top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Introduction to ground penetrating radar : inverse scattering and data processing / / Raffaele Persico
Introduction to ground penetrating radar : inverse scattering and data processing / / Raffaele Persico
Autore Persico Raffaele <1969->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, IEEE Press, [2014]
Descrizione fisica 1 online resource (400 p.)
Disciplina 621.3848
621.38485
Soggetto topico Ground penetrating radar
ISBN 1-118-83568-9
1-118-83564-6
1-118-83546-8
Classificazione TEC008000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword xiii -- Acknowledgments xvii -- About the Author xix -- Contributors xxi -- 1 INTRODUCTION TO GPR PROSPECTING 1 -- 1.1 What Is a GPR? 1 -- 1.2 GPR Systems and GPR Signals 4 -- 1.3 GPR Application Fields 5 -- 1.4 Measurement Configurations, Bands, and Polarizations 6 -- 1.5 GPR Data Processing 8 -- 2 CHARACTERIZATION OF THE HOST MEDIUM 10 -- 2.1 The Characteristics of the Host Medium 10 -- 2.2 The Measure of the Propagation Velocity in a Masonry 11 -- 2.3 The Measure of the Propagation Velocity in a Homogeneous Soil 13 -- 2.3.1 Interfacial Data in Common Offset Mode with a Null Offset: The Case of a Point-like Target 13 -- 2.3.2 Interfacial Data in Common Offset Mode with a Null Offset: The Case of a Circular Target 17 -- 2.3.3 Interfacial Data in Common Offset Mode with a Non-null Offset: The Case of a Point-like Target 18 -- 2.3.4 Noninterfacial Data in Common Offset Mode with a Null Offset: The Case of a Point-like Target 22 -- 2.3.5 Interfacial Data in Common Midpoint (CMP) Mode 25 -- 2.4 Lossy, Magnetic, and Dispersive Media 27 -- Questions 31 -- 3 GPR DATA SAMPLING: FREQUENCY AND TIME STEPS 32 -- 3.1 Stepped Frequency GPR Systems: The Problem of the Aliasing and the Frequency Step 32 -- 3.2 Shape and Thickness of the GPR Pulses 36 -- 3.3 Stepped Frequency GPR Systems: The Problem of the Demodulation and the Frequency Step 40 -- 3.4 Aliasing and Time Step for Pulsed GPR Systems 45 -- Questions 47 -- 4 THE 2D SCATTERING EQUATIONS FOR DIELECTRIC TARGETS 48 -- 4.1 Preliminary Remarks 48 -- 4.2 Derivation of the Scattering Equations Without Considering the Effect of the Antennas 51 -- 4.3 Calculation of the Incident Field Radiated by a Filamentary Current 61 -- 4.4 The Plane Wave Spectrum of an Electromagnetic Source in a Homogeneous Space 61 -- 4.5 The Insertion of the Source Characteristics in the Scattering Equations 65 -- 4.6 The Far Field in a Homogeneous Lossless Space in Terms of Plane Wave Spectrum 69 -- 4.7 The Effective Length of an Electromagnetic Source in a Homogeneous Space 73.
4.8 The Insertion of the Receiver Characteristics in the -- Scattering Equations 75 -- Questions 77 -- 5 THE 2D SCATTERING EQUATIONS FOR MAGNETIC TARGETS 79 -- 5.1 The Scattering Equations with Only Magnetic Anomalies 79 -- 5.2 The Contribution of the x-Component of the Fitzgerald Vector 83 -- 5.3 The Contribution of the z-Component of the Fitzgerald Vector 88 -- 5.4 The Joined Contribution of Both the x- and z-Components of the Fitzgerald Vector 93 -- 5.5 The Case with Both Dielectric and Magnetic Anomalies 94 -- Questions 95 -- 6 ILL-POSEDNESS AND NONLINEARITY 96 -- 6.1 Electromagnetic Inverse Scattering 96 -- 6.2 Ill-Posedness 97 -- 6.3 Nonlinearity 97 -- 6.4 The Ill-Posedness of the Inverse Scattering Problem 100 -- 6.5 The Nonlinearity of the Inverse Scattering Problem 103 -- Questions 103 -- 7 EXTRACTION OF THE SCATTERED FIELD DATA FROM THE GPR DATA 105 -- 7.1 Zero Timing 105 -- 7.2 Muting of Interface Contributions 106 -- 7.3 The Differential Configuration 110 -- 7.4 The Background Removal 111 -- Questions 115 -- 8 THE BORN APPROXIMATION 116 -- 8.1 The Classical Born Approximation 116 -- 8.2 The Born Approximation in the Presence of Magnetic Targets 119 -- 8.3 Weak and Nonweak Scattering Objects 120 -- Questions 121 -- 9 DIFFRACTION TOMOGRAPHY 122 -- 9.1 Introduction to Diffraction Tomography 122 -- 9.2 Diffraction Tomography for Dielectric Targets 123 -- 9.3 Diffraction Tomography for Dielectric Targets Seen Under a Limited View Angle 130 -- 9.4 The Effective Maximum and Minimum View Angle 140 -- 9.5 Horizontal Resolution 142 -- 9.6 Vertical Resolution 145 -- 9.7 Spatial Step 147 -- 9.8 Frequency Step 148 -- 9.9 Time Step 149 -- 9.10 The Effect of a Non-null Height of the Observation Line 150 -- 9.11 The Effect of the Radiation Characteristics of the Antennas 156 -- 9.12 DT Relationship in the Presence of Magnetic Targets 158 -- 9.13 DT Relationship for a Differential Configuration 160 -- 9.14 DT Relationship in the Presence of Background Removal 163 -- Questions 168.
10 TWO-DIMENSIONAL MIGRATION ALGORITHMS 169 -- 10.1 Migration in the Frequency Domain 169 -- 10.2 Migration in the Time Domain (Raffaele Persico and Raffaele Solimene) 175 -- Questions 181 -- 11 THREE-DIMENSIONAL SCATTERING EQUATIONS 182 /Lorenzo Lo Monte, Raffaele Persico, and Raffaele Solimene -- 11.1 Scattering in Three Dimensions: Redefinition of the Main Symbols 182 -- 11.2 The Scattering Equations in 3D 184 -- 11.3 Three-Dimensional Green's Functions 184 -- 11.4 The Incident Field 185 -- 11.5 Homogeneous 3D Green's Functions 187 -- 11.6 The Plane Wave Spectrum of a 3D Homogeneous Green's Fucntion 192 -- 11.7 Half-Space Green's Functions 197 -- Questions 204 -- 12 THREE-DIMENSIONAL DIFFRACTION TOMOGRAPHY 205 -- 12.1 Born Approximation and DT in 3D 205 -- 12.2 Ideal and Limited-View-Angle 3D Retrievable Spectral Sets 210 -- 12.3 Spatial Step and Transect 212 -- 12.4 Horizontal Resolution (Raffaele Persico and Raffaele Solimene) 213 -- 12.5 Vertical Resolution, Frequency and Time Steps 217 -- Questions 218 -- 13 THREE-DIMENSIONAL MIGRATION ALGORITHMS 219 -- 13.1 3D Migration Formulas in the Frequency Domain 219 -- 13.2 3D Migration Formulas in the Time Domain 222 -- 13.3 3D Versus 2D Migration Formulas in the Time Domain 226 -- Questions 228 -- 14 THE SINGULAR VALUE DECOMPOSITION 229 -- 14.1 The Method of Moments 229 -- 14.2 Reminders About Eigenvalues and Eigenvectors 231 -- 14.3 The Singular Value Decomposition 234 -- 14.4 The Study of the Inverse Scattering Relationship by Means of the SVD 238 -- Questions 241 -- 15 NUMERICAL AND EXPERIMENTAL EXAMPLES 242 -- 15.1 Examples with Regard to the Measure of the Propagation Velocity 242 -- 15.1.1 Common Offset Interfacial Data with Null Offset on a Homogeneous Soil 242 -- 15.1.2 Common Offset Interfacial Data on a Wall, Neglecting the Offset Between the Antennas 245 -- 15.1.3 Interfacial Common Offset Data on a Homogeneous Soil: The Effect on the Offset Between the Antennas 247 -- 15.1.4 Noninterfacial Common Offset Data with a Null Offset Between the Antennas 249.
15.1.5 Common Midpoint Data 250 -- 15.2 Exercises on Spatial Step and Horizontal Resolution 252 -- 15.3 Exercises on Frequency Step and Vertical Resolution 264 -- 15.4 Exercises on the Number of Trial Unknowns 271 -- 15.5 Exercises on Spectral and Spatial Contents 274 -- 15.6 Exercises on the Effect of the Height of the Observation Line 280 -- 15.7 Exercises on the Effect of the Extent of the Investigation Domain 284 -- 15.8 Exercises on the Effects of the Background Removal 295 -- 15.9 2D and 3D Migration Examples with a Single Set and Two Crossed Sets of B-Scans (Marcello Ciminale, Giovanni Leucci, Loredana Matera, and Raffaele Persico) 304 -- 15.10 2D and 3D Inversion Examples (Ilaria Catapano and Raffaele Persico) 311 -- APPENDICES 327 -- APPENDIX A (Raffaele Persico and Raffaele Solimene) 329 -- APPENDIX B 334 -- APPENDIX C 335 -- APPENDIX D 337 -- APPENDIX E 340 -- APPENDIX F (Raffaele Persico and Raffaele Solimene) 346 -- APPENDIX G: ANSWERS TO QUESTIONS 349 -- References 358 -- Index 365.
Record Nr. UNINA-9910132212003321
Persico Raffaele <1969->  
Hoboken, New Jersey : , : Wiley, IEEE Press, [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to ground penetrating radar : inverse scattering and data processing / / Raffaele Persico
Introduction to ground penetrating radar : inverse scattering and data processing / / Raffaele Persico
Autore Persico Raffaele <1969->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, IEEE Press, [2014]
Descrizione fisica 1 online resource (400 p.)
Disciplina 621.3848
621.38485
Soggetto topico Ground penetrating radar
ISBN 1-118-83568-9
1-118-83564-6
1-118-83546-8
Classificazione TEC008000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword xiii -- Acknowledgments xvii -- About the Author xix -- Contributors xxi -- 1 INTRODUCTION TO GPR PROSPECTING 1 -- 1.1 What Is a GPR? 1 -- 1.2 GPR Systems and GPR Signals 4 -- 1.3 GPR Application Fields 5 -- 1.4 Measurement Configurations, Bands, and Polarizations 6 -- 1.5 GPR Data Processing 8 -- 2 CHARACTERIZATION OF THE HOST MEDIUM 10 -- 2.1 The Characteristics of the Host Medium 10 -- 2.2 The Measure of the Propagation Velocity in a Masonry 11 -- 2.3 The Measure of the Propagation Velocity in a Homogeneous Soil 13 -- 2.3.1 Interfacial Data in Common Offset Mode with a Null Offset: The Case of a Point-like Target 13 -- 2.3.2 Interfacial Data in Common Offset Mode with a Null Offset: The Case of a Circular Target 17 -- 2.3.3 Interfacial Data in Common Offset Mode with a Non-null Offset: The Case of a Point-like Target 18 -- 2.3.4 Noninterfacial Data in Common Offset Mode with a Null Offset: The Case of a Point-like Target 22 -- 2.3.5 Interfacial Data in Common Midpoint (CMP) Mode 25 -- 2.4 Lossy, Magnetic, and Dispersive Media 27 -- Questions 31 -- 3 GPR DATA SAMPLING: FREQUENCY AND TIME STEPS 32 -- 3.1 Stepped Frequency GPR Systems: The Problem of the Aliasing and the Frequency Step 32 -- 3.2 Shape and Thickness of the GPR Pulses 36 -- 3.3 Stepped Frequency GPR Systems: The Problem of the Demodulation and the Frequency Step 40 -- 3.4 Aliasing and Time Step for Pulsed GPR Systems 45 -- Questions 47 -- 4 THE 2D SCATTERING EQUATIONS FOR DIELECTRIC TARGETS 48 -- 4.1 Preliminary Remarks 48 -- 4.2 Derivation of the Scattering Equations Without Considering the Effect of the Antennas 51 -- 4.3 Calculation of the Incident Field Radiated by a Filamentary Current 61 -- 4.4 The Plane Wave Spectrum of an Electromagnetic Source in a Homogeneous Space 61 -- 4.5 The Insertion of the Source Characteristics in the Scattering Equations 65 -- 4.6 The Far Field in a Homogeneous Lossless Space in Terms of Plane Wave Spectrum 69 -- 4.7 The Effective Length of an Electromagnetic Source in a Homogeneous Space 73.
4.8 The Insertion of the Receiver Characteristics in the -- Scattering Equations 75 -- Questions 77 -- 5 THE 2D SCATTERING EQUATIONS FOR MAGNETIC TARGETS 79 -- 5.1 The Scattering Equations with Only Magnetic Anomalies 79 -- 5.2 The Contribution of the x-Component of the Fitzgerald Vector 83 -- 5.3 The Contribution of the z-Component of the Fitzgerald Vector 88 -- 5.4 The Joined Contribution of Both the x- and z-Components of the Fitzgerald Vector 93 -- 5.5 The Case with Both Dielectric and Magnetic Anomalies 94 -- Questions 95 -- 6 ILL-POSEDNESS AND NONLINEARITY 96 -- 6.1 Electromagnetic Inverse Scattering 96 -- 6.2 Ill-Posedness 97 -- 6.3 Nonlinearity 97 -- 6.4 The Ill-Posedness of the Inverse Scattering Problem 100 -- 6.5 The Nonlinearity of the Inverse Scattering Problem 103 -- Questions 103 -- 7 EXTRACTION OF THE SCATTERED FIELD DATA FROM THE GPR DATA 105 -- 7.1 Zero Timing 105 -- 7.2 Muting of Interface Contributions 106 -- 7.3 The Differential Configuration 110 -- 7.4 The Background Removal 111 -- Questions 115 -- 8 THE BORN APPROXIMATION 116 -- 8.1 The Classical Born Approximation 116 -- 8.2 The Born Approximation in the Presence of Magnetic Targets 119 -- 8.3 Weak and Nonweak Scattering Objects 120 -- Questions 121 -- 9 DIFFRACTION TOMOGRAPHY 122 -- 9.1 Introduction to Diffraction Tomography 122 -- 9.2 Diffraction Tomography for Dielectric Targets 123 -- 9.3 Diffraction Tomography for Dielectric Targets Seen Under a Limited View Angle 130 -- 9.4 The Effective Maximum and Minimum View Angle 140 -- 9.5 Horizontal Resolution 142 -- 9.6 Vertical Resolution 145 -- 9.7 Spatial Step 147 -- 9.8 Frequency Step 148 -- 9.9 Time Step 149 -- 9.10 The Effect of a Non-null Height of the Observation Line 150 -- 9.11 The Effect of the Radiation Characteristics of the Antennas 156 -- 9.12 DT Relationship in the Presence of Magnetic Targets 158 -- 9.13 DT Relationship for a Differential Configuration 160 -- 9.14 DT Relationship in the Presence of Background Removal 163 -- Questions 168.
10 TWO-DIMENSIONAL MIGRATION ALGORITHMS 169 -- 10.1 Migration in the Frequency Domain 169 -- 10.2 Migration in the Time Domain (Raffaele Persico and Raffaele Solimene) 175 -- Questions 181 -- 11 THREE-DIMENSIONAL SCATTERING EQUATIONS 182 /Lorenzo Lo Monte, Raffaele Persico, and Raffaele Solimene -- 11.1 Scattering in Three Dimensions: Redefinition of the Main Symbols 182 -- 11.2 The Scattering Equations in 3D 184 -- 11.3 Three-Dimensional Green's Functions 184 -- 11.4 The Incident Field 185 -- 11.5 Homogeneous 3D Green's Functions 187 -- 11.6 The Plane Wave Spectrum of a 3D Homogeneous Green's Fucntion 192 -- 11.7 Half-Space Green's Functions 197 -- Questions 204 -- 12 THREE-DIMENSIONAL DIFFRACTION TOMOGRAPHY 205 -- 12.1 Born Approximation and DT in 3D 205 -- 12.2 Ideal and Limited-View-Angle 3D Retrievable Spectral Sets 210 -- 12.3 Spatial Step and Transect 212 -- 12.4 Horizontal Resolution (Raffaele Persico and Raffaele Solimene) 213 -- 12.5 Vertical Resolution, Frequency and Time Steps 217 -- Questions 218 -- 13 THREE-DIMENSIONAL MIGRATION ALGORITHMS 219 -- 13.1 3D Migration Formulas in the Frequency Domain 219 -- 13.2 3D Migration Formulas in the Time Domain 222 -- 13.3 3D Versus 2D Migration Formulas in the Time Domain 226 -- Questions 228 -- 14 THE SINGULAR VALUE DECOMPOSITION 229 -- 14.1 The Method of Moments 229 -- 14.2 Reminders About Eigenvalues and Eigenvectors 231 -- 14.3 The Singular Value Decomposition 234 -- 14.4 The Study of the Inverse Scattering Relationship by Means of the SVD 238 -- Questions 241 -- 15 NUMERICAL AND EXPERIMENTAL EXAMPLES 242 -- 15.1 Examples with Regard to the Measure of the Propagation Velocity 242 -- 15.1.1 Common Offset Interfacial Data with Null Offset on a Homogeneous Soil 242 -- 15.1.2 Common Offset Interfacial Data on a Wall, Neglecting the Offset Between the Antennas 245 -- 15.1.3 Interfacial Common Offset Data on a Homogeneous Soil: The Effect on the Offset Between the Antennas 247 -- 15.1.4 Noninterfacial Common Offset Data with a Null Offset Between the Antennas 249.
15.1.5 Common Midpoint Data 250 -- 15.2 Exercises on Spatial Step and Horizontal Resolution 252 -- 15.3 Exercises on Frequency Step and Vertical Resolution 264 -- 15.4 Exercises on the Number of Trial Unknowns 271 -- 15.5 Exercises on Spectral and Spatial Contents 274 -- 15.6 Exercises on the Effect of the Height of the Observation Line 280 -- 15.7 Exercises on the Effect of the Extent of the Investigation Domain 284 -- 15.8 Exercises on the Effects of the Background Removal 295 -- 15.9 2D and 3D Migration Examples with a Single Set and Two Crossed Sets of B-Scans (Marcello Ciminale, Giovanni Leucci, Loredana Matera, and Raffaele Persico) 304 -- 15.10 2D and 3D Inversion Examples (Ilaria Catapano and Raffaele Persico) 311 -- APPENDICES 327 -- APPENDIX A (Raffaele Persico and Raffaele Solimene) 329 -- APPENDIX B 334 -- APPENDIX C 335 -- APPENDIX D 337 -- APPENDIX E 340 -- APPENDIX F (Raffaele Persico and Raffaele Solimene) 346 -- APPENDIX G: ANSWERS TO QUESTIONS 349 -- References 358 -- Index 365.
Record Nr. UNINA-9910830284003321
Persico Raffaele <1969->  
Hoboken, New Jersey : , : Wiley, IEEE Press, [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Risk assessment of power systems : models, methods, and applications / / Wenyuan Li, Ph.D., Fellow, IEEE, CAE, EIC, Chongqing University, China, BC Hydro, Canada
Risk assessment of power systems : models, methods, and applications / / Wenyuan Li, Ph.D., Fellow, IEEE, CAE, EIC, Chongqing University, China, BC Hydro, Canada
Autore Li Wenyuan <1946->
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, IEEE Press, , [2014]
Descrizione fisica 1 online resource (557 p.)
Disciplina 621.319/13011
Collana Ieee press series on power engineering
Soggetto topico Electric power systems - Reliability - Mathematical models
Electric power failures - Risk assessment
Monte Carlo method
ISBN 1-306-47326-8
1-118-84322-3
1-118-84335-5
Classificazione TEC007000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title page; Copyright page; Dedication; Contents; Preface; Preface to the First Edition; 1: Introduction; 1.1 Risk in Power Systems; 1.2 Basic Concepts of Power System Risk Assessment; 1.2.1 System Risk Evaluation; 1.2.2 Data in Risk Evaluation; 1.2.3 Unit Interruption Cost; 1.3 Outline of the Book; 2: Outage Models of System Components; 2.1 Introduction; 2.2 Models of Independent Outages; 2.2.1 Repairable Forced Failure; 2.2.2 Aging Failure; 2.2.3 Nonrepairable Chance Failure; 2.2.4 Planned Outage; 2.2.5 Semiforced Outage; 2.2.6 Partial Failure Mode; 2.2.7 Multiple Failure Mode
2.3 Models of Dependent Outages2.3.1 Common-Cause Outage; 2.3.2 Component-Group Outage; 2.3.3 Station-Originated Outage; 2.3.4 Cascading Outage; 2.3.5 Environment-Dependent Failure; 2.4 Conclusions; 3: Parameter Estimation in Outage Models; 3.1 Introduction; 3.2 Point Estimation on Mean and Variance of Failure Data; 3.2.1 Sample Mean; 3.2.2 Sample Variance; 3.3 Interval Estimation on Mean and Variance of Failure Data; 3.3.1 General Concept of Confidence Interval; 3.3.2 Confidence Interval of Mean; 3.3.3 Confidence Interval of Variance; 3.4 Estimating Failure Frequency of Individual Components
3.4.1 Point Estimation3.4.2 Interval Estimation; 3.5 Estimating Probability from a Binomial Distribution; 3.6 Experimental Distribution of Failure Data and Its Test; 3.6.1 Experimental Distribution of Failure Data; 3.6.2 Test of Experimental Distribution; 3.7 Estimating Parameters in Aging Failure Models; 3.7.1 Mean Life and Its Standard Deviation in the Normal Model; 3.7.2 Shape and Scale Parameters in the Weibull Model; 3.7.3 Example; 3.8 Conclusions; 4: Elements of Risk Evaluation Methods; 4.1 Introduction; 4.2 Methods for Simple Systems; 4.2.1 Probability Convolution
4.2.2 Series and Parallel Networks4.2.3 Minimum Cutsets; 4.2.4 Markov Equations; 4.2.5 Frequency-Duration Approaches; 4.3 Methods for Complex Systems; 4.3.1 State Enumeration; 4.3.2 Nonsequential Monte Carlo Simulation; 4.3.3 Sequential Monte Carlo Simulation; 4.4 Correlation Models in Risk Evaluation; 4.4.1 Correlation Measures; 4.4.2 Correlation Matrix Methods; 4.4.3 Copula Functions; 4.5 Conclusions; 5: Risk Evaluation Techniques for Power Systems; 5.1 Introduction; 5.2 Techniques Used in Generation-Demand Systems; 5.2.1 Convolution Technique; 5.2.2 State Sampling Method
5.2.3 State Duration Sampling Method5.3 Techniques Used in Radial Distribution Systems; 5.3.1 Analytical Technique; 5.3.2 State Duration Sampling Method; 5.4 Techniques Used in Substation Configurations; 5.4.1 Failure Modes and Modeling; 5.4.2 Connectivity Identification; 5.4.3 Stratified State Enumeration Method; 5.4.4 State Duration Sampling Method; 5.5 Techniques Used in Composite Generation and Transmission Systems; 5.5.1 Basic Procedure; 5.5.2 Component Failure Models; 5.5.3 Load Curve Models; 5.5.4 Contingency Analysis; 5.5.5 Optimization Models for Load Curtailments
5.5.6 State Enumeration Method
Record Nr. UNINA-9910140287303321
Li Wenyuan <1946->  
Hoboken, New Jersey : , : Wiley, IEEE Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Risk assessment of power systems : models, methods, and applications / / Wenyuan Li, Ph.D., Fellow, IEEE, CAE, EIC, Chongqing University, China, BC Hydro, Canada
Risk assessment of power systems : models, methods, and applications / / Wenyuan Li, Ph.D., Fellow, IEEE, CAE, EIC, Chongqing University, China, BC Hydro, Canada
Autore Li Wenyuan <1946->
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, IEEE Press, , [2014]
Descrizione fisica 1 online resource (557 p.)
Disciplina 621.319/13011
Collana Ieee press series on power engineering
Soggetto topico Electric power systems - Reliability - Mathematical models
Electric power failures - Risk assessment
Monte Carlo method
ISBN 1-306-47326-8
1-118-84322-3
1-118-84335-5
Classificazione TEC007000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title page; Copyright page; Dedication; Contents; Preface; Preface to the First Edition; 1: Introduction; 1.1 Risk in Power Systems; 1.2 Basic Concepts of Power System Risk Assessment; 1.2.1 System Risk Evaluation; 1.2.2 Data in Risk Evaluation; 1.2.3 Unit Interruption Cost; 1.3 Outline of the Book; 2: Outage Models of System Components; 2.1 Introduction; 2.2 Models of Independent Outages; 2.2.1 Repairable Forced Failure; 2.2.2 Aging Failure; 2.2.3 Nonrepairable Chance Failure; 2.2.4 Planned Outage; 2.2.5 Semiforced Outage; 2.2.6 Partial Failure Mode; 2.2.7 Multiple Failure Mode
2.3 Models of Dependent Outages2.3.1 Common-Cause Outage; 2.3.2 Component-Group Outage; 2.3.3 Station-Originated Outage; 2.3.4 Cascading Outage; 2.3.5 Environment-Dependent Failure; 2.4 Conclusions; 3: Parameter Estimation in Outage Models; 3.1 Introduction; 3.2 Point Estimation on Mean and Variance of Failure Data; 3.2.1 Sample Mean; 3.2.2 Sample Variance; 3.3 Interval Estimation on Mean and Variance of Failure Data; 3.3.1 General Concept of Confidence Interval; 3.3.2 Confidence Interval of Mean; 3.3.3 Confidence Interval of Variance; 3.4 Estimating Failure Frequency of Individual Components
3.4.1 Point Estimation3.4.2 Interval Estimation; 3.5 Estimating Probability from a Binomial Distribution; 3.6 Experimental Distribution of Failure Data and Its Test; 3.6.1 Experimental Distribution of Failure Data; 3.6.2 Test of Experimental Distribution; 3.7 Estimating Parameters in Aging Failure Models; 3.7.1 Mean Life and Its Standard Deviation in the Normal Model; 3.7.2 Shape and Scale Parameters in the Weibull Model; 3.7.3 Example; 3.8 Conclusions; 4: Elements of Risk Evaluation Methods; 4.1 Introduction; 4.2 Methods for Simple Systems; 4.2.1 Probability Convolution
4.2.2 Series and Parallel Networks4.2.3 Minimum Cutsets; 4.2.4 Markov Equations; 4.2.5 Frequency-Duration Approaches; 4.3 Methods for Complex Systems; 4.3.1 State Enumeration; 4.3.2 Nonsequential Monte Carlo Simulation; 4.3.3 Sequential Monte Carlo Simulation; 4.4 Correlation Models in Risk Evaluation; 4.4.1 Correlation Measures; 4.4.2 Correlation Matrix Methods; 4.4.3 Copula Functions; 4.5 Conclusions; 5: Risk Evaluation Techniques for Power Systems; 5.1 Introduction; 5.2 Techniques Used in Generation-Demand Systems; 5.2.1 Convolution Technique; 5.2.2 State Sampling Method
5.2.3 State Duration Sampling Method5.3 Techniques Used in Radial Distribution Systems; 5.3.1 Analytical Technique; 5.3.2 State Duration Sampling Method; 5.4 Techniques Used in Substation Configurations; 5.4.1 Failure Modes and Modeling; 5.4.2 Connectivity Identification; 5.4.3 Stratified State Enumeration Method; 5.4.4 State Duration Sampling Method; 5.5 Techniques Used in Composite Generation and Transmission Systems; 5.5.1 Basic Procedure; 5.5.2 Component Failure Models; 5.5.3 Load Curve Models; 5.5.4 Contingency Analysis; 5.5.5 Optimization Models for Load Curtailments
5.5.6 State Enumeration Method
Record Nr. UNINA-9910814719703321
Li Wenyuan <1946->  
Hoboken, New Jersey : , : Wiley, IEEE Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui