Wastewater Treatment -- 13.7.2 Metal Recovery From Aqueous Streams -- 13.7.3 Desalination.
13.7.4 Concentration of Products in Food and Biotechnological Industries.
Record Nr. UNINA-9910677556203321
Hoboken, New Jersey : , : Wiley-Scrivener, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied water science . Volume 1 Fundamentals and applications / / edited by Inamuddin, Mohd Imran Ahamed, Rajender Boddula, and Tauseef Ahmad Rangreez
Applied water science . Volume 1 Fundamentals and applications / / edited by Inamuddin, Mohd Imran Ahamed, Rajender Boddula, and Tauseef Ahmad Rangreez
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-Scrivener, , [2021]
Descrizione fisica 1 online resource (560 pages)
Disciplina 333.91
Soggetto topico Water-supply
Water - Purification
ISBN 1-119-72522-4
1-119-72523-2
1-119-72526-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Sorbent-Based Microextraction Techniques for the Analysis of Phthalic Acid Esters in Water Samples -- 1.1 Introduction -- 1.2 Solid-Phase Microextraction -- 1.3 Stir Bar Sorptive Extraction -- 1.4 Solid-Phase Extraction -- 1.5 Others Minor Sorbent-Based Microextraction Techniques -- 1.6 Conclusions -- Acknowledgements -- References -- 2 Occurrence, Human Health Risks, and Removal of Pharmaceuticals in Aqueous Systems: Current Knowledge and Future Perspectives -- 2.1 Introduction -- 2.2 Occurrence and Behaviour of Pharmaceutics in Aquatic Systems -- 2.2.1 Nature and Sources -- 2.2.2 Dissemination and Occurrence in Aquatic Systems -- 2.2.3 Behaviour in Aquatic Systems -- 2.3 Human Health Risks and Their Mitigation -- 2.3.1 Human Exposure Pathways -- 2.3.2 Potential Human Health Risks -- 2.3.3 Human Health Risks: A Developing World Perspective -- 2.3.4 Removal of Pharmaceuticals -- 2.3.4.1 Conventional Removal Methods -- 2.3.4.2 Advanced Removal Methods -- 2.3.4.3 Hybrid Removal Processes -- 2.4 Knowledge Gaps and Future Research Directions -- 2.4.1 Increasing Africa's Research Footprint -- 2.4.2 Hotspot Sources and Reservoirs -- 2.4.3 Behaviour and Fate in Aquatic Systems -- 2.4.4 Ecotoxicology of Pharmaceuticals and Metabolites -- 2.4.5 Human Exposure Pathways -- 2.4.6 Human Toxicology and Epidemiology -- 2.4.7 Removal Capacity of Low-Cost Water Treatment Processes -- 2.5 Summary, Conclusions, and Outlook -- Author Contributions -- References -- 3 Oil-Water Separations -- 3.1 Introduction -- 3.2 Sources and Composition -- 3.3 Common Oil-Water Separation Techniques -- 3.4 Oil-Water Separation Technologies -- 3.4.1 Advancement in the Technology of Membrane -- 3.4.1.1 Polymer-Based Membranes -- 3.4.1.2 Ceramic-Based Membranes.
3.5 Separation of Oil/Water Utilizing Meshes -- 3.5.1 Mechanism Involved -- 3.5.2 Meshes Functionalization -- 3.5.2.1 Inorganic Materials -- 3.5.2.2 Organic Materials -- 3.6 Separation of Oil-Water Mixture Using Bioinspired Surfaces -- 3.6.1 Nature's Lesson -- 3.6.2 Superhydrophilic/Phobic and Superoleophilic/Phobic Porous Surfaces -- 3.7 Conclusion -- Acknowledgment -- References -- 4 Microplastics Pollution -- 4.1 Introduction and General Considerations -- 4.2 Key Scientific Issues Concerning Water and Microplastics Pollution -- 4.3 Marine Microplastics: From the Anthropogenic Litter to the Plastisphere -- 4.4 Social and Human Perspectives: From Sustainable Development to Civil Science -- 4.5 Conclusions and Future Projections -- References -- 5 Chloramines Formation, Toxicity, and Monitoring Methods in Aqueous Environments -- 5.1 Introduction -- 5.2 Inorganic Chloramines Formation and Toxicity -- 5.3 Analytical Methods for Inorganic Chloramines -- 5.3.1 Colorimetric and Batch Methods -- 5.3.2 Chromatographic Methods -- 5.3.3 Membrane Inlet Mass Spectrometry -- 5.4 Organic Chloramines Formation and Toxicity -- 5.5 Analytical Methods for Organic Chloramines -- 5.6 Conclusions -- References -- 6 Clay-Based Adsorbents for the Analysis of Dye Pollutants -- 6.1 Introduction -- 6.1.1 Biological Method -- 6.1.2 Physical Method -- 6.1.3 Why Only Clays? -- 6.1.4 Clay-Based Adsorbents -- 6.1.4.1 Kaolinite -- 6.1.4.2 Rectorite -- 6.1.4.3 Halloysite -- 6.1.4.4 Montmorillonite -- 6.1.4.5 Sepiolite -- 6.1.4.6 Laponite -- 6.1.4.7 Bentonite -- 6.1.4.8 Zeolites -- 6.2 Membrane Filtration -- 6.3 Chemical Treatment -- 6.3.1 Fenton and Photo-Fenton Process -- 6.3.2 Mechanism Using Acid and Base Catalyst -- 6.4 Photo-Catalytic Oxidation -- 6.5 Conclusions -- Acknowledgments -- References -- 7 Biochar-Supported Materials for Wastewater Treatment -- 7.1 Introduction.
