top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The absence of soulware in higher education / / Way Kuo
The absence of soulware in higher education / / Way Kuo
Autore Kuo Way <1951->
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023]
Descrizione fisica 1 online resource (443 pages)
Disciplina 929.374
Soggetto topico Education
ISBN 1-394-17566-3
1-394-17565-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830053803321
Kuo Way <1951->  
Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced magnetic and optical materials / edited by Ashutosh Tiwari...[et al.]
Advanced magnetic and optical materials / edited by Ashutosh Tiwari...[et al.]
Pubbl/distr/stampa Hoboken, : Scrivener Publishing LLC, 2017
Descrizione fisica Testo elettronico (PDF) (XXI, 532 p.)
Disciplina 621.34
Collana Advanced Material Series
Soggetto topico Materiali magnetici
ISBN 9781119241966
Formato Risorse elettroniche
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996447149803316
Hoboken, : Scrivener Publishing LLC, 2017
Risorse elettroniche
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in aerial sensing and imaging / / edited by Sandeep Kumar [and five others]
Advances in aerial sensing and imaging / / edited by Sandeep Kumar [and five others]
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc.
Descrizione fisica 1 online resource (xiv, 415 pages) : illustrations, charts
Soggetto topico Imaging systems
Drone aircraft in remote sensing
Drone aircraft
ISBN 1-394-17551-5
1-394-17550-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 A Systematic Study on Aerial Images of Various Domains: Competences, Applications, and Futuristic Scope -- 1.1 Introduction -- 1.2 Literature Work -- 1.2.1 Based on Camera Axis -- 1.2.2 Based on Scale -- 1.2.3 Based on Sensor -- 1.3 Challenges of Object Detection and Classification in Aerial Images -- 1.4 Applications of Aerial Imaging in Various Domains -- 1.5 Conclusions and Future Scope -- 1.5.1 Conclusions -- 1.5.2 Future Scope -- References -- Chapter 2 Oriental Method to Predict Land Cover and Land Usage Using Keras with VGG16 for Image Recognition -- 2.1 Introduction -- 2.2 Literature Review -- 2.3 Materials and Methods -- 2.3.1 Dataset -- 2.3.2 Model Implemented -- 2.4 Discussion -- 2.5 Result Analysis -- 2.6 Conclusion -- References -- Chapter 3 Aerial Imaging Rescue and Integrated System for Road Monitoring Based on AI/ML -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Number of Accidents, Fatalities, and Injuries: 2016-2022 -- 3.3.1 Accidents Statistics in India -- 3.3.2 Accidents Statistics in Haryana -- 3.4 Proposed Methodology -- 3.4.1 ROI and Line Selection -- 3.4.2 Motion Detection -- 3.4.3 Single-Stage Clustering -- 3.4.4 Feature Fusion Process -- 3.4.5 Second-Stage Clustering -- 3.4.6 Tracking Objects -- 3.4.7 Classification -- 3.5 Result Analysis -- 3.6 Conclusion -- References -- Chapter 4 A Machine Learning Approach for Poverty Estimation Using Aerial Images -- 4.1 Introduction -- 4.2 Background and Literature Review -- 4.3 Proposed Methodology -- 4.3.1 Data Acquisition -- 4.3.2 Pre-Processing -- 4.3.3 Feature Extraction -- 4.3.4 Data Integration -- 4.3.5 Model Development -- 4.3.6 Validation -- 4.3.7 Visualization and Analysis -- 4.3.8 Policy and Program Development -- 4.4 Result and Discussion -- 4.5 Conclusion and Future Scope -- References.
Chapter 5 Agriculture and the Use of Unmanned Aerial Vehicles (UAVs): Current Practices and Prospects -- 5.1 Introduction -- 5.2 UAVs Classification -- 5.2.1 Comparison of Various UAVs -- 5.3 Agricultural Use of UAVs -- 5.4 UAVs in Livestock Farming -- 5.5 Challenges -- 5.6 Conclusion -- References -- Chapter 6 An Introduction to Deep Learning-Based Object Recognition and Tracking for Enabling Defense Applications -- 6.1 Introduction -- 6.2 Related Work -- 6.2.1 Importance of Object Monitoring and Surveillance in Defense -- 6.2.2 Need for Object Monitoring and Surveillance in Defense -- 6.2.3 Object Detection Techniques -- 6.2.4 Object Tracking Techniques -- 6.3 Experimental Methods -- 6.3.1 Experimental Setup and Dataset -- 6.3.2 DataSetVISdrone 2019 -- 6.3.3 Experimental Setup -- 6.4 Results and Outcomes -- 6.4.1 Comparison Results -- 6.4.2 Training Results -- 6.5 Conclusion -- 6.6 Future Scope -- References -- Chapter 7 A Robust Machine Learning Model for Forest Fire Detection Using Drone Images -- 7.1 Introduction -- 7.2 Literature Review -- 7.3 Proposed Methodology -- 7.4 Result and Discussion -- 7.5 Conclusion and Future Scope -- References -- Chapter 8 Semantic Segmentation of Aerial Images Using Pixel Wise Segmentation -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Proposed Method -- 8.3.1 Pixelwise Classification Method -- 8.3.2 Morphological Processing -- 8.4 Datasets -- 8.5 Results and Discussion -- 8.5.1 Analysis of the Proposed Method -- 8.6 Conclusion -- References -- Chapter 9 Implementation Analysis of Ransomware and Unmanned Aerial Vehicle Attacks: Mitigation Methods and UAV Security Recommendations -- 9.1 Introduction -- 9.2 Types of Ransomwares -- 9.3 History of Ransomware -- 9.4 Notable Ransomware Strains and Their Impact -- 9.4.1 CryptoLocker (2013) -- 9.4.2 CryptoWall (2014) -- 9.4.3 TeslaCrypt (2015) -- 9.4.4 Locky (2016).
9.4.5 WannaCry (2017) -- 9.4.6 NotPetya (2017) -- 9.4.7 Ryuk (2018) -- 9.4.8 REvil (2019) -- 9.4.9 Present-Day Ransomware Families -- 9.5 Mitigation Methods for Ransomware Attacks -- 9.6 Cybersecurity in UAVs (Unmanned Aerial Vehicles) -- 9.6.1 Introduction on FANETS -- 9.6.2 Network Security Concerning FANETs -- 9.6.3 UAV Security Enhancement -- 9.6.4 Limitations in UAVs -- 9.6.5 Future Scope -- 9.7 Experimental analysis of Wi-Fi Attack on Ryze Tello UAVs -- 9.7.1 Introduction -- 9.7.2 Methodology -- 9.8 Results and Discussion -- 9.9 Conclusion and Future Scope -- References -- Chapter 10 A Framework for Detection of Overall Emotional Score of an Event from the Images Captured by a Drone -- 10.1 Introduction -- 10.1.1 Need for Emotion Recognition -- 10.1.2 Applications of Drones in Deep Learning -- 10.2 Literature Review -- 10.3 Proposed Work -- 10.3.1 Extraction of Images from a Drone -- 10.3.2 Proposed CNN Model -- 10.4 Experimentation and Results -- 10.4.1 Dataset Description -- 10.5 Future Work and Conclusion -- References -- Chapter 11 Drone-Assisted Image Forgery Detection Using Generative Adversarial Net-Based Module -- 11.1 Introduction -- 11.2 Literature Survey -- 11.3 Proposed System -- 11.3.1 Common Forged Feature Network -- 11.3.2 Features Extraction -- 11.3.3 Features Classification and Classification Network -- 11.3.4 Label Prediction -- 11.3.5 Contrastive Learning -- 11.3.6 Binary Cross-Entropy Loss -- 11.4 Results -- 11.4.1 Experimental Settings -- 11.4.2 Performance Comparison -- 11.4.3 LBP Visualized Results -- 11.4.4 Training Convergence -- 11.5 Conclusion -- References -- Chapter 12 Optimizing the Identification and Utilization of Open Parking Spaces Through Advanced Machine Learning -- 12.1 Introduction -- 12.2 Proposed Framework Optimized Parking Space Identifier (OPSI) -- 12.2.1 Framework Components.
12.2.2 Learning Module: Adaptive Prediction of Parking Space Availability -- 12.2.3 System Design -- 12.2.4 Tools and Usage -- 12.2.5 Architecture -- 12.2.6 Implementation Techniques and Algorithms -- 12.2.7 Existing Methods and Workflow Model -- 12.2.8 Hyperparameter for OPSI -- 12.3 Potential Impact -- 12.3.1 Claims for the Accurate Detection of Fatigue -- 12.3.2 Similar Study and Results Analysis -- 12.4 Application and Results -- 12.4.1 Algorithm and Results -- 12.4.2 Implementation Using Python Modules -- 12.5 Discussion and Limitations -- 12.5.1 Discussion -- 12.5.2 Limitations -- 12.6 Future Work -- 12.6.1 Integration with Autonomous Vehicles -- 12.6.2 Real-Time Data Analysis -- 12.6.3 Integration with Smart Cities -- 12.7 Conclusion -- References -- Chapter 13 Graphical Password Authentication Using Python for Aerial Devices/Drones -- 13.1 Introduction -- 13.2 Literature Review -- 13.3 Methodology -- 13.4 A Brief Overview of a Drone and Authentication -- 13.4.1 Password Authentication -- 13.4.2 Types of Password Authentication Systems -- 13.4.3 Graphical Password Authentication -- 13.4.4 Advantages and Disadvantages of Graphical Passwords -- 13.5 Password Cracking -- 13.6 Data Analysis -- 13.7 Discussion -- 13.8 Conclusion and Future Scope -- References -- Chapter 14 A Study Centering on the Data and Processing for Remote Sensing Utilizing from Annoyed Aerial Vehicles -- 14.1 Introduction -- 14.2 An Acquisition Method for 3D Data Utilising Annoyed Aerial Vehicles -- 14.3 Background and Literature of Review -- 14.4 Research Gap -- 14.5 Methodology -- 14.6 Discussion -- 14.7 Conclusion -- References -- Chapter 15 Satellite Image Classification Using Convolutional Neural Network -- 15.1 Introduction -- 15.2 Literature Review -- 15.3 Objectives of this Research Work -- 15.3.1 Novelty of the Research Work -- 15.4 Description of the Dataset.
15.5 Theoretical Framework -- 15.6 Implementation and Results -- 15.6.1 Data Visualization -- 15.6.1.1 Class-Wise Data Count -- 15.6.1.2 Class-Wise Augmented Data Count -- 15.6.2 Implementation of MobileNetV3 -- 15.6.2.1 Visualization of a Sample of Training Images -- 15.6.2.2 Visualization of Executed Codes of MobileNetV3 -- 15.6.2.3 Training Results of MobileNetV3 -- 15.6.2.4 Classifications of Errors on Test Sets of MobileNetV3 -- 15.6.2.5 Confusion Matrix of MobileNetV3 -- 15.6.2.6 Classification Report of MobileNetV3 -- 15.6.3 Implementation of EfficientNetB0 -- 15.6.3.1 Visualization of a Sample of Training Images -- 15.6.3.2 Visualization of Executed Codes of EfficientNetB0 -- 15.6.3.3 Training Results of EfficientNetB0 -- 15.6.3.4 Classifications of Errors on Test Sets of EfficientNetB0 -- 15.6.3.5 Confusion Matrix of EfficientNetB0 -- 15.6.3.6 Classification Report of EfficientNetB0 -- 15.7 Conclusion and Future Scope -- References -- Chapter 16 Edge Computing in Aerial Imaging - A Research Perspective -- 16.1 Introduction -- 16.1.1 Edge Computing and Aerial Imaging -- 16.2 Research Applications of Aerial Imaging -- 16.2.1 Vehicle Imaging -- 16.2.2 Precision Agriculture -- 16.2.3 Environment Monitoring -- 16.2.4 Urban Planning and Development -- 16.2.5 Emergency Response -- 16.3 Edge Computing and Aerial Imaging -- 16.3.1 Research Perspective in Aerial Imaging -- 16.3.2 Edge Architectures -- 16.4 Comparative Analysis of the Aerial Imaging Algorithms and Architectures -- 16.5 Discussion -- 16.6 Conclusion -- References -- Chapter 17 Aerial Sensing and Imaging Analysis for Agriculture -- 17.1 Introduction -- 17.2 Experimental Methods and Techniques -- 17.3 Aerial Imaging and Sensing Applications in Agriculture -- 17.3.1 Assessing Yield and Fertilizer Response -- 17.3.2 Plant and Crop Farming -- 17.3.3 Soil and Field Analysis.
17.3.4 Weed Mapping and Management.
Record Nr. UNINA-9910877032103321
Hoboken, NJ : , : John Wiley & Sons, Inc.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in biofeedstocks and biofuels . Volume 1 Biofeedstocks and their processing / / edited by Dr. Lalit Kumar Singh, Dr. Gaurav Chaudhary
Advances in biofeedstocks and biofuels . Volume 1 Biofeedstocks and their processing / / edited by Dr. Lalit Kumar Singh, Dr. Gaurav Chaudhary
Autore Kumar Singh Lalit
Pubbl/distr/stampa Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing LLC, , 2016
Descrizione fisica 1 online resource (191 pages) : illustrations (some color)
Disciplina 662.88
Soggetto topico Biomass energy
ISBN 1-119-11729-1
1-5231-1001-5
1-119-11732-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Production of Bioenergy in the Framework of Circular Economy: A Sustainable Circular System in Ecuador / Vega-Quezada Cristhian, Vega-Quezada Cristhian, Blanco María, Romero Hugo -- The Impact of Biomass Feedstock Composition and Pre-treatments on Tar Formation during Biomass Gasification / John Corton, Blanco-Sanchez P Paula, Zakir Khan, Jon Paul McCalmont, Xi Yu, George Fletcher, Steve Croxton, James Sharp, Manosh C Paul, Ian A I Watson, Iain S Donnison -- Key Pretreatment Technologies for An Efficient Bioethanol Production from Lignocellulosics / Archana Mishra, Sanjoy Ghosh -- Present Status on Enzymatic Hydrolysis of Lignocellulosic Biomass for Bioethanol Production / Arindam Kuila, Vinay Sharma, Vijay Kumar Garlapati, Anshu Singh, Lakshmishri Roy, Rintu Banerjee -- Biological Pretreatment of Lignocellulosic Biomaterials / Sandeep Kaur Saggi, Geetika Gupta, Pinaki Dey -- Anaerobic Digestion and the Use of Pre-treatments on Lignocellulosic Feedstocks to Improve Biogas Production and Process Economics / Laura Williams, Joe Gallagher, David Bryant, Sreenivas Rao Ravella -- Algae: The Future of Bioenergy / Nivas Manohar Desai.
Record Nr. UNINA-9910156343503321
Kumar Singh Lalit  
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing LLC, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in biofeedstocks and biofuels . Volume 1 Biofeedstocks and their processing / / edited by Dr. Lalit Kumar Singh, Dr. Gaurav Chaudhary
Advances in biofeedstocks and biofuels . Volume 1 Biofeedstocks and their processing / / edited by Dr. Lalit Kumar Singh, Dr. Gaurav Chaudhary
Autore Kumar Singh Lalit
Pubbl/distr/stampa Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing LLC, , 2016
Descrizione fisica 1 online resource (191 pages) : illustrations (some color)
Disciplina 662.88
Soggetto topico Biomass energy
ISBN 1-119-11729-1
1-5231-1001-5
1-119-11732-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Production of Bioenergy in the Framework of Circular Economy: A Sustainable Circular System in Ecuador / Vega-Quezada Cristhian, Vega-Quezada Cristhian, Blanco María, Romero Hugo -- The Impact of Biomass Feedstock Composition and Pre-treatments on Tar Formation during Biomass Gasification / John Corton, Blanco-Sanchez P Paula, Zakir Khan, Jon Paul McCalmont, Xi Yu, George Fletcher, Steve Croxton, James Sharp, Manosh C Paul, Ian A I Watson, Iain S Donnison -- Key Pretreatment Technologies for An Efficient Bioethanol Production from Lignocellulosics / Archana Mishra, Sanjoy Ghosh -- Present Status on Enzymatic Hydrolysis of Lignocellulosic Biomass for Bioethanol Production / Arindam Kuila, Vinay Sharma, Vijay Kumar Garlapati, Anshu Singh, Lakshmishri Roy, Rintu Banerjee -- Biological Pretreatment of Lignocellulosic Biomaterials / Sandeep Kaur Saggi, Geetika Gupta, Pinaki Dey -- Anaerobic Digestion and the Use of Pre-treatments on Lignocellulosic Feedstocks to Improve Biogas Production and Process Economics / Laura Williams, Joe Gallagher, David Bryant, Sreenivas Rao Ravella -- Algae: The Future of Bioenergy / Nivas Manohar Desai.
Record Nr. UNINA-9910824016803321
Kumar Singh Lalit  
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing LLC, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Novel Formulations for Drug Delivery / / edited by Raj K. Keservani, Rajesh Kumar Kesharwani, and Anil K. Sharma
Advances in Novel Formulations for Drug Delivery / / edited by Raj K. Keservani, Rajesh Kumar Kesharwani, and Anil K. Sharma
Pubbl/distr/stampa Hoboken, NJ ; ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023]
Descrizione fisica 1 online resource (576 pages)
Disciplina 615.6
Soggetto topico Drug delivery systems
ISBN 1-394-16770-9
1-394-16769-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Novel Drug Carriers and Therapeutics -- Chapter 1 Nanoarchitectured Materials: Their Applications and Present Scenarios in Drug Delivery -- 1.1 Introduction -- 1.2 Liposomes -- 1.3 Nanoparticles -- 1.3.1 Nanoparticles in Drug Delivery -- 1.4 Nanoemulsions -- 1.4.1 Advantages and Shortcomings of Nanoemulsions -- 1.4.2 Application of Nanoemulsion in Drug Delivery -- 1.5 Dendrimers -- 1.5.1 Synthesis of Dendrimers -- 1.5.2 Advantages of Dendrimers -- 1.5.3 Applications of Dendrimers in Drug Delivery -- 1.6 Aquasomes -- 1.6.1 Properties of Aquasomes -- 1.6.2 Application of Aquasomes in Drug Delivery -- 1.7 Nanogel -- 1.7.1 Properties of Nanogels -- 1.7.2 Nanogels in Drug Delivery -- 1.8 Quantum Dots -- 1.8.1 Applications of Quantum Dots in Drug Delivery -- 1.9 Carbon Nanotubes -- 1.9.1 Features of Carbon Nanotubes -- 1.9.2 Carbon Nanotubes in Drug Delivery -- References -- Chapter 2 Nanopharmaceuticals for Drug Delivery -- 2.1 Introduction -- 2.2 What Are Nanopharmaceuticals and What Do They Do? -- 2.3 Nanopharmaceuticals Importance -- 2.4 Nanotechnology -- 2.5 Pharmaceutical Companies and Nanotechnology -- 2.6 Applications and Advantages of Nanopharmaceuticals as Drug Carriers -- 2.7 Characteristics of Nanoparticles in Nanopharmaceuticals -- 2.7.1 Particle Size -- 2.7.2 Surface Properties of Nanoparticles -- 2.7.3 Drug Loading -- 2.7.4 Drug Release -- 2.8 Targeted Drug Delivery -- 2.9 Types of Nanoparticles -- 2.10 Nanoparticle Preparation Methods -- 2.11 Evaluation of Nanoparticles -- 2.12 Efficiency of Drug Entrapment -- 2.13 Particle Shape -- 2.14 Size of the Particles -- 2.15 Zeta Potential -- 2.16 Rise of Nanopharmaceuticals -- 2.17 Nanopharmaceuticals Approval Regulations (FDA Rules & -- Regulations) -- 2.18 Conclusions and Prospects for the Future -- References.
Chapter 3 Applications and Prospects of Nanopharmaceuticals Delivery -- 3.1 Introduction -- 3.2 Nanopharmaceuticals -- 3.3 Development of Nanopharmaceuticals -- 3.3.1 From Lab to the Marketplace -- 3.3.2 Techniques -- 3.3.3 Cost -- 3.3.4 Ethics -- 3.3.5 Nanopharmaceuticals Approval Regulations (FDA Rules & -- Regulations) -- 3.4 Clinical Applications of Nanotechnology -- 3.4.1 Diagnostic Applications -- 3.4.1.1 Detection -- 3.4.1.2 Protein Chips -- 3.4.1.3 Individual Target Probes -- 3.4.1.4 Nanotechnology as a Tool in Imaging -- 3.4.1.5 Sparse Cell Detection -- 3.4.2 Therapeutic Applications -- 3.4.2.1 Surfaces -- 3.4.2.2 Gene Delivery -- 3.4.2.3 Drug Delivery -- 3.4.2.4 Liposomes -- 3.4.2.5 Nanotechnology in Orthopedic Applications -- 3.4.2.6 Nanotechnology in Cardiac Therapy -- 3.4.2.7 Nanotechnology in Dental Care -- 3.4.2.8 Biomolecular Engineering -- 3.4.2.9 Biopharmaceuticals -- 3.5 Nanopharmaceuticals Delivery-Recent Applications -- 3.5.1 Nanoparticulate Systems for Vaccine -- 3.5.1.1 Polyanhydride-Based NPs -- 3.5.1.2 Biodegradable Synthetic PLGA NPs -- 3.5.1.3 Liposome-Based NPs -- 3.5.1.4 Polysaccharide-Based NPs -- 3.5.2 Chemotherapy -- 3.5.2.1 Increasing the Concentration of Chemotherapeutic Agents in Tumor Tissue -- 3.5.3 Drug/Gene Delivery -- 3.5.3.1 Nanoparticles Used in Drug Delivery System -- 3.5.3.2 Cellulose -- 3.6 Nanotechnology in Neurodegenerative Disorders Treatment -- 3.7 Future Perspective -- 3.8 Issues with Current Nanopharmaceutical Concepts -- 3.8.1 Large-Scale Manufacturing -- 3.8.2 Biological Challenges -- 3.8.3 Intellectual Property (IP) -- 3.8.4 Biocompatibility and Safety -- 3.8.5 Government Regulations -- 3.9 Conclusion -- References -- Chapter 4 Nanomedicine Regulation and Future Prospects -- 4.1 Introduction -- 4.2 Importance of Regulation of Nanomedicine.
4.3 Regulatory Challenges Faced by Nanomaterial in Medicine -- 4.3.1 Performing Various Functions -- 4.3.2 Nanomedicine Classification Issues -- 4.3.3 Variation in Size of the Particle -- 4.3.4 Manufacturing Process -- 4.3.5 Difficulties to Create CQA -- 4.3.6 Nanotoxicology and Cellular Response -- 4.3.7 Administering Right Doses -- 4.3.8 Pharmacokinetics -- 4.3.9 Developing Guidelines -- 4.4 Nanomedicine Future Aspects -- 4.5 Challenges that Threaten the Future of Nanomedicine -- 4.5.1 Financial Crisis -- 4.5.2 Lack of Confidence -- 4.5.3 Potential Dangers -- 4.5.4 Unsuccessful Patenting -- 4.5.5 Breakdowns in the Pharmaceuticals and Financial Markets -- 4.5.6 Limited Regulation -- 4.6 Future Prospects for Nanomedicine -- 4.6.1 Emerging Nanomaterials -- 4.6.2 Personalized Nanomedicine -- 4.6.3 Nanorobots and Nanodevices -- 4.6.4 Orthopedic Augmentations and Cytocompatibility -- 4.6.5 Cardiology and Nanotechnology -- 4.6.6 Cancer and Nanotechnology -- 4.6.7 NAPT -- 4.6.8 Gene, Protein, Lab-on-a-Chip Devices -- 4.6.9 Polymeric Nanoparticles in Medicine -- References -- Chapter 5 Nanotechnology Application in Drug Delivery for Medicinal Plants -- 5.1 Introduction -- 5.1.1 Nanodrug Delivery Systems (NDDS) -- 5.2 Nanoherbals -- 5.2.1 Cucuma longa (Cucurmin) -- 5.2.2 Gingko biloba -- 5.2.3 Artemisia -- 5.2.4 Silybum marianum-Silymarin -- 5.2.5 Salvia miltiorrhiza (Danshen) -- 5.2.6 Glycyrrhiza glabra (L.) -- 5.2.7 Camellia sinensis (Green tea) -- 5.2.8 Camptotheca acuminata -- 5.2.9 Leea indica -- 5.2.10 Ziziphus mauritiana (Malay apple) -- 5.2.11 Cuscuta chinensis -- 5.3 Conclusion -- References -- Chapter 6 Nanosystems Trends in Nutraceutical Delivery -- 6.1 Introduction -- 6.2 Classification of Nutraceuticals -- 6.3 Biopharmaceutical Issues Associated with Nutraceuticals -- 6.4 Nanosystems for Delivery of Nutraceuticals -- 6.4.1 Nanoemulsions.
6.4.2 Self-Emulsifying Systems -- 6.4.3 Solid Lipid Nanoparticles and Nanostructured Lipid Carriers -- 6.4.4 Liposomes -- 6.4.5 Polymeric Nanoparticles -- 6.4.6 Inorganic Nanoparticles -- 6.5 Challenges -- 6.6 Market Potential -- 6.7 Conclusion and Perspective -- References -- Chapter 7 Nanoencapsulated Systems for Delivery of Phytopharmaceuticals -- 7.1 Introduction -- 7.1.1 Nanoencapsulation Techniques in Phytopharmaceuticals -- 7.1.1.1 Physical-Chemical Techniques -- 7.1.1.2 Chemicals Techniques -- 7.1.1.3 Mechanical Techniques -- 7.1.2 Characterization of Nanoencapsulates -- 7.1.2.1 Morphological Characterization -- 7.1.2.2 Physicochemical Characterization -- 7.1.3 Nanoencapsulated Systems for Free Delivery of Phytopharmaceuticals -- 7.1.4 Studies to Evaluate Phytopharmaceuticals Nanoencapsulates -- 7.2 Conclusions -- References -- Chapter 8 Topical Drug Delivery Using Liposomes and Liquid Crystalline Phases for Skin Cancer Therapy -- 8.1 Introduction -- 8.2 Liposomes for Topical Application -- 8.2.1 Development of Liposomal Nanoparticles -- 8.3 Liquid Crystals and Liquid Crystalline Nanodispersions for Topical Application -- 8.3.1 Characterization Techniques -- 8.4 Physical Methods Applied to Nanoparticles Delivery -- 8.4.1 Sonophoresis -- 8.4.2 Microneedles -- 8.5 Conclusions and Perspectives -- Acknowledgements -- References -- Chapter 9 Vesicular Drug Delivery in Arthritis Treatment -- 9.1 Introduction -- 9.2 Skin Penetration Pathways -- 9.2.1 Intercellular Pathway -- 9.2.2 Transcellular Pathway -- 9.2.3 Appendgeal Pathway -- 9.3 Principles of Drug Permeation Through Skin -- 9.4 Problems Associated with Conventional Dosage Forms -- 9.5 Novel Treatment Strategies for Arthritis -- 9.5.1 Traditional Liposomes as Skin Drug Delivery Systems -- 9.5.2 Transferosomes (Ultradeformable Liposomes) as Skin Drug Delivery Systems.
9.5.3 Ethosomes as Skin Drug Delivery Systems -- 9.5.4 Niosomes as Skin Drug Delivery Systems -- 9.6 Conclusion and Future Perspectives -- References -- Chapter 10 Perspectives of Novel Drug Delivery in Mycoses -- 10.1 Introduction -- 10.2 Role of Conventional Drugs in Antifungal Therapy -- 10.3 Mechanism of Action of Conventional Antifungals -- 10.4 Summary of Nanoparticles and Their Role in Antifungal Therapy -- 10.4.1 Lipid Nanoparticles -- 10.4.2 Liposome -- 10.4.3 Transfersomes -- 10.4.4 Transethosomes -- 10.4.5 Solid Lipid Nanoparticles (SLN) -- 10.4.6 Nanostructured Lipid Carriers (NLC) -- 10.4.7 Polymer Lipid Hybrid Nanoparticles (PLN) -- 10.4.8 Polymeric Nanoparticles -- 10.4.9 Microsponge and Nanosponge Systems -- 10.4.10 Polymeric Micelles -- 10.4.11 Polymersomes -- 10.4.12 Dendrimers -- 10.4.13 Metallic Nanoparticles -- 10.5 Other Drug Delivery Systems -- 10.5.1 Niosomes -- 10.5.2 Spanlastics -- 10.5.3 Microemulsions and Nanoemulsions -- 10.5.4 Silicon Dioxide Nanoparticles -- 10.6 Conclusion -- References -- Chapter 11 Nano-Based Drug Delivery in Eliminating Tuberculosis -- 11.1 Introduction -- 11.1.1 Latent and Active Tuberculosis -- 11.1.2 Multidrug-Resistant Tuberculosis (MDR-TB) -- 11.1.3 Extensively Drug-Resistant TB -- 11.2 Antitubercular Therapy -- 11.3 Therapies Based on Nanotechnology -- 11.3.1 Nanoparticles for Anti-TB Therapy -- 11.3.2 Advantages and Disadvantages of Nanoparticles -- 11.3.3 Types of Nanoparticles and Their Characteristics -- 11.3.3.1 TB Dendrimers -- 11.3.3.2 Cyclodextrins -- 11.3.3.3 Polymeric Micelles -- 11.3.3.4 Liposomes -- 11.3.3.5 Nanoemulsions -- 11.3.3.6 Solid Lipid Nanoparticles -- 11.3.3.7 Niosomes -- 11.3.3.8 Polymeric Nanoparticles -- 11.4 Routes of Administration of Nanoparticles -- 11.4.1 Oral Administration of Nanoparticles -- 11.4.2 Inhalational Administration of Nanoparticles.
11.4.3 Intravenous Administration of Nanoparticles.
Record Nr. UNINA-9910677499803321
Hoboken, NJ ; ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biodegradable materials and their applications / / Inamuddin and Tariq A. Altalhi
Biodegradable materials and their applications / / Inamuddin and Tariq A. Altalhi
Autore Inamuddin
Pubbl/distr/stampa Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2022]
Descrizione fisica 1 online resource (881 pages)
Disciplina 929.374
Soggetto topico Engineering
ISBN 1-119-90530-3
1-119-90528-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Biodegradable Materials in Electronics -- 1.1 Introduction -- 1.2 Biodegradable Materials in Electronics -- 1.2.1 Advantages of Biodegradable Materials -- 1.3 Silk -- 1.4 Polymers -- 1.4.1 Natural Polymers -- 1.4.2 Synthetic Polymers -- 1.5 Cellulose -- 1.6 Paper -- 1.7 Others -- 1.8 Biodegradable Electronic Components -- 1.9 Semiconductors -- 1.10 Substrate -- 1.11 Biodegradable Dielectrics -- 1.12 Insulators and Conductors -- 1.13 Conclusion -- Declaration About Copyright -- References -- 2 Biodegradable Thermoelectric Materials -- 2.1 Introduction -- 2.2 Biopolymer-Based Renewable Composites: An Alternative to Synthetic Materials -- 2.3 Working Principle of Thermoelectric Materials -- 2.4 Biopolymer Composite for Thermoelectric Application -- 2.4.1 Polylactic Acid-Based Thermoelectric Materials -- 2.4.2 Cellulose-Based Biocomposites as Thermoelectric Materials -- 2.4.3 Chitosan-Based Biocomposites as Thermoelectric Materials -- 2.4.4 Agarose-Based Biocomposites as Thermoelectric Materials -- 2.4.5 Starch-Based Biocomposites as Thermoelectric Materials -- 2.4.6 Carrageenan-Based Biocomposites as Thermoelectric Materials -- 2.4.7 Pullulan-Based Composites as Thermoelectric Materials -- 2.4.8 Lignin-Based Biocomposites as Thermoelectric Materials -- 2.5 Heparin-Based Biocomposites as Future Thermoelectric Materials -- 2.6 Conclusions -- References -- 3 Biodegradable Electronics: A Newly Emerging Environmental Technology -- 3.1 Introduction -- 3.2 Properties of Biodegradable Materials in Electronics -- 3.3 Transformational Applications of Biodegradable Materials in Electronics -- 3.3.1 Cellulose -- 3.3.2 Silk -- 3.3.3 Stretchable Hydrogel -- 3.3.4 Conjugated Polymers and Metals -- 3.3.5 Graphene -- 3.3.6 Composites -- 3.4 Biodegradation Mechanisms.
3.5 Conclusions -- Acknowledgements -- References -- 4 Biodegradable and Bioactive Films or Coatings From Fish Waste Materials -- 4.1 Introduction -- 4.2 Fishery Chain Industry -- 4.2.1 Evolution of the Fishery Chain Industry -- 4.2.2 Applications of Fish Waste Materials -- 4.3 Films or Coatings Based on Proteins From Fish Waste Materials -- 4.3.1 Films or Coatings for Food Packaging -- 4.3.2 Development of Protein-Based Films or Coatings -- 4.3.2.1 Fish Proteins and Processes for Obtaining Collagen/Gelatin and Myofibrillar Proteins -- 4.3.2.2 Development of Biodegradable and Bioactive Films or Coating -- 4.3.3 Development of Protein-Based Films or Coatings Incorporated With Additives and/or Plasticizers -- 4.3.3.1 Films or Coatings Incorporated With Organic Additives and/or Plasticizers and Their Applications -- 4.3.3.2 Films or Coatings Incorporated With Inorganic Additives and/or Plasticizers -- 4.4 Conclusion -- References -- 5 Biodegradable Superabsorbent Materials -- 5.1 Introduction -- 5.2 Biohydrogels: Superabsorbent Materials -- 5.3 Polysaccharides: Biopolymers from Renewable Sources -- 5.3.1 Carboxymethylcellulose (CMC) -- 5.3.2 Chitosan (CH) -- 5.3.3 Alginate -- 5.3.4 Carrageenans -- 5.4 Applications of Superabsorbent Biohydrogels (SBHs) Based on Polysaccharides -- 5.5 Conclusion and Future Perspectives -- Acknowledgments -- References -- 6 Bioplastics in Personal Protective Equipment -- 6.1 Introduction -- 6.2 Conventional Personal Protective Equipment -- 6.2.1 Face Masks -- 6.2.1.1 Surgical Mask -- 6.2.1.2 N95 Face Masks -- 6.2.1.3 KN95 Face Masks -- 6.2.1.4 Cloth Face Masks -- 6.2.1.5 Two-Layered Face Mask (or Hygienic) -- 6.2.2 Gloves -- 6.2.2.1 Latex -- 6.2.2.2 Nitrile -- 6.2.2.3 Vinyl -- 6.2.2.4 Foil (Polyethylene) -- 6.3 Biodegradable and Biobased PPE -- 6.3.1 Face Masks -- 6.3.1.1 Polylactic Acid -- 6.3.1.2 Polybutylene Succinate.
6.3.1.3 Polyvinyl Alcohol -- 6.3.2 Gloves -- 6.3.2.1 Butadiene Rubber (BR) -- 6.3.2.2 Polyisoprene Rubber -- 6.4 Environmental Impacts Caused by Personal Protective Equipment Made of Bioplastics -- 6.4.1 Source and Raw Materials -- 6.4.2 End of Life Scenarios -- 6.4.3 Remarks on Biodegradability -- 6.5 International Standards Applied to Biodegradable Plastics and Bioplastics -- 6.6 Conclusions -- References -- 7 Biodegradable Protective Films -- 7.1 Introduction -- 7.1.1 Types of Protective Films -- 7.2 Biodegradable Protective Films -- 7.2.1 Processing of Biodegradable Protective Films -- 7.2.2 Limitations Faced by Biodegradable Protective Films -- References -- 8 No Plastic, No Pollution: Replacement of Plastics in the Equipments of Personal Protection -- 8.1 Introduction -- 8.2 Bioplastics -- 8.3 Biodegradation of Bioplastics -- 8.4 Production of Bioplastics from Plant Sources -- 8.5 Production of Bioplastics from Microbial Resources -- 8.6 What Are PPEs Made Off? -- 8.6.1 Face Masks -- 8.6.2 Face and Eye Shields -- 8.6.3 Gloves -- 8.7 Biodegradable Materials for PPE -- 8.8 Conclusion and Future Perspectives -- References -- 9 Biodegradable Materials in Dentistry -- 9.1 Introduction -- 9.2 Biodegradable Materials -- 9.2.1 Synthetic Polymers -- 9.2.2 Natural Polymers -- 9.2.3 Biodegradable Ceramics -- 9.2.4 Bioactive Glass -- 9.2.5 Biodegradable Metals -- 9.3 Biodegradable Materials in Suturing -- 9.4 Biodegradable Materials in Imaging and Diagnostics -- 9.5 Biodegradable Materials in Oral Maxillofacial and Craniofacial Surgery -- 9.6 Biodegradable Materials in Resorbable Plate and Screw System -- 9.7 Biodegradable Materials in Alveolar Ridge Preservation -- 9.8 Biodegradable Materials of Nanotopography in Cancer Therapy -- 9.9 Biodegradable Materials in Endodontics -- 9.10 Biodegradable Materials in Orthodontics.
9.11 Biodegradable Materials in Periodontics -- 9.12 Conclusion -- References -- 10 Biodegradable and Biocompatible Polymeric Materials for Dentistry Applications -- 10.1 Introduction -- 10.2 Polysaccharides -- 10.2.1 Chitosan -- 10.2.2 Cellulose -- 10.2.3 Starch -- 10.2.4 Alginate -- 10.2.5 Hyaluronic Acid (HA) -- 10.3 Proteins -- 10.3.1 Collagen -- 10.3.2 Fibrin -- 10.3.3 Elastin -- 10.3.4 Gelatins -- 10.3.5 Silk -- 10.4 Biopolyesters -- 10.4.1 Poly (Glycolic Acid) (PGA) -- 10.4.2 Poly (Lactic Acid) PLA -- 10.4.3 Poly (Lactide-co-Glycolide) (PLGA) -- 10.4.4 Polycaprolactone -- 10.4.5 Poly (Propylene Fumarate) -- 10.5 Conclusion -- References -- 11 Biodegradable Biomaterials in Bone Tissue Engineering -- 11.1 Introduction -- 11.2 Essential Characteristics and Considerations in Bone Scaffold Design -- 11.3 Fabrication Technologies -- 11.4 Incorporation of Bioactive Molecules During Scaffold Fabrication -- 11.5 Biocompatibility and Interface Between Biodegradation and New Tissue Formation -- 11.6 Biodegradation of Calcium Phosphate Biomaterials -- 11.7 Biodegradation of Polymeric Biomaterials -- 11.8 Importance of Bone Remodeling -- 11.9 Conclusion -- References -- 12 Biodegradable Elastomer -- 12.1 Introduction -- 12.2 Biodegradation Testing -- 12.3 Biodegradable Elastomers: An Overview -- 12.3.1 Preparation Strategies -- 12.3.2 Biodegradation and Erosion -- 12.4 Application of Biodegradable Elastomers -- 12.4.1 Drug Delivery -- 12.4.2 Tissue Engineering -- 12.4.2.1 Neural and Retinal Applications -- 12.4.2.2 Cardiovascular Applications -- 12.4.2.3 Orthopedic Applications -- 12.5 Conclusions and Perspectives -- References -- 13 Biodegradable Implant Materials -- 13.1 Introduction -- 13.2 Medical Implants -- 13.3 Biomaterials -- 13.3.1 Biomaterial Types -- 13.3.1.1 Polymer Biomaterials -- 13.3.1.2 Metallic Biomaterials -- 13.3.1.3 Ceramic Biomaterials.
13.4 Biodegradable Implant Materials -- 13.4.1 Biodegradable Metals -- 13.4.1.1 Magnesium-Based Biodegradable Materials -- 13.4.1.2 Iron-Based Biodegradable Materials -- 13.4.2 Biodegradable Polymers -- 13.4.2.1 Polyesters -- 13.4.2.2 Polycarbonates -- 13.4.2.3 Polyanhydrides -- 13.4.2.4 Poly(ortho esters) -- 13.4.2.5 Poly(propylene fumarate) -- 13.4.2.6 Poly(phosphazenes) -- 13.4.2.7 Polyphosphoesters -- 13.4.2.8 Polyurethanes -- 13.5 Conclusion -- References -- 14 Current Strategies in Pulp and Periodontal Regeneration Using Biodegradable Biomaterials -- 14.1 Introduction -- 14.2 Biodegradable Materials in Dental Pulp Regeneration -- 14.2.1 Collagen-Based Gels -- 14.2.2 Platelet-Rich Plasma -- 14.2.3 Plasma-Rich Fibrin -- 14.2.4 Gelatin -- 14.2.5 Fibrin -- 14.2.6 Alginate -- 14.2.7 Chitosan -- 14.2.8 Amino Acid Polymers -- 14.2.9 Polymers of Lactic Acid -- 14.2.10 Composite Polymer Scaffolds -- 14.3 Biodegradable Biomaterials and Strategies for Tissue Engineering of Periodontium -- 14.4 Coapplication of Auxiliary Agents With Biodegradable Biomaterials for Periodontal Tissue Engineering -- 14.4.1 Stem Cells Applications in Periodontal Regeneration -- 14.4.2 Bioactive Molecules for Periodontal Regeneration -- 14.4.3 Antimicrobial and Anti-Inflammatory Agents for Periodontal Regeneration -- 14.5 Regeneration of Periodontal Tissues Complex Using Biodegradable Biomaterials -- 14.5.1 PDL Regeneration -- 14.5.2 Cementum and Alveolar Bone Regeneration -- 14.5.3 Integrated Regeneration of Periodontal Complex Structures -- 14.6 Recent Advances in Periodontal Regeneration Using Supportive Techniques During Application of Biodegradable Biomaterials -- 14.6.1 Laser Application in Periodontium Regeneration -- 14.6.2 Gene Therapy in Periodontal Regeneration -- 14.7 Conclusion and Future Remarks -- References.
15 A Review on Health Care Applications of Biopolymers.
Record Nr. UNINA-9910643862603321
Inamuddin  
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biodegradable materials and their applications / / Inamuddin and Tariq A. Altalhi
Biodegradable materials and their applications / / Inamuddin and Tariq A. Altalhi
Autore Inamuddin
Pubbl/distr/stampa Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2022]
Descrizione fisica 1 online resource (881 pages)
Disciplina 929.374
Soggetto topico Engineering
ISBN 1-119-90530-3
1-119-90528-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Biodegradable Materials in Electronics -- 1.1 Introduction -- 1.2 Biodegradable Materials in Electronics -- 1.2.1 Advantages of Biodegradable Materials -- 1.3 Silk -- 1.4 Polymers -- 1.4.1 Natural Polymers -- 1.4.2 Synthetic Polymers -- 1.5 Cellulose -- 1.6 Paper -- 1.7 Others -- 1.8 Biodegradable Electronic Components -- 1.9 Semiconductors -- 1.10 Substrate -- 1.11 Biodegradable Dielectrics -- 1.12 Insulators and Conductors -- 1.13 Conclusion -- Declaration About Copyright -- References -- 2 Biodegradable Thermoelectric Materials -- 2.1 Introduction -- 2.2 Biopolymer-Based Renewable Composites: An Alternative to Synthetic Materials -- 2.3 Working Principle of Thermoelectric Materials -- 2.4 Biopolymer Composite for Thermoelectric Application -- 2.4.1 Polylactic Acid-Based Thermoelectric Materials -- 2.4.2 Cellulose-Based Biocomposites as Thermoelectric Materials -- 2.4.3 Chitosan-Based Biocomposites as Thermoelectric Materials -- 2.4.4 Agarose-Based Biocomposites as Thermoelectric Materials -- 2.4.5 Starch-Based Biocomposites as Thermoelectric Materials -- 2.4.6 Carrageenan-Based Biocomposites as Thermoelectric Materials -- 2.4.7 Pullulan-Based Composites as Thermoelectric Materials -- 2.4.8 Lignin-Based Biocomposites as Thermoelectric Materials -- 2.5 Heparin-Based Biocomposites as Future Thermoelectric Materials -- 2.6 Conclusions -- References -- 3 Biodegradable Electronics: A Newly Emerging Environmental Technology -- 3.1 Introduction -- 3.2 Properties of Biodegradable Materials in Electronics -- 3.3 Transformational Applications of Biodegradable Materials in Electronics -- 3.3.1 Cellulose -- 3.3.2 Silk -- 3.3.3 Stretchable Hydrogel -- 3.3.4 Conjugated Polymers and Metals -- 3.3.5 Graphene -- 3.3.6 Composites -- 3.4 Biodegradation Mechanisms.
3.5 Conclusions -- Acknowledgements -- References -- 4 Biodegradable and Bioactive Films or Coatings From Fish Waste Materials -- 4.1 Introduction -- 4.2 Fishery Chain Industry -- 4.2.1 Evolution of the Fishery Chain Industry -- 4.2.2 Applications of Fish Waste Materials -- 4.3 Films or Coatings Based on Proteins From Fish Waste Materials -- 4.3.1 Films or Coatings for Food Packaging -- 4.3.2 Development of Protein-Based Films or Coatings -- 4.3.2.1 Fish Proteins and Processes for Obtaining Collagen/Gelatin and Myofibrillar Proteins -- 4.3.2.2 Development of Biodegradable and Bioactive Films or Coating -- 4.3.3 Development of Protein-Based Films or Coatings Incorporated With Additives and/or Plasticizers -- 4.3.3.1 Films or Coatings Incorporated With Organic Additives and/or Plasticizers and Their Applications -- 4.3.3.2 Films or Coatings Incorporated With Inorganic Additives and/or Plasticizers -- 4.4 Conclusion -- References -- 5 Biodegradable Superabsorbent Materials -- 5.1 Introduction -- 5.2 Biohydrogels: Superabsorbent Materials -- 5.3 Polysaccharides: Biopolymers from Renewable Sources -- 5.3.1 Carboxymethylcellulose (CMC) -- 5.3.2 Chitosan (CH) -- 5.3.3 Alginate -- 5.3.4 Carrageenans -- 5.4 Applications of Superabsorbent Biohydrogels (SBHs) Based on Polysaccharides -- 5.5 Conclusion and Future Perspectives -- Acknowledgments -- References -- 6 Bioplastics in Personal Protective Equipment -- 6.1 Introduction -- 6.2 Conventional Personal Protective Equipment -- 6.2.1 Face Masks -- 6.2.1.1 Surgical Mask -- 6.2.1.2 N95 Face Masks -- 6.2.1.3 KN95 Face Masks -- 6.2.1.4 Cloth Face Masks -- 6.2.1.5 Two-Layered Face Mask (or Hygienic) -- 6.2.2 Gloves -- 6.2.2.1 Latex -- 6.2.2.2 Nitrile -- 6.2.2.3 Vinyl -- 6.2.2.4 Foil (Polyethylene) -- 6.3 Biodegradable and Biobased PPE -- 6.3.1 Face Masks -- 6.3.1.1 Polylactic Acid -- 6.3.1.2 Polybutylene Succinate.
6.3.1.3 Polyvinyl Alcohol -- 6.3.2 Gloves -- 6.3.2.1 Butadiene Rubber (BR) -- 6.3.2.2 Polyisoprene Rubber -- 6.4 Environmental Impacts Caused by Personal Protective Equipment Made of Bioplastics -- 6.4.1 Source and Raw Materials -- 6.4.2 End of Life Scenarios -- 6.4.3 Remarks on Biodegradability -- 6.5 International Standards Applied to Biodegradable Plastics and Bioplastics -- 6.6 Conclusions -- References -- 7 Biodegradable Protective Films -- 7.1 Introduction -- 7.1.1 Types of Protective Films -- 7.2 Biodegradable Protective Films -- 7.2.1 Processing of Biodegradable Protective Films -- 7.2.2 Limitations Faced by Biodegradable Protective Films -- References -- 8 No Plastic, No Pollution: Replacement of Plastics in the Equipments of Personal Protection -- 8.1 Introduction -- 8.2 Bioplastics -- 8.3 Biodegradation of Bioplastics -- 8.4 Production of Bioplastics from Plant Sources -- 8.5 Production of Bioplastics from Microbial Resources -- 8.6 What Are PPEs Made Off? -- 8.6.1 Face Masks -- 8.6.2 Face and Eye Shields -- 8.6.3 Gloves -- 8.7 Biodegradable Materials for PPE -- 8.8 Conclusion and Future Perspectives -- References -- 9 Biodegradable Materials in Dentistry -- 9.1 Introduction -- 9.2 Biodegradable Materials -- 9.2.1 Synthetic Polymers -- 9.2.2 Natural Polymers -- 9.2.3 Biodegradable Ceramics -- 9.2.4 Bioactive Glass -- 9.2.5 Biodegradable Metals -- 9.3 Biodegradable Materials in Suturing -- 9.4 Biodegradable Materials in Imaging and Diagnostics -- 9.5 Biodegradable Materials in Oral Maxillofacial and Craniofacial Surgery -- 9.6 Biodegradable Materials in Resorbable Plate and Screw System -- 9.7 Biodegradable Materials in Alveolar Ridge Preservation -- 9.8 Biodegradable Materials of Nanotopography in Cancer Therapy -- 9.9 Biodegradable Materials in Endodontics -- 9.10 Biodegradable Materials in Orthodontics.
9.11 Biodegradable Materials in Periodontics -- 9.12 Conclusion -- References -- 10 Biodegradable and Biocompatible Polymeric Materials for Dentistry Applications -- 10.1 Introduction -- 10.2 Polysaccharides -- 10.2.1 Chitosan -- 10.2.2 Cellulose -- 10.2.3 Starch -- 10.2.4 Alginate -- 10.2.5 Hyaluronic Acid (HA) -- 10.3 Proteins -- 10.3.1 Collagen -- 10.3.2 Fibrin -- 10.3.3 Elastin -- 10.3.4 Gelatins -- 10.3.5 Silk -- 10.4 Biopolyesters -- 10.4.1 Poly (Glycolic Acid) (PGA) -- 10.4.2 Poly (Lactic Acid) PLA -- 10.4.3 Poly (Lactide-co-Glycolide) (PLGA) -- 10.4.4 Polycaprolactone -- 10.4.5 Poly (Propylene Fumarate) -- 10.5 Conclusion -- References -- 11 Biodegradable Biomaterials in Bone Tissue Engineering -- 11.1 Introduction -- 11.2 Essential Characteristics and Considerations in Bone Scaffold Design -- 11.3 Fabrication Technologies -- 11.4 Incorporation of Bioactive Molecules During Scaffold Fabrication -- 11.5 Biocompatibility and Interface Between Biodegradation and New Tissue Formation -- 11.6 Biodegradation of Calcium Phosphate Biomaterials -- 11.7 Biodegradation of Polymeric Biomaterials -- 11.8 Importance of Bone Remodeling -- 11.9 Conclusion -- References -- 12 Biodegradable Elastomer -- 12.1 Introduction -- 12.2 Biodegradation Testing -- 12.3 Biodegradable Elastomers: An Overview -- 12.3.1 Preparation Strategies -- 12.3.2 Biodegradation and Erosion -- 12.4 Application of Biodegradable Elastomers -- 12.4.1 Drug Delivery -- 12.4.2 Tissue Engineering -- 12.4.2.1 Neural and Retinal Applications -- 12.4.2.2 Cardiovascular Applications -- 12.4.2.3 Orthopedic Applications -- 12.5 Conclusions and Perspectives -- References -- 13 Biodegradable Implant Materials -- 13.1 Introduction -- 13.2 Medical Implants -- 13.3 Biomaterials -- 13.3.1 Biomaterial Types -- 13.3.1.1 Polymer Biomaterials -- 13.3.1.2 Metallic Biomaterials -- 13.3.1.3 Ceramic Biomaterials.
13.4 Biodegradable Implant Materials -- 13.4.1 Biodegradable Metals -- 13.4.1.1 Magnesium-Based Biodegradable Materials -- 13.4.1.2 Iron-Based Biodegradable Materials -- 13.4.2 Biodegradable Polymers -- 13.4.2.1 Polyesters -- 13.4.2.2 Polycarbonates -- 13.4.2.3 Polyanhydrides -- 13.4.2.4 Poly(ortho esters) -- 13.4.2.5 Poly(propylene fumarate) -- 13.4.2.6 Poly(phosphazenes) -- 13.4.2.7 Polyphosphoesters -- 13.4.2.8 Polyurethanes -- 13.5 Conclusion -- References -- 14 Current Strategies in Pulp and Periodontal Regeneration Using Biodegradable Biomaterials -- 14.1 Introduction -- 14.2 Biodegradable Materials in Dental Pulp Regeneration -- 14.2.1 Collagen-Based Gels -- 14.2.2 Platelet-Rich Plasma -- 14.2.3 Plasma-Rich Fibrin -- 14.2.4 Gelatin -- 14.2.5 Fibrin -- 14.2.6 Alginate -- 14.2.7 Chitosan -- 14.2.8 Amino Acid Polymers -- 14.2.9 Polymers of Lactic Acid -- 14.2.10 Composite Polymer Scaffolds -- 14.3 Biodegradable Biomaterials and Strategies for Tissue Engineering of Periodontium -- 14.4 Coapplication of Auxiliary Agents With Biodegradable Biomaterials for Periodontal Tissue Engineering -- 14.4.1 Stem Cells Applications in Periodontal Regeneration -- 14.4.2 Bioactive Molecules for Periodontal Regeneration -- 14.4.3 Antimicrobial and Anti-Inflammatory Agents for Periodontal Regeneration -- 14.5 Regeneration of Periodontal Tissues Complex Using Biodegradable Biomaterials -- 14.5.1 PDL Regeneration -- 14.5.2 Cementum and Alveolar Bone Regeneration -- 14.5.3 Integrated Regeneration of Periodontal Complex Structures -- 14.6 Recent Advances in Periodontal Regeneration Using Supportive Techniques During Application of Biodegradable Biomaterials -- 14.6.1 Laser Application in Periodontium Regeneration -- 14.6.2 Gene Therapy in Periodontal Regeneration -- 14.7 Conclusion and Future Remarks -- References.
15 A Review on Health Care Applications of Biopolymers.
Record Nr. UNINA-9910678118103321
Inamuddin  
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioinspired and green synthesis of nanostructures : a sustainable approach / / edited by Mousumi Sen and Monalisa Mukherjee
Bioinspired and green synthesis of nanostructures : a sustainable approach / / edited by Mousumi Sen and Monalisa Mukherjee
Pubbl/distr/stampa Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023]
Descrizione fisica 1 online resource (436 pages)
Disciplina 730
Soggetto topico Nanotechnology
ISBN 1-394-17492-6
1-394-17491-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Green Synthesis: Introduction, Mechanism, and Effective Parameters -- 1.1 Introduction -- 1.2 What Are Nanoparticles? -- 1.3 Types of Nanoparticles -- 1.3.1 Inorganic Nanoparticle -- 1.3.1.1 Green Synthesis of Silver (Ag) Nanoparticles -- 1.3.1.2 Green Synthesis of Gold (Au) Nanoparticles -- 1.3.1.3 Green Synthesis of Copper (Cu) Nanoparticles -- 1.3.1.4 Iron Oxide Nanoparticles -- 1.3.2 Organic Nanoparticles -- 1.3.2.1 Liposomes -- 1.3.2.2 Micelles -- 1.3.2.3 Dendrimers -- 1.4 Approaches -- 1.5 Conclusion -- References -- Chapter 2 Greener Nanoscience: Proactive Approach to Advancing Nanotechnology Applications and Reducing Its Negative Consequences -- 2.1 Introduction -- 2.2 Why Do We Need Green Nanoscience Approaches? -- 2.3 Green Nanotechnology -- 2.4 Green Synthesis of Nanomaterials -- 2.5 Advantages of Green Nanoscience -- 2.5.1 Green Nanoscience in Industries -- 2.5.2 Green Nanoscience in Automobiles -- 2.5.3 Green Nanoelectronics -- 2.5.4 Green Nanoscience in Food and Agriculture -- 2.5.5 Green Nanoscience in Medicines -- 2.6 Conclusion -- References -- Chapter 3 Optimization of the Process Parameters to Develop Green-Synthesized Nanostructures with a Special Interest in Cancer Theranostics -- 3.1 Introduction -- 3.1.1 Conventional Techniques in Nanoparticle Synthesis -- 3.1.2 Green Nanotechnology -- 3.2 Mechanism Underlying Green Synthesis -- 3.3 Green Synthesized Nanoparticles in Cancer Theranostics -- 3.4 Optimizing the Synthesis and Subsequent Characterizations -- 3.4.1 Approaches to Achieve Optimization -- 3.4.2 Characterization of Nanoparticles -- Acknowledgment -- References -- Chapter 4 Sustainability: An Emerging Design Criterion in Nanoparticles Synthesis and Applications -- 4.1 Introduction -- 4.2 Biotemplates -- 4.2.1 Plant-Based Biotemplates.
4.2.2 Microorganism-Based Biotemplates -- 4.2.2.1 Bacteria -- 4.2.2.2 Fungi -- 4.2.2.3 Yeast -- 4.2.2.4 Algae -- 4.3 Synthesis Routes -- 4.3.1 Effect of pH -- 4.3.2 Effect of Temperature -- 4.3.3 Effect of Biomolecules -- 4.3.3.1 Plant-Based -- 4.3.3.2 Microorganism-Based -- 4.4 Applications -- 4.4.1 Biomedical Application -- 4.4.1.1 Antimicrobial Activity -- 4.4.1.2 Biomedication -- 4.4.1.3 Vaccines -- 4.4.1.4 Antidiabetic -- 4.4.1.5 Diagnostic Applications -- 4.4.2 Environmental Application -- 4.4.2.1 Environmental Remediation -- 4.4.2.2 Catalytic Removal of Textile Dyes -- 4.4.2.3 Wastewater Treatment -- 4.4.2.4 Agriculture -- 4.5 Conclusion and Outlook -- References -- Chapter 5 Green Conversion Methods to Prepare Nanoparticle -- 5.0 Introduction -- 5.1 Bacteria -- 5.2 Fungi -- 5.3 Yeast -- 5.4 Viruses -- 5.5 Algae -- 5.6 Plants -- 5.7 Conclusion and Perspectives -- References -- Chapter 6 Bioinspired Green Synthesis of Nanomaterials From Algae -- 6.1 Introduction -- 6.2 Algal System-Mediated Nanomaterial Synthesis -- 6.3 Factors Affecting the Green Synthesis of Nanomaterials -- 6.3.1 Light -- 6.3.2 Temperature -- 6.3.3 Incubation Period -- 6.3.4 pH -- 6.3.5 Precursor Concentration and Bioactive Catalyst -- 6.4 Applications of the Green Synthesized Nanomaterials -- 6.4.1 Antimicrobial Agents -- 6.4.2 Anticancerous -- 6.4.3 Biosensing -- 6.4.4 Bioremediation -- 6.5 Future Perspectives -- 6.6 Conclusion -- References -- Chapter 7 Interactions of Nanoparticles with Plants: Accumulation and Effects -- 7.1 Introduction -- 7.2 Uptake and Translocation of Nanoparticles and Nanocarriers in Plants -- 7.3 Nanoparticle-Mediated Sensing and Biosensing in Plants -- 7.4 Tolerance Versus Toxicity of Nanoparticles in Plants -- 7.5 Nanoparticle-Mediated Delivery of Fertilizers, Pesticides, Other Agrochemicals in Plants.
7.6 Nanoparticle-Mediated Non-Viral Gene Delivery in Plants -- 7.7 Conclusions -- Acknowledgments -- References -- Chapter 8 A Clean Nano-Era: Green Synthesis and Its Progressive Applications -- 8.1 Introduction -- 8.2 Green Synthetic Approaches -- 8.2.1 Microorganism-Induced Synthesis of Nanoparticles -- 8.2.2 Biosynthesis of Nanoparticles Using Bacteria -- 8.2.3 Biosynthesis of Nanoparticles Using Fungi -- 8.2.4 Biosynthesis of Nanoparticles Using Actinomycetes -- 8.2.5 Biosynthesis of Nanoparticles Using Algae -- 8.2.6 Plant Extracts for Biosynthesis of Nanoparticles -- 8.3 Nanoparticles Obtained Using Green Synthetic Approaches and Their Applications -- 8.3.1 Synthesis of Silver (Ag) and Gold (Au) -- 8.3.2 Synthesis of Palladium (Pd) Nanoparticles -- 8.3.3 Synthesis of Copper (Cu) Nanoparticles -- 8.3.4 Synthesis of Silver Oxide (Ag2O) Nanoparticles -- 8.3.5 Synthesis of Titanium Dioxide (TiO2) Nanoparticles -- 8.3.6 Synthesis of Zinc Oxide (ZnO) Nanoparticles -- 8.3.7 Synthesis of Iron Oxide Nanoparticles -- 8.4 Conclusion -- References -- Chapter 9 A Decade of Biomimetic and Bioinspired Nanostructures: Innovation Upheaval and Implementation -- 9.1 Introduction -- 9.2 Bioinspired Nanostructures -- 9.2.1 Materials Inspired by Structural Properties of Natural Organism -- 9.3 Biomimetic Structures -- 9.4 Biomimetic Synthesis Processes and Products -- 9.5 Application of Bioinspired and Biomimetic Structure -- 9.6 Conclusion -- 9.7 Future Outlook -- Acknowledgments -- References -- Chapter 10 A Feasibility Study of the Bioinspired Green Manufacturing of Nanocomposite Materials -- 10.1 Introduction -- 10.2 Biopolymers -- 10.2.1 Cellulose -- 10.2.2 Chitosan -- 10.2.3 Starch -- 10.2.4 Chitin -- 10.2.5 Polyhydroxyalkanoates (PHA) -- 10.2.6 Polylactic Acid (PLA) -- 10.3 Different Types of Bioinspired Nanocomposites.
10.3.1 Polymer-HAp Nanoparticle Composites -- 10.3.2 Nanowhisker-Based Bionanocomposites -- 10.3.3 Clay-Polymer Nanocomposites -- 10.4 Fabrication of Bionanocomposites -- 10.4.1 Electrospinning -- 10.4.2 Solvent Casting -- 10.4.3 Melt Moulding -- 10.4.4 Freeze Drying -- 10.4.5 3D Printing -- 10.4.6 Ball Milling Method -- 10.4.7 Microwave-Assisted Method for Bionanocomposite Preparation -- 10.4.8 Ultraviolet Irradiation Method -- 10.5 Application of Bionanocomposites -- 10.5.1 Orthopedics -- 10.5.2 Dental Applications -- 10.5.3 Tissue Engineering -- 10.6 Conclusion -- References -- Chapter 11 Bioinspiration as Tools for the Design of Innovative Materials and Systems Bioinspired Piezoelectric Materials: Design, Synthesis, and Biomedical Applications -- 11.1 Bioinspiration and Sophisticated Materials Design -- 11.1.1 Piezoelectricity in Natural Bulk Materials -- 11.1.2 Piezoelectricity in Proteins -- 11.1.3 Piezoelectric Ultra-Short Peptides -- 11.1.4 Single Amino Acid Assembly and Coassembly-Based Piezoelectric Materials -- 11.2 Biomedical Applications -- 11.2.1 Piezoelectric Sensors -- 11.2.2 Tissue Regeneration -- 11.3 Conclusion and Future Perspectives -- Acknowledgment -- References -- Chapter 12 Protein Cages and their Potential Application in Therapeutics -- 12.1 Introduction -- 12.2 Different Methods of Cage Modifications and Cargo Loading -- 12.3 Applications of Protein Cages in Biotechnology and Therapeutics -- 12.3.1 Protein Cage as Targeted Delivery Vehicles for Therapeutic Protein -- 12.3.2 Protein Cage-Based Encapsulation and Targeting of Anticancer Drugs -- 12.3.3 Protein Cage-Based Immune-Therapy -- 12.4 Future Perspective -- 12.5 Conclusion -- Acknowledgment -- References -- Chapter 13 Green Nanostructures: Biomedical Applications and Toxicity Studies -- 13.1 Introduction -- 13.2 Moving Toward Green Nanostructures.
13.3 Methods of Nanoparticle Synthesis -- 13.4 Plant-Mediated Synthesis of Green Nanostructures -- 13.4.1 Silver Nanoparticles -- 13.4.2 Gold Nanoparticles -- 13.4.3 Zinc Oxide Nanoparticles -- 13.4.4 Selenium Nanoparticles -- 13.5 Microbe-Based Synthesis -- 13.5.1 Bacteria-Mediated Synthesis of NPs -- 13.5.2 Fungus-Mediated Synthesis of NPs -- 13.5.3 Actinomycete-Mediated Synthesis of NPs -- 13.6 Toxicity of Nanostructures -- 13.7 Conclusion -- References -- Chapter 14 Future Challenges for Designing Industry-Relevant Bioinspired Materials -- 14.1 Introduction -- 14.2 Bioinspired Materials -- 14.3 Applications of Bioinspired Materials and Their Industrial Relevance -- 14.4 Bioinspired Materials in Optics -- 14.4.1 Applications in Optics -- 14.4.2 Bioinspired Materials in Energy -- 14.4.3 Applications in Energy -- 14.4.4 Bioinspired Materials in Medicine -- 14.5 Applications in Medicine -- 14.6 Future Challenges for Industrial Relevance -- 14.7 Optics-Specific Challenges -- 14.8 Energy-Specific Challenges -- 14.9 Medicine-Specific Challenges -- 14.10 Conclusion -- References -- Chapter 15 Biomimetic and Bioinspired Nanostructures: Recent Developments and Applications -- 15.1 Introduction -- 15.2 Designing Bioinspired and Bioimitating Structures and Pathways -- 15.3 Nanobiomimicry-Confluence of Nanotechnology and Bioengineering -- 15.4 Biofunctionalization of Inorganic Nanoparticles -- 15.4.1 Strategies to Develop Biofunctionalized Nanoparticles -- 15.4.2 Fate of Biofunctionalized Nanoparticles -- 15.4.3 Biofunctionalization Nanoparticles with Different Organic Compounds -- 15.4.3.1 Carbohydrates -- 15.4.3.2 Nucleic Acid -- 15.4.3.3 Peptides -- 15.4.3.4 DNA -- 15.4.3.5 Antibody -- 15.4.3.6 Enzyme -- 15.4.3.7 Stability of Biofunctionalized Nanoparticles -- 15.4.3.8 Applications of Biofunctionalized Nanoparticles.
15.5 Multifarious Applications of Biomimicked/Bioinspired Novel Nanomaterials.
Record Nr. UNINA-9910830597603321
Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biorefinery Production of Fuels and Platform Chemicals / / edited by Prakash Kumar Sarangi
Biorefinery Production of Fuels and Platform Chemicals / / edited by Prakash Kumar Sarangi
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023]
Descrizione fisica 1 online resource (295 pages)
Disciplina 662.88
Soggetto topico Biomass energy
Chemical processes
ISBN 1-119-72487-2
1-119-72506-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Biofuels: Classification, Conversion Technologies, Optimization Techniques and Applications -- 1.1 Introduction -- 1.2 Classification of Biofuels -- 1.2.1 First-Generation Biofuels -- 1.2.2 Second-Generation Biofuels -- 1.2.3 Third-Generation Algal Biofuels -- 1.3 Commonly Used Conversion Technologies -- 1.3.1 Gasification -- 1.3.1.1 Factors Influencing Gasification -- 1.3.2 Pyrolysis -- 1.3.2.1 Production of Bio-Oil from Pyrolysis -- 1.3.3 Hydrothermal Processes -- 1.3.3.1 Hydrothermal Carbonization -- 1.3.3.2 Hydrothermal Liquefaction -- 1.3.3.3 Hydrothermal Gasification -- 1.3.4 Transesterification -- 1.4 Commonly Used Optimization Techniques -- 1.4.1 Response Surface Methodology -- 1.4.2 Genetic Algorithm -- 1.5 Application of Biofuels in Transportation Sector -- 1.5.1 Automobile Sector -- 1.5.2 Aviation Sector -- Conclusion -- References -- Chapter 2 Technical Challenges and Prospects of Renewable Fuel Generation and Utilization at a Global Scale -- 2.1 Introduction -- 2.2 Biofuel Synthesis -- 2.2.1 Biomass Energy -- 2.2.2 Biofuels -- 2.2.3 Biodiesel -- 2.3 Challenges for Bioenergy Generation -- 2.3.1 Operation Challenges in Biomass Energy Process -- 2.3.2 Economic Challenges in Biomass Energy Process -- 2.3.3 Social Challenges in Biomass Energy Processes -- 2.3.3.1 Conflicting Decision on Utility of Biomass Resources -- 2.3.3.2 Land Use Issue or Problems on Biomass Cultivation or Utilization -- 2.3.3.3 Environmental Impact of Biomass Resources -- 2.3.4 Policy and Regulatory Challenges for Biomass Energy Utility -- 2.4 Conclusions -- Abbreviations -- References -- Chapter 3 Engineered Microbial Systems for the Production of Fuels and Industrially Important Chemicals -- 3.1 Introduction.
3.2 Microbial Systems for Biofuels and Chemicals Production -- 3.2.1 Microbial Systems for Genetic Engineering and Cellular Fabrication -- 3.2.2 Engineering of Microbial Cell Systems for Biofuels Production -- 3.2.2.1 Alcohols -- 3.2.3 Engineering of Microbial Cell Systems for Chemical Synthesis -- 3.2.3.1 Organic Acids -- 3.2.3.2 Fatty Alcohols -- 3.2.3.3 Bioplastic -- 3.3 Conclusions -- References -- Chapter 4 Production of Biomethane and Its Perspective Conversion: An Overview -- 4.1 Introduction -- 4.1.1 Sources of Methane -- 4.1.2 Methane from Human Activity -- 4.1.3 Impact of Methane on Climatic Change and Future -- 4.1.4 Advancements and Challenges -- References -- Chapter 5 Microalgal Biomass Synthesized Biodiesel: A Viable Option to Conventional Fuel Energy in Biorefinery -- 5.1 Introduction -- 5.2 Diesel -- 5.2.1 Biodiesel -- 5.3 Production of Biodiesel -- 5.3.1 Origin of Biofuels -- 5.3.2 Biodiesel Production from Algae -- 5.3.3 Intensity of Radiant Light -- 5.3.4 Lipid Content -- 5.3.5 Biomass Culturing Conditions -- 5.3.5.1 Temperature of Cultivation -- 5.3.5.2 pH of Cultivation -- 5.3.5.3 Duration Period of Light of Cultivation -- 5.3.5.4 Carbon Uptake of Cultivation -- 5.3.5.5 Oxygen Generation in Cultivation -- 5.3.5.6 Mixing Rates of Cultivation -- 5.3.5.7 Nutrient Uptake of Cultivation -- 5.4 Harvesting of Microalgae -- 5.4.1 Extraction of Oil -- 5.4.1.1 Varying n-Hexane to Algae Ratio -- 5.4.1.2 Varying the Algal Biomass Size -- 5.4.1.3 Varying Contact Time between n-Hexane and Algae Biomass -- 5.4.2 Transesterification -- 5.5 Conclusion -- Abbreviations -- References -- Chapter 6 Algae Biofuel Production Techniques: Recent Advancements -- 6.1 Introduction -- 6.2 Technologies for Conversion if Algal Biofuels -- 6.2.1 Thermochemical Conversion of Microalgae Biomass into Biofuel -- 6.2.1.1 Gasification.
6.2.1.2 Thermochemical Liquefaction -- 6.2.1.3 Pyrolysis -- 6.2.1.4 Direct Combustion -- 6.2.2 Biochemical Conversion -- 6.2.2.1 Anaerobic Digestion -- 6.2.2.2 Alcoholic Fermentation -- 6.2.2.3 Photobiological Hydrogen Production -- 6.3 Production of Biodiesel from Algal Biomass -- 6.3.1 Transesterification -- 6.4 Genetic Engineering Toward Biofuels Production -- 6.5 Summary -- References -- Chapter 7 Technologies of Microalgae Biomass Cultivation for Bio-Fuel Production: Challenges and Benefits -- 7.1 Introduction -- 7.2 Challenges Towards Algae Biofuel Technology -- 7.3 Biology Related with Algae -- 7.4 Algae Biofuels -- 7.5 Benefits of Microalgal Biofuels -- 7.6 Technologies for Production of Microalgae Biomass -- 7.6.1 Photoautotrophic Production -- 7.6.1.1 Open Pond Production Systems -- 7.6.1.2 Closed Photobioreactor Systems -- 7.6.1.3 Hybrid Production Systems -- 7.6.2 Heterotrophic Method Production -- 7.6.3 Mixotrophic Production -- 7.6.4 Photoheterotrophic Cultivation -- 7.7 Impact of Microalgae on the Environment -- 7.8 Advantages of Utilizing Microalgae Biomass for Biofuels -- 7.9 Conclusion -- References -- Chapter 8 Agrowaste Lignin as Source of High Calorific Fuel and Fuel Additive -- 8.1 Agrowaste -- 8.2 Lignin -- 8.2.1 Structure of Lignin -- 8.2.2 Types of Lignin -- 8.2.3 Applications of Lignin -- 8.3 Lignin as Fuel -- 8.3.1 Bioethanol Production -- 8.3.2 Bio-Oil Production -- 8.3.3 Syngas Production -- 8.4 As Fuel Additive -- 8.5 Conclusion -- References -- Chapter 9 Fly Ash Derived Catalyst for Biodiesel Production -- 9.1 Introduction -- 9.2 Coal Fly Ash: Resources and Utilization -- 9.3 Composition of Coal Fly Ash -- 9.4 Economic Perspective of Biodiesel -- 9.5 Biodiesel from Fly Ash Derived Catalyst -- 9.5.1 Coal Fly Ash-Derived Sodalite as a Heterogeneous Catalyst -- 9.5.1.1 Zeolite Synthesis from Coal Fly Ash.
9.5.1.2 Production of Biodiesel through Heterogeneous Transesterification -- 9.5.2 CaO/Fly Ash Catalyst for Transesterification of Palm Oil in Production of Biodiesel -- 9.5.2.1 Production of Biodiesel -- 9.5.2.2 Transesterification Reaction -- 9.5.3 Biodiesel Production Catalysed by Sulphated Fly-Ash -- 9.5.4 Composite Catalyst of Palm Mill Fly Ash-Supported Calcium Oxide (Eggshell Powder) -- 9.5.4.1 Preparation of the CaO/PMFA Catalyst -- 9.5.5 Kaliophilite-Fly Ash Based Catalyst for Production of Biodiesel -- 9.5.5.1 Synthesis of Kaliophilite -- 9.5.6 Fly-Ash Derived Zeolites for Production of Biodiesel -- Conclusion -- References -- Chapter 10 Emerging Biomaterials for Bone Joints Repairing in Knee Joint Arthroplasty: An Overview -- 10.1 Introduction -- 10.2 Resources and Selecting Criteria -- 10.3 Reasons for Bone Defects of Tibia Plateau -- 10.4 Classification of Bone Defects of Medial Tibia Plateau -- 10.5 Different Biomaterials for Tibial Plateau Bone Defects -- 10.6 New Biomaterials to Repair Bone Defects in Tibia Plateau -- 10.7 Conclusion -- References -- About the Editor -- Index -- EULA.
Record Nr. UNINA-9910726297303321
Hoboken, NJ : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui