The absence of soulware in higher education / / Way Kuo |
Autore | Kuo Way <1951-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023] |
Descrizione fisica | 1 online resource (443 pages) |
Disciplina | 929.374 |
Soggetto topico | Education |
ISBN |
1-394-17566-3
1-394-17565-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910830053803321 |
Kuo Way <1951-> | ||
Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced magnetic and optical materials / edited by Ashutosh Tiwari...[et al.] |
Pubbl/distr/stampa | Hoboken, : Scrivener Publishing LLC, 2017 |
Descrizione fisica | Testo elettronico (PDF) (XXI, 532 p.) |
Disciplina | 621.34 |
Collana | Advanced Material Series |
Soggetto topico | Materiali magnetici |
ISBN | 9781119241966 |
Formato | Risorse elettroniche |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996447149803316 |
Hoboken, : Scrivener Publishing LLC, 2017 | ||
Risorse elettroniche | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advances in aerial sensing and imaging / / edited by Sandeep Kumar [and five others] |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc. |
Descrizione fisica | 1 online resource (xiv, 415 pages) : illustrations, charts |
Soggetto topico |
Imaging systems
Drone aircraft in remote sensing Drone aircraft |
ISBN |
1-394-17551-5
1-394-17550-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 A Systematic Study on Aerial Images of Various Domains: Competences, Applications, and Futuristic Scope -- 1.1 Introduction -- 1.2 Literature Work -- 1.2.1 Based on Camera Axis -- 1.2.2 Based on Scale -- 1.2.3 Based on Sensor -- 1.3 Challenges of Object Detection and Classification in Aerial Images -- 1.4 Applications of Aerial Imaging in Various Domains -- 1.5 Conclusions and Future Scope -- 1.5.1 Conclusions -- 1.5.2 Future Scope -- References -- Chapter 2 Oriental Method to Predict Land Cover and Land Usage Using Keras with VGG16 for Image Recognition -- 2.1 Introduction -- 2.2 Literature Review -- 2.3 Materials and Methods -- 2.3.1 Dataset -- 2.3.2 Model Implemented -- 2.4 Discussion -- 2.5 Result Analysis -- 2.6 Conclusion -- References -- Chapter 3 Aerial Imaging Rescue and Integrated System for Road Monitoring Based on AI/ML -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Number of Accidents, Fatalities, and Injuries: 2016-2022 -- 3.3.1 Accidents Statistics in India -- 3.3.2 Accidents Statistics in Haryana -- 3.4 Proposed Methodology -- 3.4.1 ROI and Line Selection -- 3.4.2 Motion Detection -- 3.4.3 Single-Stage Clustering -- 3.4.4 Feature Fusion Process -- 3.4.5 Second-Stage Clustering -- 3.4.6 Tracking Objects -- 3.4.7 Classification -- 3.5 Result Analysis -- 3.6 Conclusion -- References -- Chapter 4 A Machine Learning Approach for Poverty Estimation Using Aerial Images -- 4.1 Introduction -- 4.2 Background and Literature Review -- 4.3 Proposed Methodology -- 4.3.1 Data Acquisition -- 4.3.2 Pre-Processing -- 4.3.3 Feature Extraction -- 4.3.4 Data Integration -- 4.3.5 Model Development -- 4.3.6 Validation -- 4.3.7 Visualization and Analysis -- 4.3.8 Policy and Program Development -- 4.4 Result and Discussion -- 4.5 Conclusion and Future Scope -- References.
Chapter 5 Agriculture and the Use of Unmanned Aerial Vehicles (UAVs): Current Practices and Prospects -- 5.1 Introduction -- 5.2 UAVs Classification -- 5.2.1 Comparison of Various UAVs -- 5.3 Agricultural Use of UAVs -- 5.4 UAVs in Livestock Farming -- 5.5 Challenges -- 5.6 Conclusion -- References -- Chapter 6 An Introduction to Deep Learning-Based Object Recognition and Tracking for Enabling Defense Applications -- 6.1 Introduction -- 6.2 Related Work -- 6.2.1 Importance of Object Monitoring and Surveillance in Defense -- 6.2.2 Need for Object Monitoring and Surveillance in Defense -- 6.2.3 Object Detection Techniques -- 6.2.4 Object Tracking Techniques -- 6.3 Experimental Methods -- 6.3.1 Experimental Setup and Dataset -- 6.3.2 DataSetVISdrone 2019 -- 6.3.3 Experimental Setup -- 6.4 Results and Outcomes -- 6.4.1 Comparison Results -- 6.4.2 Training Results -- 6.5 Conclusion -- 6.6 Future Scope -- References -- Chapter 7 A Robust Machine Learning Model for Forest Fire Detection Using Drone Images -- 7.1 Introduction -- 7.2 Literature Review -- 7.3 Proposed Methodology -- 7.4 Result and Discussion -- 7.5 Conclusion and Future Scope -- References -- Chapter 8 Semantic Segmentation of Aerial Images Using Pixel Wise Segmentation -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Proposed Method -- 8.3.1 Pixelwise Classification Method -- 8.3.2 Morphological Processing -- 8.4 Datasets -- 8.5 Results and Discussion -- 8.5.1 Analysis of the Proposed Method -- 8.6 Conclusion -- References -- Chapter 9 Implementation Analysis of Ransomware and Unmanned Aerial Vehicle Attacks: Mitigation Methods and UAV Security Recommendations -- 9.1 Introduction -- 9.2 Types of Ransomwares -- 9.3 History of Ransomware -- 9.4 Notable Ransomware Strains and Their Impact -- 9.4.1 CryptoLocker (2013) -- 9.4.2 CryptoWall (2014) -- 9.4.3 TeslaCrypt (2015) -- 9.4.4 Locky (2016). 9.4.5 WannaCry (2017) -- 9.4.6 NotPetya (2017) -- 9.4.7 Ryuk (2018) -- 9.4.8 REvil (2019) -- 9.4.9 Present-Day Ransomware Families -- 9.5 Mitigation Methods for Ransomware Attacks -- 9.6 Cybersecurity in UAVs (Unmanned Aerial Vehicles) -- 9.6.1 Introduction on FANETS -- 9.6.2 Network Security Concerning FANETs -- 9.6.3 UAV Security Enhancement -- 9.6.4 Limitations in UAVs -- 9.6.5 Future Scope -- 9.7 Experimental analysis of Wi-Fi Attack on Ryze Tello UAVs -- 9.7.1 Introduction -- 9.7.2 Methodology -- 9.8 Results and Discussion -- 9.9 Conclusion and Future Scope -- References -- Chapter 10 A Framework for Detection of Overall Emotional Score of an Event from the Images Captured by a Drone -- 10.1 Introduction -- 10.1.1 Need for Emotion Recognition -- 10.1.2 Applications of Drones in Deep Learning -- 10.2 Literature Review -- 10.3 Proposed Work -- 10.3.1 Extraction of Images from a Drone -- 10.3.2 Proposed CNN Model -- 10.4 Experimentation and Results -- 10.4.1 Dataset Description -- 10.5 Future Work and Conclusion -- References -- Chapter 11 Drone-Assisted Image Forgery Detection Using Generative Adversarial Net-Based Module -- 11.1 Introduction -- 11.2 Literature Survey -- 11.3 Proposed System -- 11.3.1 Common Forged Feature Network -- 11.3.2 Features Extraction -- 11.3.3 Features Classification and Classification Network -- 11.3.4 Label Prediction -- 11.3.5 Contrastive Learning -- 11.3.6 Binary Cross-Entropy Loss -- 11.4 Results -- 11.4.1 Experimental Settings -- 11.4.2 Performance Comparison -- 11.4.3 LBP Visualized Results -- 11.4.4 Training Convergence -- 11.5 Conclusion -- References -- Chapter 12 Optimizing the Identification and Utilization of Open Parking Spaces Through Advanced Machine Learning -- 12.1 Introduction -- 12.2 Proposed Framework Optimized Parking Space Identifier (OPSI) -- 12.2.1 Framework Components. 12.2.2 Learning Module: Adaptive Prediction of Parking Space Availability -- 12.2.3 System Design -- 12.2.4 Tools and Usage -- 12.2.5 Architecture -- 12.2.6 Implementation Techniques and Algorithms -- 12.2.7 Existing Methods and Workflow Model -- 12.2.8 Hyperparameter for OPSI -- 12.3 Potential Impact -- 12.3.1 Claims for the Accurate Detection of Fatigue -- 12.3.2 Similar Study and Results Analysis -- 12.4 Application and Results -- 12.4.1 Algorithm and Results -- 12.4.2 Implementation Using Python Modules -- 12.5 Discussion and Limitations -- 12.5.1 Discussion -- 12.5.2 Limitations -- 12.6 Future Work -- 12.6.1 Integration with Autonomous Vehicles -- 12.6.2 Real-Time Data Analysis -- 12.6.3 Integration with Smart Cities -- 12.7 Conclusion -- References -- Chapter 13 Graphical Password Authentication Using Python for Aerial Devices/Drones -- 13.1 Introduction -- 13.2 Literature Review -- 13.3 Methodology -- 13.4 A Brief Overview of a Drone and Authentication -- 13.4.1 Password Authentication -- 13.4.2 Types of Password Authentication Systems -- 13.4.3 Graphical Password Authentication -- 13.4.4 Advantages and Disadvantages of Graphical Passwords -- 13.5 Password Cracking -- 13.6 Data Analysis -- 13.7 Discussion -- 13.8 Conclusion and Future Scope -- References -- Chapter 14 A Study Centering on the Data and Processing for Remote Sensing Utilizing from Annoyed Aerial Vehicles -- 14.1 Introduction -- 14.2 An Acquisition Method for 3D Data Utilising Annoyed Aerial Vehicles -- 14.3 Background and Literature of Review -- 14.4 Research Gap -- 14.5 Methodology -- 14.6 Discussion -- 14.7 Conclusion -- References -- Chapter 15 Satellite Image Classification Using Convolutional Neural Network -- 15.1 Introduction -- 15.2 Literature Review -- 15.3 Objectives of this Research Work -- 15.3.1 Novelty of the Research Work -- 15.4 Description of the Dataset. 15.5 Theoretical Framework -- 15.6 Implementation and Results -- 15.6.1 Data Visualization -- 15.6.1.1 Class-Wise Data Count -- 15.6.1.2 Class-Wise Augmented Data Count -- 15.6.2 Implementation of MobileNetV3 -- 15.6.2.1 Visualization of a Sample of Training Images -- 15.6.2.2 Visualization of Executed Codes of MobileNetV3 -- 15.6.2.3 Training Results of MobileNetV3 -- 15.6.2.4 Classifications of Errors on Test Sets of MobileNetV3 -- 15.6.2.5 Confusion Matrix of MobileNetV3 -- 15.6.2.6 Classification Report of MobileNetV3 -- 15.6.3 Implementation of EfficientNetB0 -- 15.6.3.1 Visualization of a Sample of Training Images -- 15.6.3.2 Visualization of Executed Codes of EfficientNetB0 -- 15.6.3.3 Training Results of EfficientNetB0 -- 15.6.3.4 Classifications of Errors on Test Sets of EfficientNetB0 -- 15.6.3.5 Confusion Matrix of EfficientNetB0 -- 15.6.3.6 Classification Report of EfficientNetB0 -- 15.7 Conclusion and Future Scope -- References -- Chapter 16 Edge Computing in Aerial Imaging - A Research Perspective -- 16.1 Introduction -- 16.1.1 Edge Computing and Aerial Imaging -- 16.2 Research Applications of Aerial Imaging -- 16.2.1 Vehicle Imaging -- 16.2.2 Precision Agriculture -- 16.2.3 Environment Monitoring -- 16.2.4 Urban Planning and Development -- 16.2.5 Emergency Response -- 16.3 Edge Computing and Aerial Imaging -- 16.3.1 Research Perspective in Aerial Imaging -- 16.3.2 Edge Architectures -- 16.4 Comparative Analysis of the Aerial Imaging Algorithms and Architectures -- 16.5 Discussion -- 16.6 Conclusion -- References -- Chapter 17 Aerial Sensing and Imaging Analysis for Agriculture -- 17.1 Introduction -- 17.2 Experimental Methods and Techniques -- 17.3 Aerial Imaging and Sensing Applications in Agriculture -- 17.3.1 Assessing Yield and Fertilizer Response -- 17.3.2 Plant and Crop Farming -- 17.3.3 Soil and Field Analysis. 17.3.4 Weed Mapping and Management. |
Record Nr. | UNINA-9910877032103321 |
Hoboken, NJ : , : John Wiley & Sons, Inc. | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in biofeedstocks and biofuels . Volume 1 Biofeedstocks and their processing / / edited by Dr. Lalit Kumar Singh, Dr. Gaurav Chaudhary |
Autore | Kumar Singh Lalit |
Pubbl/distr/stampa | Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing LLC, , 2016 |
Descrizione fisica | 1 online resource (191 pages) : illustrations (some color) |
Disciplina | 662.88 |
Soggetto topico | Biomass energy |
ISBN |
1-119-11729-1
1-5231-1001-5 1-119-11732-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Production of Bioenergy in the Framework of Circular Economy: A Sustainable Circular System in Ecuador / Vega-Quezada Cristhian, Vega-Quezada Cristhian, Blanco María, Romero Hugo -- The Impact of Biomass Feedstock Composition and Pre-treatments on Tar Formation during Biomass Gasification / John Corton, Blanco-Sanchez P Paula, Zakir Khan, Jon Paul McCalmont, Xi Yu, George Fletcher, Steve Croxton, James Sharp, Manosh C Paul, Ian A I Watson, Iain S Donnison -- Key Pretreatment Technologies for An Efficient Bioethanol Production from Lignocellulosics / Archana Mishra, Sanjoy Ghosh -- Present Status on Enzymatic Hydrolysis of Lignocellulosic Biomass for Bioethanol Production / Arindam Kuila, Vinay Sharma, Vijay Kumar Garlapati, Anshu Singh, Lakshmishri Roy, Rintu Banerjee -- Biological Pretreatment of Lignocellulosic Biomaterials / Sandeep Kaur Saggi, Geetika Gupta, Pinaki Dey -- Anaerobic Digestion and the Use of Pre-treatments on Lignocellulosic Feedstocks to Improve Biogas Production and Process Economics / Laura Williams, Joe Gallagher, David Bryant, Sreenivas Rao Ravella -- Algae: The Future of Bioenergy / Nivas Manohar Desai. |
Record Nr. | UNINA-9910156343503321 |
Kumar Singh Lalit | ||
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing LLC, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in biofeedstocks and biofuels . Volume 1 Biofeedstocks and their processing / / edited by Dr. Lalit Kumar Singh, Dr. Gaurav Chaudhary |
Autore | Kumar Singh Lalit |
Pubbl/distr/stampa | Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing LLC, , 2016 |
Descrizione fisica | 1 online resource (191 pages) : illustrations (some color) |
Disciplina | 662.88 |
Soggetto topico | Biomass energy |
ISBN |
1-119-11729-1
1-5231-1001-5 1-119-11732-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Production of Bioenergy in the Framework of Circular Economy: A Sustainable Circular System in Ecuador / Vega-Quezada Cristhian, Vega-Quezada Cristhian, Blanco María, Romero Hugo -- The Impact of Biomass Feedstock Composition and Pre-treatments on Tar Formation during Biomass Gasification / John Corton, Blanco-Sanchez P Paula, Zakir Khan, Jon Paul McCalmont, Xi Yu, George Fletcher, Steve Croxton, James Sharp, Manosh C Paul, Ian A I Watson, Iain S Donnison -- Key Pretreatment Technologies for An Efficient Bioethanol Production from Lignocellulosics / Archana Mishra, Sanjoy Ghosh -- Present Status on Enzymatic Hydrolysis of Lignocellulosic Biomass for Bioethanol Production / Arindam Kuila, Vinay Sharma, Vijay Kumar Garlapati, Anshu Singh, Lakshmishri Roy, Rintu Banerjee -- Biological Pretreatment of Lignocellulosic Biomaterials / Sandeep Kaur Saggi, Geetika Gupta, Pinaki Dey -- Anaerobic Digestion and the Use of Pre-treatments on Lignocellulosic Feedstocks to Improve Biogas Production and Process Economics / Laura Williams, Joe Gallagher, David Bryant, Sreenivas Rao Ravella -- Algae: The Future of Bioenergy / Nivas Manohar Desai. |
Record Nr. | UNINA-9910824016803321 |
Kumar Singh Lalit | ||
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing LLC, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Novel Formulations for Drug Delivery / / edited by Raj K. Keservani, Rajesh Kumar Kesharwani, and Anil K. Sharma |
Pubbl/distr/stampa | Hoboken, NJ ; ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023] |
Descrizione fisica | 1 online resource (576 pages) |
Disciplina | 615.6 |
Soggetto topico | Drug delivery systems |
ISBN |
1-394-16770-9
1-394-16769-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Novel Drug Carriers and Therapeutics -- Chapter 1 Nanoarchitectured Materials: Their Applications and Present Scenarios in Drug Delivery -- 1.1 Introduction -- 1.2 Liposomes -- 1.3 Nanoparticles -- 1.3.1 Nanoparticles in Drug Delivery -- 1.4 Nanoemulsions -- 1.4.1 Advantages and Shortcomings of Nanoemulsions -- 1.4.2 Application of Nanoemulsion in Drug Delivery -- 1.5 Dendrimers -- 1.5.1 Synthesis of Dendrimers -- 1.5.2 Advantages of Dendrimers -- 1.5.3 Applications of Dendrimers in Drug Delivery -- 1.6 Aquasomes -- 1.6.1 Properties of Aquasomes -- 1.6.2 Application of Aquasomes in Drug Delivery -- 1.7 Nanogel -- 1.7.1 Properties of Nanogels -- 1.7.2 Nanogels in Drug Delivery -- 1.8 Quantum Dots -- 1.8.1 Applications of Quantum Dots in Drug Delivery -- 1.9 Carbon Nanotubes -- 1.9.1 Features of Carbon Nanotubes -- 1.9.2 Carbon Nanotubes in Drug Delivery -- References -- Chapter 2 Nanopharmaceuticals for Drug Delivery -- 2.1 Introduction -- 2.2 What Are Nanopharmaceuticals and What Do They Do? -- 2.3 Nanopharmaceuticals Importance -- 2.4 Nanotechnology -- 2.5 Pharmaceutical Companies and Nanotechnology -- 2.6 Applications and Advantages of Nanopharmaceuticals as Drug Carriers -- 2.7 Characteristics of Nanoparticles in Nanopharmaceuticals -- 2.7.1 Particle Size -- 2.7.2 Surface Properties of Nanoparticles -- 2.7.3 Drug Loading -- 2.7.4 Drug Release -- 2.8 Targeted Drug Delivery -- 2.9 Types of Nanoparticles -- 2.10 Nanoparticle Preparation Methods -- 2.11 Evaluation of Nanoparticles -- 2.12 Efficiency of Drug Entrapment -- 2.13 Particle Shape -- 2.14 Size of the Particles -- 2.15 Zeta Potential -- 2.16 Rise of Nanopharmaceuticals -- 2.17 Nanopharmaceuticals Approval Regulations (FDA Rules & -- Regulations) -- 2.18 Conclusions and Prospects for the Future -- References.
Chapter 3 Applications and Prospects of Nanopharmaceuticals Delivery -- 3.1 Introduction -- 3.2 Nanopharmaceuticals -- 3.3 Development of Nanopharmaceuticals -- 3.3.1 From Lab to the Marketplace -- 3.3.2 Techniques -- 3.3.3 Cost -- 3.3.4 Ethics -- 3.3.5 Nanopharmaceuticals Approval Regulations (FDA Rules & -- Regulations) -- 3.4 Clinical Applications of Nanotechnology -- 3.4.1 Diagnostic Applications -- 3.4.1.1 Detection -- 3.4.1.2 Protein Chips -- 3.4.1.3 Individual Target Probes -- 3.4.1.4 Nanotechnology as a Tool in Imaging -- 3.4.1.5 Sparse Cell Detection -- 3.4.2 Therapeutic Applications -- 3.4.2.1 Surfaces -- 3.4.2.2 Gene Delivery -- 3.4.2.3 Drug Delivery -- 3.4.2.4 Liposomes -- 3.4.2.5 Nanotechnology in Orthopedic Applications -- 3.4.2.6 Nanotechnology in Cardiac Therapy -- 3.4.2.7 Nanotechnology in Dental Care -- 3.4.2.8 Biomolecular Engineering -- 3.4.2.9 Biopharmaceuticals -- 3.5 Nanopharmaceuticals Delivery-Recent Applications -- 3.5.1 Nanoparticulate Systems for Vaccine -- 3.5.1.1 Polyanhydride-Based NPs -- 3.5.1.2 Biodegradable Synthetic PLGA NPs -- 3.5.1.3 Liposome-Based NPs -- 3.5.1.4 Polysaccharide-Based NPs -- 3.5.2 Chemotherapy -- 3.5.2.1 Increasing the Concentration of Chemotherapeutic Agents in Tumor Tissue -- 3.5.3 Drug/Gene Delivery -- 3.5.3.1 Nanoparticles Used in Drug Delivery System -- 3.5.3.2 Cellulose -- 3.6 Nanotechnology in Neurodegenerative Disorders Treatment -- 3.7 Future Perspective -- 3.8 Issues with Current Nanopharmaceutical Concepts -- 3.8.1 Large-Scale Manufacturing -- 3.8.2 Biological Challenges -- 3.8.3 Intellectual Property (IP) -- 3.8.4 Biocompatibility and Safety -- 3.8.5 Government Regulations -- 3.9 Conclusion -- References -- Chapter 4 Nanomedicine Regulation and Future Prospects -- 4.1 Introduction -- 4.2 Importance of Regulation of Nanomedicine. 4.3 Regulatory Challenges Faced by Nanomaterial in Medicine -- 4.3.1 Performing Various Functions -- 4.3.2 Nanomedicine Classification Issues -- 4.3.3 Variation in Size of the Particle -- 4.3.4 Manufacturing Process -- 4.3.5 Difficulties to Create CQA -- 4.3.6 Nanotoxicology and Cellular Response -- 4.3.7 Administering Right Doses -- 4.3.8 Pharmacokinetics -- 4.3.9 Developing Guidelines -- 4.4 Nanomedicine Future Aspects -- 4.5 Challenges that Threaten the Future of Nanomedicine -- 4.5.1 Financial Crisis -- 4.5.2 Lack of Confidence -- 4.5.3 Potential Dangers -- 4.5.4 Unsuccessful Patenting -- 4.5.5 Breakdowns in the Pharmaceuticals and Financial Markets -- 4.5.6 Limited Regulation -- 4.6 Future Prospects for Nanomedicine -- 4.6.1 Emerging Nanomaterials -- 4.6.2 Personalized Nanomedicine -- 4.6.3 Nanorobots and Nanodevices -- 4.6.4 Orthopedic Augmentations and Cytocompatibility -- 4.6.5 Cardiology and Nanotechnology -- 4.6.6 Cancer and Nanotechnology -- 4.6.7 NAPT -- 4.6.8 Gene, Protein, Lab-on-a-Chip Devices -- 4.6.9 Polymeric Nanoparticles in Medicine -- References -- Chapter 5 Nanotechnology Application in Drug Delivery for Medicinal Plants -- 5.1 Introduction -- 5.1.1 Nanodrug Delivery Systems (NDDS) -- 5.2 Nanoherbals -- 5.2.1 Cucuma longa (Cucurmin) -- 5.2.2 Gingko biloba -- 5.2.3 Artemisia -- 5.2.4 Silybum marianum-Silymarin -- 5.2.5 Salvia miltiorrhiza (Danshen) -- 5.2.6 Glycyrrhiza glabra (L.) -- 5.2.7 Camellia sinensis (Green tea) -- 5.2.8 Camptotheca acuminata -- 5.2.9 Leea indica -- 5.2.10 Ziziphus mauritiana (Malay apple) -- 5.2.11 Cuscuta chinensis -- 5.3 Conclusion -- References -- Chapter 6 Nanosystems Trends in Nutraceutical Delivery -- 6.1 Introduction -- 6.2 Classification of Nutraceuticals -- 6.3 Biopharmaceutical Issues Associated with Nutraceuticals -- 6.4 Nanosystems for Delivery of Nutraceuticals -- 6.4.1 Nanoemulsions. 6.4.2 Self-Emulsifying Systems -- 6.4.3 Solid Lipid Nanoparticles and Nanostructured Lipid Carriers -- 6.4.4 Liposomes -- 6.4.5 Polymeric Nanoparticles -- 6.4.6 Inorganic Nanoparticles -- 6.5 Challenges -- 6.6 Market Potential -- 6.7 Conclusion and Perspective -- References -- Chapter 7 Nanoencapsulated Systems for Delivery of Phytopharmaceuticals -- 7.1 Introduction -- 7.1.1 Nanoencapsulation Techniques in Phytopharmaceuticals -- 7.1.1.1 Physical-Chemical Techniques -- 7.1.1.2 Chemicals Techniques -- 7.1.1.3 Mechanical Techniques -- 7.1.2 Characterization of Nanoencapsulates -- 7.1.2.1 Morphological Characterization -- 7.1.2.2 Physicochemical Characterization -- 7.1.3 Nanoencapsulated Systems for Free Delivery of Phytopharmaceuticals -- 7.1.4 Studies to Evaluate Phytopharmaceuticals Nanoencapsulates -- 7.2 Conclusions -- References -- Chapter 8 Topical Drug Delivery Using Liposomes and Liquid Crystalline Phases for Skin Cancer Therapy -- 8.1 Introduction -- 8.2 Liposomes for Topical Application -- 8.2.1 Development of Liposomal Nanoparticles -- 8.3 Liquid Crystals and Liquid Crystalline Nanodispersions for Topical Application -- 8.3.1 Characterization Techniques -- 8.4 Physical Methods Applied to Nanoparticles Delivery -- 8.4.1 Sonophoresis -- 8.4.2 Microneedles -- 8.5 Conclusions and Perspectives -- Acknowledgements -- References -- Chapter 9 Vesicular Drug Delivery in Arthritis Treatment -- 9.1 Introduction -- 9.2 Skin Penetration Pathways -- 9.2.1 Intercellular Pathway -- 9.2.2 Transcellular Pathway -- 9.2.3 Appendgeal Pathway -- 9.3 Principles of Drug Permeation Through Skin -- 9.4 Problems Associated with Conventional Dosage Forms -- 9.5 Novel Treatment Strategies for Arthritis -- 9.5.1 Traditional Liposomes as Skin Drug Delivery Systems -- 9.5.2 Transferosomes (Ultradeformable Liposomes) as Skin Drug Delivery Systems. 9.5.3 Ethosomes as Skin Drug Delivery Systems -- 9.5.4 Niosomes as Skin Drug Delivery Systems -- 9.6 Conclusion and Future Perspectives -- References -- Chapter 10 Perspectives of Novel Drug Delivery in Mycoses -- 10.1 Introduction -- 10.2 Role of Conventional Drugs in Antifungal Therapy -- 10.3 Mechanism of Action of Conventional Antifungals -- 10.4 Summary of Nanoparticles and Their Role in Antifungal Therapy -- 10.4.1 Lipid Nanoparticles -- 10.4.2 Liposome -- 10.4.3 Transfersomes -- 10.4.4 Transethosomes -- 10.4.5 Solid Lipid Nanoparticles (SLN) -- 10.4.6 Nanostructured Lipid Carriers (NLC) -- 10.4.7 Polymer Lipid Hybrid Nanoparticles (PLN) -- 10.4.8 Polymeric Nanoparticles -- 10.4.9 Microsponge and Nanosponge Systems -- 10.4.10 Polymeric Micelles -- 10.4.11 Polymersomes -- 10.4.12 Dendrimers -- 10.4.13 Metallic Nanoparticles -- 10.5 Other Drug Delivery Systems -- 10.5.1 Niosomes -- 10.5.2 Spanlastics -- 10.5.3 Microemulsions and Nanoemulsions -- 10.5.4 Silicon Dioxide Nanoparticles -- 10.6 Conclusion -- References -- Chapter 11 Nano-Based Drug Delivery in Eliminating Tuberculosis -- 11.1 Introduction -- 11.1.1 Latent and Active Tuberculosis -- 11.1.2 Multidrug-Resistant Tuberculosis (MDR-TB) -- 11.1.3 Extensively Drug-Resistant TB -- 11.2 Antitubercular Therapy -- 11.3 Therapies Based on Nanotechnology -- 11.3.1 Nanoparticles for Anti-TB Therapy -- 11.3.2 Advantages and Disadvantages of Nanoparticles -- 11.3.3 Types of Nanoparticles and Their Characteristics -- 11.3.3.1 TB Dendrimers -- 11.3.3.2 Cyclodextrins -- 11.3.3.3 Polymeric Micelles -- 11.3.3.4 Liposomes -- 11.3.3.5 Nanoemulsions -- 11.3.3.6 Solid Lipid Nanoparticles -- 11.3.3.7 Niosomes -- 11.3.3.8 Polymeric Nanoparticles -- 11.4 Routes of Administration of Nanoparticles -- 11.4.1 Oral Administration of Nanoparticles -- 11.4.2 Inhalational Administration of Nanoparticles. 11.4.3 Intravenous Administration of Nanoparticles. |
Record Nr. | UNINA-9910677499803321 |
Hoboken, NJ ; ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biodegradable materials and their applications / / Inamuddin and Tariq A. Altalhi |
Autore | Inamuddin |
Pubbl/distr/stampa | Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2022] |
Descrizione fisica | 1 online resource (881 pages) |
Disciplina | 929.374 |
Soggetto topico | Engineering |
ISBN |
1-119-90530-3
1-119-90528-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Biodegradable Materials in Electronics -- 1.1 Introduction -- 1.2 Biodegradable Materials in Electronics -- 1.2.1 Advantages of Biodegradable Materials -- 1.3 Silk -- 1.4 Polymers -- 1.4.1 Natural Polymers -- 1.4.2 Synthetic Polymers -- 1.5 Cellulose -- 1.6 Paper -- 1.7 Others -- 1.8 Biodegradable Electronic Components -- 1.9 Semiconductors -- 1.10 Substrate -- 1.11 Biodegradable Dielectrics -- 1.12 Insulators and Conductors -- 1.13 Conclusion -- Declaration About Copyright -- References -- 2 Biodegradable Thermoelectric Materials -- 2.1 Introduction -- 2.2 Biopolymer-Based Renewable Composites: An Alternative to Synthetic Materials -- 2.3 Working Principle of Thermoelectric Materials -- 2.4 Biopolymer Composite for Thermoelectric Application -- 2.4.1 Polylactic Acid-Based Thermoelectric Materials -- 2.4.2 Cellulose-Based Biocomposites as Thermoelectric Materials -- 2.4.3 Chitosan-Based Biocomposites as Thermoelectric Materials -- 2.4.4 Agarose-Based Biocomposites as Thermoelectric Materials -- 2.4.5 Starch-Based Biocomposites as Thermoelectric Materials -- 2.4.6 Carrageenan-Based Biocomposites as Thermoelectric Materials -- 2.4.7 Pullulan-Based Composites as Thermoelectric Materials -- 2.4.8 Lignin-Based Biocomposites as Thermoelectric Materials -- 2.5 Heparin-Based Biocomposites as Future Thermoelectric Materials -- 2.6 Conclusions -- References -- 3 Biodegradable Electronics: A Newly Emerging Environmental Technology -- 3.1 Introduction -- 3.2 Properties of Biodegradable Materials in Electronics -- 3.3 Transformational Applications of Biodegradable Materials in Electronics -- 3.3.1 Cellulose -- 3.3.2 Silk -- 3.3.3 Stretchable Hydrogel -- 3.3.4 Conjugated Polymers and Metals -- 3.3.5 Graphene -- 3.3.6 Composites -- 3.4 Biodegradation Mechanisms.
3.5 Conclusions -- Acknowledgements -- References -- 4 Biodegradable and Bioactive Films or Coatings From Fish Waste Materials -- 4.1 Introduction -- 4.2 Fishery Chain Industry -- 4.2.1 Evolution of the Fishery Chain Industry -- 4.2.2 Applications of Fish Waste Materials -- 4.3 Films or Coatings Based on Proteins From Fish Waste Materials -- 4.3.1 Films or Coatings for Food Packaging -- 4.3.2 Development of Protein-Based Films or Coatings -- 4.3.2.1 Fish Proteins and Processes for Obtaining Collagen/Gelatin and Myofibrillar Proteins -- 4.3.2.2 Development of Biodegradable and Bioactive Films or Coating -- 4.3.3 Development of Protein-Based Films or Coatings Incorporated With Additives and/or Plasticizers -- 4.3.3.1 Films or Coatings Incorporated With Organic Additives and/or Plasticizers and Their Applications -- 4.3.3.2 Films or Coatings Incorporated With Inorganic Additives and/or Plasticizers -- 4.4 Conclusion -- References -- 5 Biodegradable Superabsorbent Materials -- 5.1 Introduction -- 5.2 Biohydrogels: Superabsorbent Materials -- 5.3 Polysaccharides: Biopolymers from Renewable Sources -- 5.3.1 Carboxymethylcellulose (CMC) -- 5.3.2 Chitosan (CH) -- 5.3.3 Alginate -- 5.3.4 Carrageenans -- 5.4 Applications of Superabsorbent Biohydrogels (SBHs) Based on Polysaccharides -- 5.5 Conclusion and Future Perspectives -- Acknowledgments -- References -- 6 Bioplastics in Personal Protective Equipment -- 6.1 Introduction -- 6.2 Conventional Personal Protective Equipment -- 6.2.1 Face Masks -- 6.2.1.1 Surgical Mask -- 6.2.1.2 N95 Face Masks -- 6.2.1.3 KN95 Face Masks -- 6.2.1.4 Cloth Face Masks -- 6.2.1.5 Two-Layered Face Mask (or Hygienic) -- 6.2.2 Gloves -- 6.2.2.1 Latex -- 6.2.2.2 Nitrile -- 6.2.2.3 Vinyl -- 6.2.2.4 Foil (Polyethylene) -- 6.3 Biodegradable and Biobased PPE -- 6.3.1 Face Masks -- 6.3.1.1 Polylactic Acid -- 6.3.1.2 Polybutylene Succinate. 6.3.1.3 Polyvinyl Alcohol -- 6.3.2 Gloves -- 6.3.2.1 Butadiene Rubber (BR) -- 6.3.2.2 Polyisoprene Rubber -- 6.4 Environmental Impacts Caused by Personal Protective Equipment Made of Bioplastics -- 6.4.1 Source and Raw Materials -- 6.4.2 End of Life Scenarios -- 6.4.3 Remarks on Biodegradability -- 6.5 International Standards Applied to Biodegradable Plastics and Bioplastics -- 6.6 Conclusions -- References -- 7 Biodegradable Protective Films -- 7.1 Introduction -- 7.1.1 Types of Protective Films -- 7.2 Biodegradable Protective Films -- 7.2.1 Processing of Biodegradable Protective Films -- 7.2.2 Limitations Faced by Biodegradable Protective Films -- References -- 8 No Plastic, No Pollution: Replacement of Plastics in the Equipments of Personal Protection -- 8.1 Introduction -- 8.2 Bioplastics -- 8.3 Biodegradation of Bioplastics -- 8.4 Production of Bioplastics from Plant Sources -- 8.5 Production of Bioplastics from Microbial Resources -- 8.6 What Are PPEs Made Off? -- 8.6.1 Face Masks -- 8.6.2 Face and Eye Shields -- 8.6.3 Gloves -- 8.7 Biodegradable Materials for PPE -- 8.8 Conclusion and Future Perspectives -- References -- 9 Biodegradable Materials in Dentistry -- 9.1 Introduction -- 9.2 Biodegradable Materials -- 9.2.1 Synthetic Polymers -- 9.2.2 Natural Polymers -- 9.2.3 Biodegradable Ceramics -- 9.2.4 Bioactive Glass -- 9.2.5 Biodegradable Metals -- 9.3 Biodegradable Materials in Suturing -- 9.4 Biodegradable Materials in Imaging and Diagnostics -- 9.5 Biodegradable Materials in Oral Maxillofacial and Craniofacial Surgery -- 9.6 Biodegradable Materials in Resorbable Plate and Screw System -- 9.7 Biodegradable Materials in Alveolar Ridge Preservation -- 9.8 Biodegradable Materials of Nanotopography in Cancer Therapy -- 9.9 Biodegradable Materials in Endodontics -- 9.10 Biodegradable Materials in Orthodontics. 9.11 Biodegradable Materials in Periodontics -- 9.12 Conclusion -- References -- 10 Biodegradable and Biocompatible Polymeric Materials for Dentistry Applications -- 10.1 Introduction -- 10.2 Polysaccharides -- 10.2.1 Chitosan -- 10.2.2 Cellulose -- 10.2.3 Starch -- 10.2.4 Alginate -- 10.2.5 Hyaluronic Acid (HA) -- 10.3 Proteins -- 10.3.1 Collagen -- 10.3.2 Fibrin -- 10.3.3 Elastin -- 10.3.4 Gelatins -- 10.3.5 Silk -- 10.4 Biopolyesters -- 10.4.1 Poly (Glycolic Acid) (PGA) -- 10.4.2 Poly (Lactic Acid) PLA -- 10.4.3 Poly (Lactide-co-Glycolide) (PLGA) -- 10.4.4 Polycaprolactone -- 10.4.5 Poly (Propylene Fumarate) -- 10.5 Conclusion -- References -- 11 Biodegradable Biomaterials in Bone Tissue Engineering -- 11.1 Introduction -- 11.2 Essential Characteristics and Considerations in Bone Scaffold Design -- 11.3 Fabrication Technologies -- 11.4 Incorporation of Bioactive Molecules During Scaffold Fabrication -- 11.5 Biocompatibility and Interface Between Biodegradation and New Tissue Formation -- 11.6 Biodegradation of Calcium Phosphate Biomaterials -- 11.7 Biodegradation of Polymeric Biomaterials -- 11.8 Importance of Bone Remodeling -- 11.9 Conclusion -- References -- 12 Biodegradable Elastomer -- 12.1 Introduction -- 12.2 Biodegradation Testing -- 12.3 Biodegradable Elastomers: An Overview -- 12.3.1 Preparation Strategies -- 12.3.2 Biodegradation and Erosion -- 12.4 Application of Biodegradable Elastomers -- 12.4.1 Drug Delivery -- 12.4.2 Tissue Engineering -- 12.4.2.1 Neural and Retinal Applications -- 12.4.2.2 Cardiovascular Applications -- 12.4.2.3 Orthopedic Applications -- 12.5 Conclusions and Perspectives -- References -- 13 Biodegradable Implant Materials -- 13.1 Introduction -- 13.2 Medical Implants -- 13.3 Biomaterials -- 13.3.1 Biomaterial Types -- 13.3.1.1 Polymer Biomaterials -- 13.3.1.2 Metallic Biomaterials -- 13.3.1.3 Ceramic Biomaterials. 13.4 Biodegradable Implant Materials -- 13.4.1 Biodegradable Metals -- 13.4.1.1 Magnesium-Based Biodegradable Materials -- 13.4.1.2 Iron-Based Biodegradable Materials -- 13.4.2 Biodegradable Polymers -- 13.4.2.1 Polyesters -- 13.4.2.2 Polycarbonates -- 13.4.2.3 Polyanhydrides -- 13.4.2.4 Poly(ortho esters) -- 13.4.2.5 Poly(propylene fumarate) -- 13.4.2.6 Poly(phosphazenes) -- 13.4.2.7 Polyphosphoesters -- 13.4.2.8 Polyurethanes -- 13.5 Conclusion -- References -- 14 Current Strategies in Pulp and Periodontal Regeneration Using Biodegradable Biomaterials -- 14.1 Introduction -- 14.2 Biodegradable Materials in Dental Pulp Regeneration -- 14.2.1 Collagen-Based Gels -- 14.2.2 Platelet-Rich Plasma -- 14.2.3 Plasma-Rich Fibrin -- 14.2.4 Gelatin -- 14.2.5 Fibrin -- 14.2.6 Alginate -- 14.2.7 Chitosan -- 14.2.8 Amino Acid Polymers -- 14.2.9 Polymers of Lactic Acid -- 14.2.10 Composite Polymer Scaffolds -- 14.3 Biodegradable Biomaterials and Strategies for Tissue Engineering of Periodontium -- 14.4 Coapplication of Auxiliary Agents With Biodegradable Biomaterials for Periodontal Tissue Engineering -- 14.4.1 Stem Cells Applications in Periodontal Regeneration -- 14.4.2 Bioactive Molecules for Periodontal Regeneration -- 14.4.3 Antimicrobial and Anti-Inflammatory Agents for Periodontal Regeneration -- 14.5 Regeneration of Periodontal Tissues Complex Using Biodegradable Biomaterials -- 14.5.1 PDL Regeneration -- 14.5.2 Cementum and Alveolar Bone Regeneration -- 14.5.3 Integrated Regeneration of Periodontal Complex Structures -- 14.6 Recent Advances in Periodontal Regeneration Using Supportive Techniques During Application of Biodegradable Biomaterials -- 14.6.1 Laser Application in Periodontium Regeneration -- 14.6.2 Gene Therapy in Periodontal Regeneration -- 14.7 Conclusion and Future Remarks -- References. 15 A Review on Health Care Applications of Biopolymers. |
Record Nr. | UNINA-9910643862603321 |
Inamuddin | ||
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biodegradable materials and their applications / / Inamuddin and Tariq A. Altalhi |
Autore | Inamuddin |
Pubbl/distr/stampa | Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2022] |
Descrizione fisica | 1 online resource (881 pages) |
Disciplina | 929.374 |
Soggetto topico | Engineering |
ISBN |
1-119-90530-3
1-119-90528-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Biodegradable Materials in Electronics -- 1.1 Introduction -- 1.2 Biodegradable Materials in Electronics -- 1.2.1 Advantages of Biodegradable Materials -- 1.3 Silk -- 1.4 Polymers -- 1.4.1 Natural Polymers -- 1.4.2 Synthetic Polymers -- 1.5 Cellulose -- 1.6 Paper -- 1.7 Others -- 1.8 Biodegradable Electronic Components -- 1.9 Semiconductors -- 1.10 Substrate -- 1.11 Biodegradable Dielectrics -- 1.12 Insulators and Conductors -- 1.13 Conclusion -- Declaration About Copyright -- References -- 2 Biodegradable Thermoelectric Materials -- 2.1 Introduction -- 2.2 Biopolymer-Based Renewable Composites: An Alternative to Synthetic Materials -- 2.3 Working Principle of Thermoelectric Materials -- 2.4 Biopolymer Composite for Thermoelectric Application -- 2.4.1 Polylactic Acid-Based Thermoelectric Materials -- 2.4.2 Cellulose-Based Biocomposites as Thermoelectric Materials -- 2.4.3 Chitosan-Based Biocomposites as Thermoelectric Materials -- 2.4.4 Agarose-Based Biocomposites as Thermoelectric Materials -- 2.4.5 Starch-Based Biocomposites as Thermoelectric Materials -- 2.4.6 Carrageenan-Based Biocomposites as Thermoelectric Materials -- 2.4.7 Pullulan-Based Composites as Thermoelectric Materials -- 2.4.8 Lignin-Based Biocomposites as Thermoelectric Materials -- 2.5 Heparin-Based Biocomposites as Future Thermoelectric Materials -- 2.6 Conclusions -- References -- 3 Biodegradable Electronics: A Newly Emerging Environmental Technology -- 3.1 Introduction -- 3.2 Properties of Biodegradable Materials in Electronics -- 3.3 Transformational Applications of Biodegradable Materials in Electronics -- 3.3.1 Cellulose -- 3.3.2 Silk -- 3.3.3 Stretchable Hydrogel -- 3.3.4 Conjugated Polymers and Metals -- 3.3.5 Graphene -- 3.3.6 Composites -- 3.4 Biodegradation Mechanisms.
3.5 Conclusions -- Acknowledgements -- References -- 4 Biodegradable and Bioactive Films or Coatings From Fish Waste Materials -- 4.1 Introduction -- 4.2 Fishery Chain Industry -- 4.2.1 Evolution of the Fishery Chain Industry -- 4.2.2 Applications of Fish Waste Materials -- 4.3 Films or Coatings Based on Proteins From Fish Waste Materials -- 4.3.1 Films or Coatings for Food Packaging -- 4.3.2 Development of Protein-Based Films or Coatings -- 4.3.2.1 Fish Proteins and Processes for Obtaining Collagen/Gelatin and Myofibrillar Proteins -- 4.3.2.2 Development of Biodegradable and Bioactive Films or Coating -- 4.3.3 Development of Protein-Based Films or Coatings Incorporated With Additives and/or Plasticizers -- 4.3.3.1 Films or Coatings Incorporated With Organic Additives and/or Plasticizers and Their Applications -- 4.3.3.2 Films or Coatings Incorporated With Inorganic Additives and/or Plasticizers -- 4.4 Conclusion -- References -- 5 Biodegradable Superabsorbent Materials -- 5.1 Introduction -- 5.2 Biohydrogels: Superabsorbent Materials -- 5.3 Polysaccharides: Biopolymers from Renewable Sources -- 5.3.1 Carboxymethylcellulose (CMC) -- 5.3.2 Chitosan (CH) -- 5.3.3 Alginate -- 5.3.4 Carrageenans -- 5.4 Applications of Superabsorbent Biohydrogels (SBHs) Based on Polysaccharides -- 5.5 Conclusion and Future Perspectives -- Acknowledgments -- References -- 6 Bioplastics in Personal Protective Equipment -- 6.1 Introduction -- 6.2 Conventional Personal Protective Equipment -- 6.2.1 Face Masks -- 6.2.1.1 Surgical Mask -- 6.2.1.2 N95 Face Masks -- 6.2.1.3 KN95 Face Masks -- 6.2.1.4 Cloth Face Masks -- 6.2.1.5 Two-Layered Face Mask (or Hygienic) -- 6.2.2 Gloves -- 6.2.2.1 Latex -- 6.2.2.2 Nitrile -- 6.2.2.3 Vinyl -- 6.2.2.4 Foil (Polyethylene) -- 6.3 Biodegradable and Biobased PPE -- 6.3.1 Face Masks -- 6.3.1.1 Polylactic Acid -- 6.3.1.2 Polybutylene Succinate. 6.3.1.3 Polyvinyl Alcohol -- 6.3.2 Gloves -- 6.3.2.1 Butadiene Rubber (BR) -- 6.3.2.2 Polyisoprene Rubber -- 6.4 Environmental Impacts Caused by Personal Protective Equipment Made of Bioplastics -- 6.4.1 Source and Raw Materials -- 6.4.2 End of Life Scenarios -- 6.4.3 Remarks on Biodegradability -- 6.5 International Standards Applied to Biodegradable Plastics and Bioplastics -- 6.6 Conclusions -- References -- 7 Biodegradable Protective Films -- 7.1 Introduction -- 7.1.1 Types of Protective Films -- 7.2 Biodegradable Protective Films -- 7.2.1 Processing of Biodegradable Protective Films -- 7.2.2 Limitations Faced by Biodegradable Protective Films -- References -- 8 No Plastic, No Pollution: Replacement of Plastics in the Equipments of Personal Protection -- 8.1 Introduction -- 8.2 Bioplastics -- 8.3 Biodegradation of Bioplastics -- 8.4 Production of Bioplastics from Plant Sources -- 8.5 Production of Bioplastics from Microbial Resources -- 8.6 What Are PPEs Made Off? -- 8.6.1 Face Masks -- 8.6.2 Face and Eye Shields -- 8.6.3 Gloves -- 8.7 Biodegradable Materials for PPE -- 8.8 Conclusion and Future Perspectives -- References -- 9 Biodegradable Materials in Dentistry -- 9.1 Introduction -- 9.2 Biodegradable Materials -- 9.2.1 Synthetic Polymers -- 9.2.2 Natural Polymers -- 9.2.3 Biodegradable Ceramics -- 9.2.4 Bioactive Glass -- 9.2.5 Biodegradable Metals -- 9.3 Biodegradable Materials in Suturing -- 9.4 Biodegradable Materials in Imaging and Diagnostics -- 9.5 Biodegradable Materials in Oral Maxillofacial and Craniofacial Surgery -- 9.6 Biodegradable Materials in Resorbable Plate and Screw System -- 9.7 Biodegradable Materials in Alveolar Ridge Preservation -- 9.8 Biodegradable Materials of Nanotopography in Cancer Therapy -- 9.9 Biodegradable Materials in Endodontics -- 9.10 Biodegradable Materials in Orthodontics. 9.11 Biodegradable Materials in Periodontics -- 9.12 Conclusion -- References -- 10 Biodegradable and Biocompatible Polymeric Materials for Dentistry Applications -- 10.1 Introduction -- 10.2 Polysaccharides -- 10.2.1 Chitosan -- 10.2.2 Cellulose -- 10.2.3 Starch -- 10.2.4 Alginate -- 10.2.5 Hyaluronic Acid (HA) -- 10.3 Proteins -- 10.3.1 Collagen -- 10.3.2 Fibrin -- 10.3.3 Elastin -- 10.3.4 Gelatins -- 10.3.5 Silk -- 10.4 Biopolyesters -- 10.4.1 Poly (Glycolic Acid) (PGA) -- 10.4.2 Poly (Lactic Acid) PLA -- 10.4.3 Poly (Lactide-co-Glycolide) (PLGA) -- 10.4.4 Polycaprolactone -- 10.4.5 Poly (Propylene Fumarate) -- 10.5 Conclusion -- References -- 11 Biodegradable Biomaterials in Bone Tissue Engineering -- 11.1 Introduction -- 11.2 Essential Characteristics and Considerations in Bone Scaffold Design -- 11.3 Fabrication Technologies -- 11.4 Incorporation of Bioactive Molecules During Scaffold Fabrication -- 11.5 Biocompatibility and Interface Between Biodegradation and New Tissue Formation -- 11.6 Biodegradation of Calcium Phosphate Biomaterials -- 11.7 Biodegradation of Polymeric Biomaterials -- 11.8 Importance of Bone Remodeling -- 11.9 Conclusion -- References -- 12 Biodegradable Elastomer -- 12.1 Introduction -- 12.2 Biodegradation Testing -- 12.3 Biodegradable Elastomers: An Overview -- 12.3.1 Preparation Strategies -- 12.3.2 Biodegradation and Erosion -- 12.4 Application of Biodegradable Elastomers -- 12.4.1 Drug Delivery -- 12.4.2 Tissue Engineering -- 12.4.2.1 Neural and Retinal Applications -- 12.4.2.2 Cardiovascular Applications -- 12.4.2.3 Orthopedic Applications -- 12.5 Conclusions and Perspectives -- References -- 13 Biodegradable Implant Materials -- 13.1 Introduction -- 13.2 Medical Implants -- 13.3 Biomaterials -- 13.3.1 Biomaterial Types -- 13.3.1.1 Polymer Biomaterials -- 13.3.1.2 Metallic Biomaterials -- 13.3.1.3 Ceramic Biomaterials. 13.4 Biodegradable Implant Materials -- 13.4.1 Biodegradable Metals -- 13.4.1.1 Magnesium-Based Biodegradable Materials -- 13.4.1.2 Iron-Based Biodegradable Materials -- 13.4.2 Biodegradable Polymers -- 13.4.2.1 Polyesters -- 13.4.2.2 Polycarbonates -- 13.4.2.3 Polyanhydrides -- 13.4.2.4 Poly(ortho esters) -- 13.4.2.5 Poly(propylene fumarate) -- 13.4.2.6 Poly(phosphazenes) -- 13.4.2.7 Polyphosphoesters -- 13.4.2.8 Polyurethanes -- 13.5 Conclusion -- References -- 14 Current Strategies in Pulp and Periodontal Regeneration Using Biodegradable Biomaterials -- 14.1 Introduction -- 14.2 Biodegradable Materials in Dental Pulp Regeneration -- 14.2.1 Collagen-Based Gels -- 14.2.2 Platelet-Rich Plasma -- 14.2.3 Plasma-Rich Fibrin -- 14.2.4 Gelatin -- 14.2.5 Fibrin -- 14.2.6 Alginate -- 14.2.7 Chitosan -- 14.2.8 Amino Acid Polymers -- 14.2.9 Polymers of Lactic Acid -- 14.2.10 Composite Polymer Scaffolds -- 14.3 Biodegradable Biomaterials and Strategies for Tissue Engineering of Periodontium -- 14.4 Coapplication of Auxiliary Agents With Biodegradable Biomaterials for Periodontal Tissue Engineering -- 14.4.1 Stem Cells Applications in Periodontal Regeneration -- 14.4.2 Bioactive Molecules for Periodontal Regeneration -- 14.4.3 Antimicrobial and Anti-Inflammatory Agents for Periodontal Regeneration -- 14.5 Regeneration of Periodontal Tissues Complex Using Biodegradable Biomaterials -- 14.5.1 PDL Regeneration -- 14.5.2 Cementum and Alveolar Bone Regeneration -- 14.5.3 Integrated Regeneration of Periodontal Complex Structures -- 14.6 Recent Advances in Periodontal Regeneration Using Supportive Techniques During Application of Biodegradable Biomaterials -- 14.6.1 Laser Application in Periodontium Regeneration -- 14.6.2 Gene Therapy in Periodontal Regeneration -- 14.7 Conclusion and Future Remarks -- References. 15 A Review on Health Care Applications of Biopolymers. |
Record Nr. | UNINA-9910678118103321 |
Inamuddin | ||
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Bioinspired and green synthesis of nanostructures : a sustainable approach / / edited by Mousumi Sen and Monalisa Mukherjee |
Pubbl/distr/stampa | Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023] |
Descrizione fisica | 1 online resource (436 pages) |
Disciplina | 730 |
Soggetto topico | Nanotechnology |
ISBN |
1-394-17492-6
1-394-17491-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Green Synthesis: Introduction, Mechanism, and Effective Parameters -- 1.1 Introduction -- 1.2 What Are Nanoparticles? -- 1.3 Types of Nanoparticles -- 1.3.1 Inorganic Nanoparticle -- 1.3.1.1 Green Synthesis of Silver (Ag) Nanoparticles -- 1.3.1.2 Green Synthesis of Gold (Au) Nanoparticles -- 1.3.1.3 Green Synthesis of Copper (Cu) Nanoparticles -- 1.3.1.4 Iron Oxide Nanoparticles -- 1.3.2 Organic Nanoparticles -- 1.3.2.1 Liposomes -- 1.3.2.2 Micelles -- 1.3.2.3 Dendrimers -- 1.4 Approaches -- 1.5 Conclusion -- References -- Chapter 2 Greener Nanoscience: Proactive Approach to Advancing Nanotechnology Applications and Reducing Its Negative Consequences -- 2.1 Introduction -- 2.2 Why Do We Need Green Nanoscience Approaches? -- 2.3 Green Nanotechnology -- 2.4 Green Synthesis of Nanomaterials -- 2.5 Advantages of Green Nanoscience -- 2.5.1 Green Nanoscience in Industries -- 2.5.2 Green Nanoscience in Automobiles -- 2.5.3 Green Nanoelectronics -- 2.5.4 Green Nanoscience in Food and Agriculture -- 2.5.5 Green Nanoscience in Medicines -- 2.6 Conclusion -- References -- Chapter 3 Optimization of the Process Parameters to Develop Green-Synthesized Nanostructures with a Special Interest in Cancer Theranostics -- 3.1 Introduction -- 3.1.1 Conventional Techniques in Nanoparticle Synthesis -- 3.1.2 Green Nanotechnology -- 3.2 Mechanism Underlying Green Synthesis -- 3.3 Green Synthesized Nanoparticles in Cancer Theranostics -- 3.4 Optimizing the Synthesis and Subsequent Characterizations -- 3.4.1 Approaches to Achieve Optimization -- 3.4.2 Characterization of Nanoparticles -- Acknowledgment -- References -- Chapter 4 Sustainability: An Emerging Design Criterion in Nanoparticles Synthesis and Applications -- 4.1 Introduction -- 4.2 Biotemplates -- 4.2.1 Plant-Based Biotemplates.
4.2.2 Microorganism-Based Biotemplates -- 4.2.2.1 Bacteria -- 4.2.2.2 Fungi -- 4.2.2.3 Yeast -- 4.2.2.4 Algae -- 4.3 Synthesis Routes -- 4.3.1 Effect of pH -- 4.3.2 Effect of Temperature -- 4.3.3 Effect of Biomolecules -- 4.3.3.1 Plant-Based -- 4.3.3.2 Microorganism-Based -- 4.4 Applications -- 4.4.1 Biomedical Application -- 4.4.1.1 Antimicrobial Activity -- 4.4.1.2 Biomedication -- 4.4.1.3 Vaccines -- 4.4.1.4 Antidiabetic -- 4.4.1.5 Diagnostic Applications -- 4.4.2 Environmental Application -- 4.4.2.1 Environmental Remediation -- 4.4.2.2 Catalytic Removal of Textile Dyes -- 4.4.2.3 Wastewater Treatment -- 4.4.2.4 Agriculture -- 4.5 Conclusion and Outlook -- References -- Chapter 5 Green Conversion Methods to Prepare Nanoparticle -- 5.0 Introduction -- 5.1 Bacteria -- 5.2 Fungi -- 5.3 Yeast -- 5.4 Viruses -- 5.5 Algae -- 5.6 Plants -- 5.7 Conclusion and Perspectives -- References -- Chapter 6 Bioinspired Green Synthesis of Nanomaterials From Algae -- 6.1 Introduction -- 6.2 Algal System-Mediated Nanomaterial Synthesis -- 6.3 Factors Affecting the Green Synthesis of Nanomaterials -- 6.3.1 Light -- 6.3.2 Temperature -- 6.3.3 Incubation Period -- 6.3.4 pH -- 6.3.5 Precursor Concentration and Bioactive Catalyst -- 6.4 Applications of the Green Synthesized Nanomaterials -- 6.4.1 Antimicrobial Agents -- 6.4.2 Anticancerous -- 6.4.3 Biosensing -- 6.4.4 Bioremediation -- 6.5 Future Perspectives -- 6.6 Conclusion -- References -- Chapter 7 Interactions of Nanoparticles with Plants: Accumulation and Effects -- 7.1 Introduction -- 7.2 Uptake and Translocation of Nanoparticles and Nanocarriers in Plants -- 7.3 Nanoparticle-Mediated Sensing and Biosensing in Plants -- 7.4 Tolerance Versus Toxicity of Nanoparticles in Plants -- 7.5 Nanoparticle-Mediated Delivery of Fertilizers, Pesticides, Other Agrochemicals in Plants. 7.6 Nanoparticle-Mediated Non-Viral Gene Delivery in Plants -- 7.7 Conclusions -- Acknowledgments -- References -- Chapter 8 A Clean Nano-Era: Green Synthesis and Its Progressive Applications -- 8.1 Introduction -- 8.2 Green Synthetic Approaches -- 8.2.1 Microorganism-Induced Synthesis of Nanoparticles -- 8.2.2 Biosynthesis of Nanoparticles Using Bacteria -- 8.2.3 Biosynthesis of Nanoparticles Using Fungi -- 8.2.4 Biosynthesis of Nanoparticles Using Actinomycetes -- 8.2.5 Biosynthesis of Nanoparticles Using Algae -- 8.2.6 Plant Extracts for Biosynthesis of Nanoparticles -- 8.3 Nanoparticles Obtained Using Green Synthetic Approaches and Their Applications -- 8.3.1 Synthesis of Silver (Ag) and Gold (Au) -- 8.3.2 Synthesis of Palladium (Pd) Nanoparticles -- 8.3.3 Synthesis of Copper (Cu) Nanoparticles -- 8.3.4 Synthesis of Silver Oxide (Ag2O) Nanoparticles -- 8.3.5 Synthesis of Titanium Dioxide (TiO2) Nanoparticles -- 8.3.6 Synthesis of Zinc Oxide (ZnO) Nanoparticles -- 8.3.7 Synthesis of Iron Oxide Nanoparticles -- 8.4 Conclusion -- References -- Chapter 9 A Decade of Biomimetic and Bioinspired Nanostructures: Innovation Upheaval and Implementation -- 9.1 Introduction -- 9.2 Bioinspired Nanostructures -- 9.2.1 Materials Inspired by Structural Properties of Natural Organism -- 9.3 Biomimetic Structures -- 9.4 Biomimetic Synthesis Processes and Products -- 9.5 Application of Bioinspired and Biomimetic Structure -- 9.6 Conclusion -- 9.7 Future Outlook -- Acknowledgments -- References -- Chapter 10 A Feasibility Study of the Bioinspired Green Manufacturing of Nanocomposite Materials -- 10.1 Introduction -- 10.2 Biopolymers -- 10.2.1 Cellulose -- 10.2.2 Chitosan -- 10.2.3 Starch -- 10.2.4 Chitin -- 10.2.5 Polyhydroxyalkanoates (PHA) -- 10.2.6 Polylactic Acid (PLA) -- 10.3 Different Types of Bioinspired Nanocomposites. 10.3.1 Polymer-HAp Nanoparticle Composites -- 10.3.2 Nanowhisker-Based Bionanocomposites -- 10.3.3 Clay-Polymer Nanocomposites -- 10.4 Fabrication of Bionanocomposites -- 10.4.1 Electrospinning -- 10.4.2 Solvent Casting -- 10.4.3 Melt Moulding -- 10.4.4 Freeze Drying -- 10.4.5 3D Printing -- 10.4.6 Ball Milling Method -- 10.4.7 Microwave-Assisted Method for Bionanocomposite Preparation -- 10.4.8 Ultraviolet Irradiation Method -- 10.5 Application of Bionanocomposites -- 10.5.1 Orthopedics -- 10.5.2 Dental Applications -- 10.5.3 Tissue Engineering -- 10.6 Conclusion -- References -- Chapter 11 Bioinspiration as Tools for the Design of Innovative Materials and Systems Bioinspired Piezoelectric Materials: Design, Synthesis, and Biomedical Applications -- 11.1 Bioinspiration and Sophisticated Materials Design -- 11.1.1 Piezoelectricity in Natural Bulk Materials -- 11.1.2 Piezoelectricity in Proteins -- 11.1.3 Piezoelectric Ultra-Short Peptides -- 11.1.4 Single Amino Acid Assembly and Coassembly-Based Piezoelectric Materials -- 11.2 Biomedical Applications -- 11.2.1 Piezoelectric Sensors -- 11.2.2 Tissue Regeneration -- 11.3 Conclusion and Future Perspectives -- Acknowledgment -- References -- Chapter 12 Protein Cages and their Potential Application in Therapeutics -- 12.1 Introduction -- 12.2 Different Methods of Cage Modifications and Cargo Loading -- 12.3 Applications of Protein Cages in Biotechnology and Therapeutics -- 12.3.1 Protein Cage as Targeted Delivery Vehicles for Therapeutic Protein -- 12.3.2 Protein Cage-Based Encapsulation and Targeting of Anticancer Drugs -- 12.3.3 Protein Cage-Based Immune-Therapy -- 12.4 Future Perspective -- 12.5 Conclusion -- Acknowledgment -- References -- Chapter 13 Green Nanostructures: Biomedical Applications and Toxicity Studies -- 13.1 Introduction -- 13.2 Moving Toward Green Nanostructures. 13.3 Methods of Nanoparticle Synthesis -- 13.4 Plant-Mediated Synthesis of Green Nanostructures -- 13.4.1 Silver Nanoparticles -- 13.4.2 Gold Nanoparticles -- 13.4.3 Zinc Oxide Nanoparticles -- 13.4.4 Selenium Nanoparticles -- 13.5 Microbe-Based Synthesis -- 13.5.1 Bacteria-Mediated Synthesis of NPs -- 13.5.2 Fungus-Mediated Synthesis of NPs -- 13.5.3 Actinomycete-Mediated Synthesis of NPs -- 13.6 Toxicity of Nanostructures -- 13.7 Conclusion -- References -- Chapter 14 Future Challenges for Designing Industry-Relevant Bioinspired Materials -- 14.1 Introduction -- 14.2 Bioinspired Materials -- 14.3 Applications of Bioinspired Materials and Their Industrial Relevance -- 14.4 Bioinspired Materials in Optics -- 14.4.1 Applications in Optics -- 14.4.2 Bioinspired Materials in Energy -- 14.4.3 Applications in Energy -- 14.4.4 Bioinspired Materials in Medicine -- 14.5 Applications in Medicine -- 14.6 Future Challenges for Industrial Relevance -- 14.7 Optics-Specific Challenges -- 14.8 Energy-Specific Challenges -- 14.9 Medicine-Specific Challenges -- 14.10 Conclusion -- References -- Chapter 15 Biomimetic and Bioinspired Nanostructures: Recent Developments and Applications -- 15.1 Introduction -- 15.2 Designing Bioinspired and Bioimitating Structures and Pathways -- 15.3 Nanobiomimicry-Confluence of Nanotechnology and Bioengineering -- 15.4 Biofunctionalization of Inorganic Nanoparticles -- 15.4.1 Strategies to Develop Biofunctionalized Nanoparticles -- 15.4.2 Fate of Biofunctionalized Nanoparticles -- 15.4.3 Biofunctionalization Nanoparticles with Different Organic Compounds -- 15.4.3.1 Carbohydrates -- 15.4.3.2 Nucleic Acid -- 15.4.3.3 Peptides -- 15.4.3.4 DNA -- 15.4.3.5 Antibody -- 15.4.3.6 Enzyme -- 15.4.3.7 Stability of Biofunctionalized Nanoparticles -- 15.4.3.8 Applications of Biofunctionalized Nanoparticles. 15.5 Multifarious Applications of Biomimicked/Bioinspired Novel Nanomaterials. |
Record Nr. | UNINA-9910830597603321 |
Hoboken, NJ ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biorefinery Production of Fuels and Platform Chemicals / / edited by Prakash Kumar Sarangi |
Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023] |
Descrizione fisica | 1 online resource (295 pages) |
Disciplina | 662.88 |
Soggetto topico |
Biomass energy
Chemical processes |
ISBN |
1-119-72487-2
1-119-72506-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Biofuels: Classification, Conversion Technologies, Optimization Techniques and Applications -- 1.1 Introduction -- 1.2 Classification of Biofuels -- 1.2.1 First-Generation Biofuels -- 1.2.2 Second-Generation Biofuels -- 1.2.3 Third-Generation Algal Biofuels -- 1.3 Commonly Used Conversion Technologies -- 1.3.1 Gasification -- 1.3.1.1 Factors Influencing Gasification -- 1.3.2 Pyrolysis -- 1.3.2.1 Production of Bio-Oil from Pyrolysis -- 1.3.3 Hydrothermal Processes -- 1.3.3.1 Hydrothermal Carbonization -- 1.3.3.2 Hydrothermal Liquefaction -- 1.3.3.3 Hydrothermal Gasification -- 1.3.4 Transesterification -- 1.4 Commonly Used Optimization Techniques -- 1.4.1 Response Surface Methodology -- 1.4.2 Genetic Algorithm -- 1.5 Application of Biofuels in Transportation Sector -- 1.5.1 Automobile Sector -- 1.5.2 Aviation Sector -- Conclusion -- References -- Chapter 2 Technical Challenges and Prospects of Renewable Fuel Generation and Utilization at a Global Scale -- 2.1 Introduction -- 2.2 Biofuel Synthesis -- 2.2.1 Biomass Energy -- 2.2.2 Biofuels -- 2.2.3 Biodiesel -- 2.3 Challenges for Bioenergy Generation -- 2.3.1 Operation Challenges in Biomass Energy Process -- 2.3.2 Economic Challenges in Biomass Energy Process -- 2.3.3 Social Challenges in Biomass Energy Processes -- 2.3.3.1 Conflicting Decision on Utility of Biomass Resources -- 2.3.3.2 Land Use Issue or Problems on Biomass Cultivation or Utilization -- 2.3.3.3 Environmental Impact of Biomass Resources -- 2.3.4 Policy and Regulatory Challenges for Biomass Energy Utility -- 2.4 Conclusions -- Abbreviations -- References -- Chapter 3 Engineered Microbial Systems for the Production of Fuels and Industrially Important Chemicals -- 3.1 Introduction.
3.2 Microbial Systems for Biofuels and Chemicals Production -- 3.2.1 Microbial Systems for Genetic Engineering and Cellular Fabrication -- 3.2.2 Engineering of Microbial Cell Systems for Biofuels Production -- 3.2.2.1 Alcohols -- 3.2.3 Engineering of Microbial Cell Systems for Chemical Synthesis -- 3.2.3.1 Organic Acids -- 3.2.3.2 Fatty Alcohols -- 3.2.3.3 Bioplastic -- 3.3 Conclusions -- References -- Chapter 4 Production of Biomethane and Its Perspective Conversion: An Overview -- 4.1 Introduction -- 4.1.1 Sources of Methane -- 4.1.2 Methane from Human Activity -- 4.1.3 Impact of Methane on Climatic Change and Future -- 4.1.4 Advancements and Challenges -- References -- Chapter 5 Microalgal Biomass Synthesized Biodiesel: A Viable Option to Conventional Fuel Energy in Biorefinery -- 5.1 Introduction -- 5.2 Diesel -- 5.2.1 Biodiesel -- 5.3 Production of Biodiesel -- 5.3.1 Origin of Biofuels -- 5.3.2 Biodiesel Production from Algae -- 5.3.3 Intensity of Radiant Light -- 5.3.4 Lipid Content -- 5.3.5 Biomass Culturing Conditions -- 5.3.5.1 Temperature of Cultivation -- 5.3.5.2 pH of Cultivation -- 5.3.5.3 Duration Period of Light of Cultivation -- 5.3.5.4 Carbon Uptake of Cultivation -- 5.3.5.5 Oxygen Generation in Cultivation -- 5.3.5.6 Mixing Rates of Cultivation -- 5.3.5.7 Nutrient Uptake of Cultivation -- 5.4 Harvesting of Microalgae -- 5.4.1 Extraction of Oil -- 5.4.1.1 Varying n-Hexane to Algae Ratio -- 5.4.1.2 Varying the Algal Biomass Size -- 5.4.1.3 Varying Contact Time between n-Hexane and Algae Biomass -- 5.4.2 Transesterification -- 5.5 Conclusion -- Abbreviations -- References -- Chapter 6 Algae Biofuel Production Techniques: Recent Advancements -- 6.1 Introduction -- 6.2 Technologies for Conversion if Algal Biofuels -- 6.2.1 Thermochemical Conversion of Microalgae Biomass into Biofuel -- 6.2.1.1 Gasification. 6.2.1.2 Thermochemical Liquefaction -- 6.2.1.3 Pyrolysis -- 6.2.1.4 Direct Combustion -- 6.2.2 Biochemical Conversion -- 6.2.2.1 Anaerobic Digestion -- 6.2.2.2 Alcoholic Fermentation -- 6.2.2.3 Photobiological Hydrogen Production -- 6.3 Production of Biodiesel from Algal Biomass -- 6.3.1 Transesterification -- 6.4 Genetic Engineering Toward Biofuels Production -- 6.5 Summary -- References -- Chapter 7 Technologies of Microalgae Biomass Cultivation for Bio-Fuel Production: Challenges and Benefits -- 7.1 Introduction -- 7.2 Challenges Towards Algae Biofuel Technology -- 7.3 Biology Related with Algae -- 7.4 Algae Biofuels -- 7.5 Benefits of Microalgal Biofuels -- 7.6 Technologies for Production of Microalgae Biomass -- 7.6.1 Photoautotrophic Production -- 7.6.1.1 Open Pond Production Systems -- 7.6.1.2 Closed Photobioreactor Systems -- 7.6.1.3 Hybrid Production Systems -- 7.6.2 Heterotrophic Method Production -- 7.6.3 Mixotrophic Production -- 7.6.4 Photoheterotrophic Cultivation -- 7.7 Impact of Microalgae on the Environment -- 7.8 Advantages of Utilizing Microalgae Biomass for Biofuels -- 7.9 Conclusion -- References -- Chapter 8 Agrowaste Lignin as Source of High Calorific Fuel and Fuel Additive -- 8.1 Agrowaste -- 8.2 Lignin -- 8.2.1 Structure of Lignin -- 8.2.2 Types of Lignin -- 8.2.3 Applications of Lignin -- 8.3 Lignin as Fuel -- 8.3.1 Bioethanol Production -- 8.3.2 Bio-Oil Production -- 8.3.3 Syngas Production -- 8.4 As Fuel Additive -- 8.5 Conclusion -- References -- Chapter 9 Fly Ash Derived Catalyst for Biodiesel Production -- 9.1 Introduction -- 9.2 Coal Fly Ash: Resources and Utilization -- 9.3 Composition of Coal Fly Ash -- 9.4 Economic Perspective of Biodiesel -- 9.5 Biodiesel from Fly Ash Derived Catalyst -- 9.5.1 Coal Fly Ash-Derived Sodalite as a Heterogeneous Catalyst -- 9.5.1.1 Zeolite Synthesis from Coal Fly Ash. 9.5.1.2 Production of Biodiesel through Heterogeneous Transesterification -- 9.5.2 CaO/Fly Ash Catalyst for Transesterification of Palm Oil in Production of Biodiesel -- 9.5.2.1 Production of Biodiesel -- 9.5.2.2 Transesterification Reaction -- 9.5.3 Biodiesel Production Catalysed by Sulphated Fly-Ash -- 9.5.4 Composite Catalyst of Palm Mill Fly Ash-Supported Calcium Oxide (Eggshell Powder) -- 9.5.4.1 Preparation of the CaO/PMFA Catalyst -- 9.5.5 Kaliophilite-Fly Ash Based Catalyst for Production of Biodiesel -- 9.5.5.1 Synthesis of Kaliophilite -- 9.5.6 Fly-Ash Derived Zeolites for Production of Biodiesel -- Conclusion -- References -- Chapter 10 Emerging Biomaterials for Bone Joints Repairing in Knee Joint Arthroplasty: An Overview -- 10.1 Introduction -- 10.2 Resources and Selecting Criteria -- 10.3 Reasons for Bone Defects of Tibia Plateau -- 10.4 Classification of Bone Defects of Medial Tibia Plateau -- 10.5 Different Biomaterials for Tibial Plateau Bone Defects -- 10.6 New Biomaterials to Repair Bone Defects in Tibia Plateau -- 10.7 Conclusion -- References -- About the Editor -- Index -- EULA. |
Record Nr. | UNINA-9910726297303321 |
Hoboken, NJ : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|