7.2 Generalities of Biochar: Structure, Production, and Properties -- 7.2.1 Biochar Structure -- 7.2.2 Biochar Production -- 7.2.2.1 Pyrolysis -- 7.2.2.2 Gasification -- 7.2.2.3 Hydrothermal Carbonization -- 7.2.3 Biochar Properties -- 7.2.3.1 Porosity -- 7.2.3.2 Surface Area -- 7.2.3.3 Surface Functional Groups -- 7.2.3.4 Cation Exchange Capacity -- 7.2.3.5 Aromaticity -- 7.3 Biochar-Supported Materials -- 7.3.1 Magnetic Biochar Composites -- 7.3.2 Nano-Metal Oxide/Hydroxide-Biochar Composites -- 7.3.3 Functional Nanoparticles-Coated Biochar Composites -- 7.4 Conclusion -- References -- 8 Biological Swine Wastewater Treatment -- 8.1 Introduction -- 8.2 Swine Wastewater Characteristics -- 8.3 Microorganisms of Biological Swine Wastewater Treatment -- 8.4 Classification of Biological Swine Wastewater Treatment -- 8.5 Biological Processes For Swine Wastewater Treatment -- 8.5.1 Suspended Growth Processes -- 8.5.1.1 Activated Sludge Process -- 8.5.1.2 Sequential Batch Reactor -- 8.5.1.3 Sequencing Batch Membrane Bioreactor -- 8.5.1.4 Anaerobic Contact Process -- 8.5.1.5 Anaerobic Digestion -- 8.5.2 Attached Growth Processes -- 8.5.2.1 Rotating Biological Contactor -- 8.5.2.2 Upflow Anaerobic Sludge Blanket -- 8.5.2.3 Anaerobic Filter -- 8.5.2.4 Hybrid Anaerobic Reactor -- 8.6 Challenges and Future Prospects in Swine Wastewater Treatment -- References -- 9 Determination of Heavy Metal Ions From Water -- 9.1 Introduction -- 9.2 Detection of Heavy Metal Ions -- 9.2.1 Atomic Absorption Spectroscopy -- 9.2.2 Nanomaterials -- 9.2.3 High-Resolution Surface Plasmon Resonance Spectroscopy with Anodic Stripping Voltammetry -- 9.2.4 Biosensors -- 9.2.4.1 Enzyme-Based Biosensors -- 9.2.4.2 Electrochemical Sensors -- 9.2.4.3 Polymer-Based Biosensors -- 9.2.4.4 Bacterial-Based Sensors -- 9.2.4.5 Protein-Based Sensors -- 9.2.5 Attenuated Total Reflectance.
9.2.6 High-Resolution Differential Surface Plasmon Resonance Sensor -- 9.2.7 Hydrogels -- 9.2.8 Chelating Agents -- 9.2.9 Ionic Liquids -- 9.2.10 Polymers -- 9.2.10.1 Dendrimers -- 9.2.11 Macrocylic Compounds -- 9.2.12 Inductively Coupled Plasma Mass Spectrometry -- 9.3 Conclusions -- References -- 10 The Production and Role of Hydrogen-Rich Water in Medical Applications -- 10.1 Introduction -- 10.2 Functional Water -- 10.3 Reduced Water -- 10.4 Production of Hydrogen-Rich Water -- 10.5 Mechanism of Hydrogen Molecules During Reactive Oxygen Species Scavenging -- 10.6 Hydrogen-Rich Water Effects on the Human Body -- 10.6.1 Anti-Inflammatory Effects -- 10.6.2 Anti-Radiation Effects -- 10.6.3 Wound Healing Effects -- 10.6.4 Anti-Diabetic Effects -- 10.6.5 Anti-Neurodegenerative Effects -- 10.6.6 Anti-Cancer Effects -- 10.6.7 Anti-Arteriosclerosis Effects -- 10.7 Other Effects of Hydrogenated Water -- 10.7.1 Effect of Hydrogen-Rich Water in Hemodialysis -- 10.7.2 Effect on Anti-Cancer Drug Side Effects -- 10.8 Applications of Hydrogen-Rich Water -- 10.8.1 In Health Care -- 10.8.2 In Sports Science -- 10.8.3 In Therapeutic Applications and Delayed Progression of Diseases -- 10.9 Safety of Using Hydrogen-Rich Water -- 10.10 Concluding Remarks -- References -- 11 Hydrosulphide Treatment -- 11.1 Introduction -- 11.1.1 Agriculture -- 11.1.2 Medical -- 11.1.3 Industrial -- 11.2 Conclusions -- References -- 12 Radionuclides: Availability, Effect, and Removal Techniques -- 12.1 Introduction -- 12.1.1 Available Radionuclides in the Environment -- 12.1.1.1 Uranium -- 12.1.1.2 Thorium (Z = 90) -- 12.1.1.3 Radium (Z = 88) -- 12.1.1.4 Radon (Z = 86) -- 12.1.1.5 Polonium and Lead -- 12.1.2 Presence of Radionuclide in Drinking Water -- 12.1.2.1 Health Impacts of Radionuclides -- 12.1.2.2 Health Issues Caused Due to Uranium -- 12.1.2.3 Health Issues Caused Due to Radium.
12.1.2.4 Health Issues Caused Due to Radon -- 12.1.2.5 Health Issues Caused Due to Lead and Polonium -- 12.2 Existing Techniques and Materials Involved in Removal of Radionuclide -- 12.2.1 Ion Exchange -- 12.2.2 Reverse Osmosis -- 12.2.3 Aeration -- 12.2.4 Granulated Activated Carbon -- 12.2.5 Filtration -- 12.2.6 Lime Softening, Coagulation, and Co-Precipitation -- 12.2.7 Flocculation -- 12.2.8 Nanofilteration -- 12.2.9 Greensand Filteration -- 12.2.10 Nanomaterials -- 12.2.10.1 Radionuclides Sequestration by MOFs -- 12.2.10.2 Radionuclides Removal by COFs -- 12.2.10.3 Elimination of Radionuclides by GOs -- 12.2.10.4 Radionuclide Sequestration by CNTs -- 12.2.11 Ionic Liquids -- 12.3 Summary of Various Nanomaterial and Efficiency of Water Treating Technology -- 12.4 Management of Radioactive Waste -- 12.5 Conclusion -- References -- 13 Applications of Membrane Contactors for Water Treatment -- 13.1 Introduction -- 13.2 Characteristics of Membrane Contactors -- 13.3 Membrane Module Configurations -- 13.4 Mathematical Aspects of Membrane Contactors -- 13.5 Advantages and Limitations of Membrane Contactors -- 13.5.1 Advantages -- 13.5.1.1 High Interfacial Contact -- 13.5.1.2 Absence of Flooding and Loading -- 13.5.1.3 Minimization of Back Mixing and Emulsification -- 13.5.1.4 Freedom for Solvent Selection -- 13.5.1.5 Reduction in Solvent Inventory -- 13.5.1.6 Modularity -- 13.5.2 Limitations -- 13.6 Membrane Contactors as Alternatives to Conventional Unit Operations -- 13.6.1 Liquid-Liquid Extraction -- 13.6.2 Membrane Distillation -- 13.6.3 Osmotic Distillation -- 13.6.4 Membrane Crystallization -- 13.6.5 Membrane Emulsification -- 13.6.6 Supported Liquid Membranes -- 13.6.7 Membrane Bioreactors -- 13.7 Applications -- 13.7.1 Wastewater Treatment -- 13.7.2 Metal Recovery From Aqueous Streams -- 13.7.3 Desalination.
13.7.4 Concentration of Products in Food and Biotechnological Industries.
Record Nr. UNINA-9910827333203321
Hoboken, New Jersey : , : Wiley-Scrivener, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Blockchain for business : how it works and creates value / / edited by S. S. Tyagi and Shaveta Bhatia
Blockchain for business : how it works and creates value / / edited by S. S. Tyagi and Shaveta Bhatia
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-Scrivener, , [2021]
Descrizione fisica 1 online resource (400 pages)
Disciplina 005.74
Soggetto topico Blockchains (Databases)
Business - Data processing
Soggetto genere / forma Electronic books.
ISBN 1-5231-4325-8
1-119-71107-X
1-119-71106-1
1-119-71105-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910554847303321
Hoboken, New Jersey : , : Wiley-Scrivener, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Blockchain for business : how it works and creates value / / edited by S. S. Tyagi and Shaveta Bhatia
Blockchain for business : how it works and creates value / / edited by S. S. Tyagi and Shaveta Bhatia
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-Scrivener, , [2021]
Descrizione fisica 1 online resource (400 pages)
Disciplina 005.74
Soggetto topico Blockchains (Databases) - Industrial applications
Blockchains (Databases) - Economic aspects
ISBN 1-5231-4325-8
1-119-71107-X
1-119-71106-1
1-119-71105-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Introduction to Blockchain -- 1.1 Introduction -- 1.1.1 Public Blockchain Architecture -- 1.1.2 Private Blockchain Architecture -- 1.1.3 Consortium Blockchain Architecture -- 1.2 The Privacy Challenges of Blockchain -- 1.3 De-Anonymization -- 1.3.1 Analysis of Network -- 1.3.2 Transaction Fingerprinting -- 1.3.3 DoS Attacks -- 1.3.4 Sybil Attacks -- 1.4 Transaction Pattern Exposure -- 1.4.1 Transaction Graph Analysis -- 1.4.2 AS-Level Deployment Analysis
1.5 Methodology: Identity Privacy Preservation -- 1.5.1 Mixing Services -- 1.5.2 Ring Signature -- 1.6 Decentralization Challenges Exist in Blockchain -- 1.7 Conclusion -- 1.8 Regulatory Challenges -- 1.9 Obstacles to Blockchain Regulation -- 1.10 The Current Regulatory Landscape -- 1.11 The Future of Blockchain Regulation -- 1.12 Business Model Challenges -- 1.12.1 Traditional Business Models -- 1.12.2 Manufacturer -- 1.12.3 Distributor -- 1.12.4 Retailer -- 1.12.5 Franchise -- 1.13 Utility Token Model -- 1.13.1 Right -- 1.13.2 Value Exchange -- 1.13.3 Toll -- 1.13.4 Function -- 1.13.5 Currency
1.13.6 Earning -- 1.14 Blockchain as a Service -- 1.15 Securities -- 1.16 Development Platforms -- 1.17 Scandals and Public Perceptions -- 1.17.1 Privacy Limitations -- 1.17.2 Lack of Regulations and Governance -- 1.17.3 Cost to Set Up -- 1.17.4 Huge Consumption of Energy -- 1.17.5 Public Perception -- References -- 2 The Scope for Blockchain Ecosystem -- 2.1 Introduction -- 2.2 Blockchain as Game Changer for Environment -- 2.3 Blockchain in Business Ecosystem -- 2.3.1 Business Ecosystem -- 2.3.2 Are Blockchain Business Models Really Needed? -- 2.4 Is Blockchain Business Ecosystem Profitable?
2.5 How Do You "Design" a Business Ecosystem? -- 2.6 Redesigning Future With Blockchain -- 2.6.1 Is Earth Prepared for Blockchain? -- 2.7 Challenges and Opportunities -- References -- 3 Business Use Cases of Blockchain Technology -- 3.1 Introduction to Cryptocurrency -- 3.2 What is a Bitcoin? -- 3.2.1 Bitcoin Transactions and Their Processing -- 3.2.2 Double Spending Problem -- 3.2.3 Bitcoin Mining -- 3.3 Bitcoin ICO -- 3.3.1 ICO Token -- 3.3.2 How to Participate in ICO -- 3.3.3 Types of Tokens -- 3.4 Advantages and Disadvantages of ICO -- 3.5 Merchant Acceptance of Bitcoin -- References
4 Ethereum -- 4.1 Introduction -- 4.2 Basic Features of Ethereum -- 4.3 Difference between Bitcoin and Ethereum -- 4.4 EVM (Ethereum Virtual Machine) -- 4.5 Gas -- 4.5.1 Gas Price Chart -- 4.6 Applications Built on the Basis of Ethereum -- 4.7 ETH -- 4.7.1 Why Users Want to Buy ETH? -- 4.7.2 How to Buy ETH? -- 4.7.3 Alternate Way to Buy ETH -- 4.7.4 Conversion of ETH to US Dollar -- 4.8 Smart Contracts -- 4.8.1 Government -- 4.8.2 Management -- 4.8.3 Benefits of Smart Contracts -- 4.8.4 Problems With Smart Contracts -- 4.8.5 Solution to Overcome This Problem
Record Nr. UNINA-9910677768103321
Hoboken, New Jersey : , : Wiley-Scrivener, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive behavior and human computer interaction based on machine learning algorithms / / editors, Sandeep Kumar Panda [et al.]
Cognitive behavior and human computer interaction based on machine learning algorithms / / editors, Sandeep Kumar Panda [et al.]
Pubbl/distr/stampa Hoboken, NJ : , : Wiley-Scrivener, , [2022]
Descrizione fisica 1 online resource (416 pages)
Disciplina 004.019
Soggetto topico Algorithms
Human-computer interaction
Human behavior
Cognition
Soggetto genere / forma Electronic books.
ISBN 1-119-79208-8
1-119-79210-X
1-119-79209-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555075503321
Hoboken, NJ : , : Wiley-Scrivener, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui