(ISC)2 SSCP systems security certified practitioner : official study guide / / Mike Wills |
Autore | Wills Mike |
Pubbl/distr/stampa | Indianapolis, Indiana : , : John Wiley & Sons, Incorporated, , [2019] |
Descrizione fisica | 1 online resource (691 pages) |
Disciplina | 005.8 |
Soggetto topico |
Computer networks - Security measures
Electronic data processing personnel - Certification |
ISBN |
1-119-54295-2
1-119-54292-8 1-119-54792-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910555045503321 |
Wills Mike | ||
Indianapolis, Indiana : , : John Wiley & Sons, Incorporated, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
(ISC)2 SSCP systems security certified practitioner : official study guide / / Mike Wills |
Autore | Wills Mike |
Pubbl/distr/stampa | Indianapolis, Indiana : , : John Wiley & Sons, Incorporated, , [2019] |
Descrizione fisica | 1 online resource (691 pages) |
Disciplina | 005.8 |
Soggetto topico |
Computer networks - Security measures
Electronic data processing personnel - Certification |
ISBN |
1-119-54295-2
1-119-54292-8 1-119-54792-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910829828903321 |
Wills Mike | ||
Indianapolis, Indiana : , : John Wiley & Sons, Incorporated, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
100 Years of Spanish Cinema |
Autore | Pavlović Tatjana |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken : , : John Wiley & Sons, Incorporated, , 2008 |
Descrizione fisica | 1 online resource (296 pages) |
Disciplina | 791.430946 |
Altri autori (Persone) |
AlvarezInmaculada
Blanco-CanoRosana GrisalesAnitra OsorioAlejandra SánchezAlejandra |
Soggetto topico | Motion pictures -- Spain -- History |
Soggetto genere / forma | Electronic books. |
ISBN |
9781444304800
9781405184199 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Intro -- Figures -- About the Authors -- Acknowledgments -- Preface -- 1 Silent Cinema and its Pioneers (1906-1930) -- 1 El ciego de aldea (Ángel García Cardona, 1906) -- 2 Amor que mata (Fructuós Gelabert, 1909) -- 3 Don Pedro el Cruel (Ricardo Baños, Albert Marro, 1911) -- 4 La aldea maldita (Florián Rey, 1930) -- 2 Surrealism (1924-1930) and the Advent of Sound (the Second Republic: 1931-1936) -- 1 Un chien andalou (Luis Buñuel, 1929) -- 2 Tierra sin pan (Luis Buñuel, 1933) -- 3 Spanish Civil War (1936-1939) -- 1 Suspiros de España (Benito Perojo, 1938) -- 2 Canciones para después de una guerra (Basilio Martín Patino, 1971) -- 4 The Autarky: Papier-Mâché Cinema (1939-1950) -- 1 Raza (José Luis Sáenz de Heredia, 1941) -- 2 Locura de amor (Juan de Orduña, 1948) -- 5 Neorealism: Status Quo and Dissent (1951-1961) -- 1 El cochecito (Marco Ferreri, 1960) -- 2 Viridiana (Luis Buñuel, 1961) -- 6 The "Liberal" Dictatorship and its Agony (1962-1975) -- 1 El verdugo (Luis García Berlanga, 1963) -- 2 El jardín de las delicias (Carlos Saura, 1970) -- 7 Cinema of the Transition: The Period of Disenchantment (1975-1979) -- 1 El desencanto (Jaime Chávarri, 1976) -- 2 El crimen de Cuenca (Pilar Miró, 1979) -- 8 Post-Franco Spain: The Pedro Almodóvar Phenomenon (1980-1991) -- 1 Pepi, Luci, Bom y otras chicas del montón (Pedro Almodóvar, 1980) -- 2 ¿Qué he hecho yo para merecer esto! (Pedro Almodóvar, 1984) -- 9 Contemporary Trends (1992 to the Present) -- 1 Vacas (Julio Medem, 1992) -- 2 Carícies (Ventura Pons, 1997) -- 3 Flores de otro mundo (Icíar Bollaín, 1999) -- 4 The Secret Life of Words (La vida secreta de las palabras) (Isabel Coixet, 2005) -- Glossary of Film Terms -- Historical Chronology -- Notes -- Bibliography -- Index. |
Record Nr. | UNINA-9910795816603321 |
Pavlović Tatjana | ||
Hoboken : , : John Wiley & Sons, Incorporated, , 2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
100 Years of Spanish Cinema |
Autore | Pavlović Tatjana |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken : , : John Wiley & Sons, Incorporated, , 2008 |
Descrizione fisica | 1 online resource (296 pages) |
Disciplina | 791.430946 |
Altri autori (Persone) |
AlvarezInmaculada
Blanco-CanoRosana GrisalesAnitra OsorioAlejandra SánchezAlejandra |
Soggetto topico | Motion pictures -- Spain -- History |
ISBN |
9781444304800
9781405184199 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Intro -- Figures -- About the Authors -- Acknowledgments -- Preface -- 1 Silent Cinema and its Pioneers (1906-1930) -- 1 El ciego de aldea (Ángel García Cardona, 1906) -- 2 Amor que mata (Fructuós Gelabert, 1909) -- 3 Don Pedro el Cruel (Ricardo Baños, Albert Marro, 1911) -- 4 La aldea maldita (Florián Rey, 1930) -- 2 Surrealism (1924-1930) and the Advent of Sound (the Second Republic: 1931-1936) -- 1 Un chien andalou (Luis Buñuel, 1929) -- 2 Tierra sin pan (Luis Buñuel, 1933) -- 3 Spanish Civil War (1936-1939) -- 1 Suspiros de España (Benito Perojo, 1938) -- 2 Canciones para después de una guerra (Basilio Martín Patino, 1971) -- 4 The Autarky: Papier-Mâché Cinema (1939-1950) -- 1 Raza (José Luis Sáenz de Heredia, 1941) -- 2 Locura de amor (Juan de Orduña, 1948) -- 5 Neorealism: Status Quo and Dissent (1951-1961) -- 1 El cochecito (Marco Ferreri, 1960) -- 2 Viridiana (Luis Buñuel, 1961) -- 6 The "Liberal" Dictatorship and its Agony (1962-1975) -- 1 El verdugo (Luis García Berlanga, 1963) -- 2 El jardín de las delicias (Carlos Saura, 1970) -- 7 Cinema of the Transition: The Period of Disenchantment (1975-1979) -- 1 El desencanto (Jaime Chávarri, 1976) -- 2 El crimen de Cuenca (Pilar Miró, 1979) -- 8 Post-Franco Spain: The Pedro Almodóvar Phenomenon (1980-1991) -- 1 Pepi, Luci, Bom y otras chicas del montón (Pedro Almodóvar, 1980) -- 2 ¿Qué he hecho yo para merecer esto! (Pedro Almodóvar, 1984) -- 9 Contemporary Trends (1992 to the Present) -- 1 Vacas (Julio Medem, 1992) -- 2 Carícies (Ventura Pons, 1997) -- 3 Flores de otro mundo (Icíar Bollaín, 1999) -- 4 The Secret Life of Words (La vida secreta de las palabras) (Isabel Coixet, 2005) -- Glossary of Film Terms -- Historical Chronology -- Notes -- Bibliography -- Index. |
Record Nr. | UNINA-9910808703303321 |
Pavlović Tatjana | ||
Hoboken : , : John Wiley & Sons, Incorporated, , 2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
2D Nanomaterials : Synthesis, Properties, and Applications |
Autore | Chakroborty Subhendu |
Edizione | [1st ed.] |
Pubbl/distr/stampa | John Wiley & Sons, Inc, 2024 |
Descrizione fisica | 1 online resource (514 pages) |
Altri autori (Persone) | PalKaushik |
ISBN |
1-394-16787-3
1-394-16788-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Synthesis of 2D Nanomaterials -- Chapter 1 Top-Down Strategies Synthesis of 2D Nanomaterial -- 1.1 Introduction -- 1.2 Top-Down Strategy Synthesis Method -- 1.2.1 Etching -- 1.2.2 Mechanical Milling -- 1.2.3 Sputtering -- 1.3 Laser Ablation -- 1.4 Characterizations and Toxicity of 2D Nanomaterials -- 1.5 Conclusions -- References -- Chapter 2 Bottom-Up Strategies for Synthesis of 2D Nanomaterial -- 2.1 Introduction -- 2.2 Types of 2D Nanomaterial -- 2.2.1 Graphene -- 2.2.2 MXenes -- 2.2.3 Black Phosphorus -- 2.2.4 Hexagonal Boron Nitride -- 2.2.5 Transition Metal Dichalcogenides -- 2.2.6 Graphitic Carbon Nitride -- 2.2.7 MOF and COF -- 2.3 Synthesis Strategies -- 2.3.1 Top-Down -- 2.3.1.1 Mechanical Milling -- 2.3.1.2 Electrospinning -- 2.3.1.3 Lithography -- 2.3.1.4 Sputtering -- 2.3.1.5 The Arc Discharge Method -- 2.3.1.6 Laser Ablation -- 2.3.2 Bottom-Up Method -- 2.3.2.1 Chemical Vapor Deposition -- 2.3.2.2 Sol-Gel Method -- 2.3.2.3 Solvothermal and Hydrothermal Methods -- 2.3.2.4 Soft and Hard Template and Reverse Micelle Methods -- 2.4 Bottom-Up Strategies for Synthesis of 2D Nanomaterial -- 2.5 Conclusion and Outlook -- References -- Chapter 3 Unveiling the Intricacies: Characterization Techniques for 2D Nanomaterials -- 3.1 Introduction -- 3.2 Characterization Techniques -- 3.2.1 XRD -- 3.2.2 SEM and TEM -- 3.2.3 Optical Microscope -- 3.2.4 AFM -- 3.2.5 XPS -- 3.2.6 RAMAN -- 3.3 Conclusion -- References -- Part II: Properties of 2D Nanomaterials -- Chapter 4 Crystal Structure, Magnetic and Mechanical Properties of 2D Nanomaterials -- 4.1 Introduction -- 4.2 Structure of 2D Materials -- 4.2.1 Graphene -- 4.2.2 Black Phosphorous -- 4.2.3 Transition Metal Dichalcogenide (TMDC) -- 4.3 Magnetic 2D Materials -- 4.4 Origin of Magnetization in 2D Materials.
4.5 Mechanical Properties of 2D Nanomaterials -- 4.6 Conclusion -- References -- Chapter 5 Electrical, Plasmonic, and Optical Properties of 2D Nanomaterials -- 5.1 Introduction -- 5.2 Overview of Two-Dimensional Nanomaterials (2D NMs) -- 5.3 Electrical Properties of 2D NMs -- 5.4 Optical Properties of 2D NMs -- 5.5 Plasmonic Properties of 2D NMs -- 5.6 Recent Applications of 2D NMs -- 5.6.1 2D NMs for BioMedical Application -- 5.6.2 2D NMs in the Field of Energy -- 5.6.3 2D NMs as Lubricant Additive -- 5.7 Challenges and Prospective -- 5.8 Conclusion -- Acknowledgments -- References -- Part III: Application of 2D Nanomaterials -- Chapter 6 Challenges Surrounding 2D Nanomaterials and Their Application to Photocatalytic Industrial Wastewater Treatment -- 6.1 Introduction -- 6.2 Photocatalysis for Industrial Wastewater Treatment -- 6.2.1 Principles of Photocatalysis -- 6.2.2 Photocatalytic Processes for Industrial Wastewater Treatment -- 6.2.3 Advantages and Limitations of Photocatalysis -- 6.3 2D Nanomaterials in Photocatalysis -- 6.3.1 Introduction to 2D Nanomaterials and Types Used in Photocatalysis -- 6.3.2 Key Properties and Characteristics of 2D Nanomaterials -- 6.3.3 Role of 2D Nanomaterials in Enhancing Photocatalytic Performance -- 6.4 Challenges in Utilizing 2D Nanomaterials for Photocatalytic Wastewater Treatment -- 6.4.1 Synthesis and Fabrication Challenges -- 6.4.2 Stability and Degradation Issues -- 6.4.3 Efficiency and Selectivity Considerations -- 6.4.4 Scalability and Cost-Effectiveness Challenges -- 6.5 Strategies to Overcome Challenges -- 6.5.1 Improvement of Synthesis and Fabrication Techniques -- 6.5.2 Enhancement of Stability and Durability -- 6.5.3 Optimization of Photocatalytic Performance -- 6.5.4 Economical and Scalable Production Methods -- 6.6 Case Studies and Applications. 6.6.1 Examples of Successful Applications of 2D Nanomaterials -- 6.6.2 Case Studies in Photocatalytic Industrial Wastewater Treatment -- 6.6.3 Lessons Learned and Future Prospects -- 6.7 Conclusion -- References -- Chapter 7 Application of 2D Nanomaterials for Energy Storage -- 7.1 Introduction -- 7.2 2D Nanomaterials for Application of Lithium Ion Batteries -- 7.3 Application of 2D Nanomaterials in Sodium Ion Batteries -- 7.4 Application of 2D Nanomaterials in Potassium Ion Batteries -- 7.5 Applications of 2D Nanomaterials in Supercapacitors -- Conclusions -- References -- Chapter 8 Innovation in Photoinduced Antibacterial 2D Nanomaterials -- 8.1 Introduction -- 8.2 Antibacterial Applications Based on Graphene-Induced Photostimulation -- 8.2.1 Nanomaterials for Antibacterial Transition-Metal Dichalcogenides/Oxides -- 8.2.2 Antibacterial Nanomaterials Based on Carbon Nitride -- 8.2.3 Antibacterial Nanomaterials Based on Black Phosphorus -- 8.2.4 Other 2D Antibacterial Nanomaterials -- 8.3 Antibacterial Mechanisms of Graphene-Based Family -- 8.3.1 Physical Contact Destruction -- 8.3.2 Oxidative Stress -- 8.3.3 Disruption of Bacterial Protein Interactions -- 8.3.4 Photo-Induced Mechanisms -- 8.4 Conclusion -- References -- Chapter 9 2D Nanomaterials for Drug Delivery System -- 9.1 Introduction -- 9.2 2D Material Biosynthesis -- 9.3 Encapsulation of 2D Materials -- 9.4 Hydrogel Encapsulation-2D Materials -- 9.5 2D Material Encapsulation-Liposomes -- 9.6 2D Supply Encapsulation-Micelle -- 9.7 Stimuli Responsive 2D Material SDDSs-Classification -- 9.8 Light-Sensitive SDDSs -- 9.9 Magnetic Field-Responsive SDDSs -- 9.10 Various Response Exhibits Diverse-Advantages/Disadvantages -- 9.11 2D Material SDDS Therapy-Cancer -- 9.12 Antibacterial -- 9.12.1 Central Nervous System -- 9.13 Orthopedic -- 9.14 Diabetes Mellitus. 9.15 2D Materials in Intelligent Drug Delivery System-Advantages -- 9.16 Disadvantages -- 9.17 Conclusion and Future Perspective -- Acknowledgements -- References -- Chapter 10 New Technology 2D Nanomaterials for Neural Tissue Engineering -- 10.1 Introduction -- 10.2 Regeneration of Tissue and Organ Repair in Nature -- 10.2.1 The 'Curious Case' of Lizard: A Nature's Classic -- 10.2.2 Regenerative Capabilities of Amphibians -- 10.2.3 Regeneration in Humans -- 10.3 Nanotechnology and Neural Tissue Engineering -- 10.3.1 Definition of Nanotechnology -- 10.3.2 Synthesis of Nanomaterials or Nanoparticles -- 10.4 2D Nanomaterials for Tissue Engineering Application -- 10.4.1 Graphene-Based Nanomaterials in Tissue Engineering -- 10.4.2 Black-Phosphorus (BP)-Based Nanosheets in Tissue Engineering -- 10.4.3 Application of 2D Nanoclay in Tissue Engineering -- 10.5 2D Nanomaterials and Peripheral Nerve Engineering -- 10.5.1 Peripheral Nerve -- 10.5.2 Damage and Regeneration in Peripheral Nerve -- 10.5.3 Key Features of Nanomaterials in Neural Tissue Engineering -- 10.5.4 Mechanism of 2D Nanomaterial-Based Neural Regeneration -- 10.5.4.1 Graphene -- 10.5.4.2 Graphene Oxide -- 10.5.4.3 Black Phosphorus (BP) -- 10.6 Application of 2D Nanomaterials in Spinal Cord Repair -- 10.7 2D Nanomaterials for Drug/Gene Delivery -- 10.8 Challenges and Prospects -- References -- Chapter 11 Theranostic Approach of 2D Nanomaterials in Breast Cancer -- 11.1 Introduction -- 11.2 Applications -- Conclusion -- Acknowledgments -- References -- Chapter 12 2D Nanomaterials for Photocatalytic Hydrogen Production -- 12.1 Introduction -- 12.2 Basics of Photocatalytic Hydrogen Production -- 12.3 2D Nanomaterials for Photocatalytic Hydrogen Production -- 12.3.1 Graphene-Based -- 12.3.2 Carbon Nitrides -- 12.3.3 Transition Metal Dichalcogenides -- 12.3.4 MXene. 12.4 Enhancing the Photocatalytic Performance -- 12.5 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 13 Supercapacitor Based on 2D Nanomaterials and Their Hybrid -- 13.1 Introduction -- 13.2 Structure Design of 2D Nanomaterial-Based Supercapacitors -- 13.3 2D Nanomaterials for Supercapacitor Technology -- 13.3.a Transition Metal Oxides (TMOs) and Transition Metal Hydroxides (TMHs)-Based Supercapacitor -- 13.3.a.1 Transition Metal Oxides -- 13.3.a.2 Transition Metal Hydroxides -- 13.3.b Transition Metal Carbide/Carbonitride (MXene)-Based Supercapacitor -- 13.3.c Transition Metal Dichalcogenide (TMD)-Based Supercapacitor -- 13.3.d Black Phosphorous-Based Supercapacitor -- 13.4 Conclusions -- References -- Chapter 14 2D Nanomaterials Based for Electrocatalytic Application -- 14.1 Introduction -- 14.1.1 Introduction to 2D Nanomaterials and Their Unique Properties -- 14.1.2 Motivation for Utilizing 2D Nanomaterials in Electrocatalytic Applications -- 14.2 Types of 2D Nanomaterials -- 14.2.1 Graphene -- 14.2.2 Dichalcogenides (TMDs) -- 14.2.3 Brief Overview of Their Structures and Properties -- 14.3 Electrocatalytic Reactions Enabled by 2D Nanomaterials -- 14.3.1 Oxygen Reduction Reaction (ORR) -- 14.3.2 Hydrogen Evolution Reaction (HER) -- 14.3.3 Carbon Dioxide Reduction Reaction (CO2RR) -- 14.3.4 Synthesis and Characterization Techniques -- 14.3.4.1 Synthesis Methods for 2D Nanomaterials -- 14.3.4.2 Characterization Techniques for 2D Nanomaterials -- 14.3.4.3 Relationship Between Synthesis, Structure, and Electrocatalytic Performance -- 14.4 Challenges and Future Perspectives -- 14.4.1 Current Challenges in Utilizing 2D Nanomaterials for Electrocatalytic Applications -- 14.4.2 Potential Strategies to Overcome These Challenges -- 14.4.3 Future Directions and Emerging Trends in the Field -- 14.5 Conclusion -- References. Chapter 15 Engineering 2D Nanomaterials for Biomedical Applications. |
Record Nr. | UNINA-9910877556903321 |
Chakroborty Subhendu | ||
John Wiley & Sons, Inc, 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
3D Bioprinting from Lab to Industry |
Autore | Saha Prosenjit |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (531 pages) |
Altri autori (Persone) |
ThomasSabu
KimJinku GhoshManojit |
ISBN |
1-119-89440-9
1-119-89438-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Foreword -- Chapter 1 Introduction of 3D Printing and Different Bioprinting Methods -- 1.1 Introduction of 3D Printing: Principles and Utility -- 1.2 Ink Preparation and Printability -- 1.3 Methods of Bioprinting in Fabrication and Tissue Engineering -- 1.3.1 Laser-Based Printing -- 1.3.1.1 Types of Laser Printing -- 1.3.2 Extrusion-Based Printing -- 1.3.3 Droplet Printing -- 1.3.4 Inkjet-Based Printing -- 1.3.5 Stereolithography 3D Printing -- 1.4 Scaffold Modeling and G Coding -- 1.4.1 Scanning Technology -- 1.4.2 CT Imaging -- 1.4.3 MRI Scanning -- 1.4.4 Preferred Accuracy Parameters for Scanning -- 1.4.5 Biomodeling Process for RP -- 1.5 Applications and Utility in Large-Scale Manufacturing -- 1.5.1 Bone -- 1.5.2 Cartilage -- 1.5.3 Skin -- 1.5.4 Vascular Grafts -- 1.5.5 Heart -- 1.5.6 Lungs -- 1.5.7 Liver -- 1.5.8 Kidney and Urethra -- 1.5.9 Brain and Spinal Cord -- 1.5.10 Cornea -- 1.5.11 Therapeutics -- 1.6 Complications and Troubleshooting -- 1.6.1 Laser-Based Printing -- 1.6.2 Inkjet-Based Printing -- 1.6.3 Extrusion-Based Printing -- 1.6.4 Droplet Printing -- 1.6.5 Stereolithography 3D Printing -- References -- Chapter 2 Cellular Requirements and Preparation for Bioprinting -- 2.1 Introduction -- 2.2 Types of Bioprinting -- 2.2.1 Inkjet-Assisted Printing -- 2.2.2 Extruder-Assisted Printing -- 2.2.3 Laser-Assisted Bioprinting -- 2.3 Features Required for Bioprinting with Cells -- 2.3.1 Sterility Parameters -- 2.3.2 Printing Speed and Pressure -- 2.3.3 pH and Osmotic Condition -- 2.3.4 Hydrogel Generation -- 2.3.4.1 Natural Polymers -- 2.3.4.2 Synthetic Polymers -- 2.3.5 Culture Duration and Conditions -- 2.3.6 Rheological Properties -- 2.4 Bioprinting Methodologies for Cell Expansion and Proliferation.
2.5 The Impact of Bioprinting Process Conditions on Phenotype Alterations -- 2.5.1 Bioprinting Techniques for Stem Cell Differentiation -- 2.5.1.1 Bioprinting Strategies for Cellular Environment Alterations -- 2.5.1.2 Bioprinting Strategies for Cell Behavior Modulation -- 2.5.1.3 Bioprinting Strategies for Genetic Modulationand Transcriptomics Variation -- 2.5.2 Bioprinting Techniques for Tumorigenic Differentiation -- 2.5.2.1 Bioprinting Strategies for Oncogenic Cell Growth -- 2.5.2.2 Bioprinting Strategies for the Development of Tumor Models -- 2.6 Discussion -- 2.7 Conclusion -- 2.8 Future Prospects -- References -- Chapter 3 3D Bioprinting: Materials for Bioprinting Bioinks Selection -- 3.1 Introduction -- 3.2 Bioprinting Materials -- 3.2.1 Biomaterials -- 3.2.2 Cells -- 3.2.3 Biomolecules or Additive Molecules -- 3.2.4 Hydrogels -- 3.3 Bioinks Selectivity Guide -- 3.3.1 Printability of Materials -- 3.3.2 Material Biocompatibility -- 3.3.3 Structural Properties -- 3.3.4 Materials Degradation -- 3.3.5 Biomimicry -- 3.4 Classification of Bioprinting Materials -- 3.4.1 According to Material Type -- 3.4.1.1 Polymers -- 3.4.1.2 Nanocomposites -- 3.4.1.3 Nanoparticles -- 3.4.2 According to Cell Dependence -- 3.4.2.1 Cell-basedBioinks -- 3.4.2.2 Cell-FreeBioinks (Biomaterial Inks) -- 3.5 3D Bioprinting Methods According to the Type of the Bioinks -- 3.5.1 Extrusion-Based 3D Bioprinting -- 3.5.2 Inkjet 3D Bioprinting -- 3.5.3 Stereolithography 3D Bioprinting -- 3.5.4 Laser-Based 3D Bioprinting -- 3.5.5 Bioplotting -- 3.6 Bioinks Selection According to Biomedical Application -- 3.7 Multicomponent Bioinks -- 3.8 Future Prospects -- References -- Chapter 4 Printed Scaffolds in Tissue Engineering -- 4.1 Introduction -- 4.2 Biomedical Application of 3D Printing -- 4.2.1 Implants and Scaffolds -- 4.2.2 Drug Delivery/Drug Modeling Application. 4.2.3 Applications of 3D Printed Scaffolds During COVID-19 -- 4.3 Tissue Engineering: Emerging Applications by 3D Printing -- 4.3.1 Cartilage Tissue Engineering by Printed Scaffolds -- 4.3.2 Liver Tissue Engineering by Printed Scaffolds -- 4.3.3 Nerve Tissue Engineering by Printed Scaffolds -- 4.3.4 Cardiac Tissue Engineering by Printed Scaffolds -- 4.4 Conclusions -- References -- Chapter 5 Printability and Shape Fidelity in Different Bioprinting Processes -- 5.1 Introduction -- 5.2 Fundamentals of Printability -- 5.3 Bioprinting Techniques and Printability -- 5.3.1 Extrusion-Based Bioprinting -- 5.3.2 Inkjet-Based Bioprinting -- 5.3.3 Stereolithography-Based Bioprinting (SL) -- 5.4 Shape Fidelity -- 5.4.1 Shape Fidelity in Planar Structures -- 5.4.2 Shape Fidelity in Multilayered Structures -- 5.4.3 Characterization Approaches -- 5.4.3.1 Rheological Characterization -- 5.4.3.2 Mechanical Characterization -- 5.4.3.3 Swelling Test -- 5.4.3.4 Viability Characterization -- 5.4.3.5 Bioprinting Procedure -- 5.5 Case Studies and Applications -- 5.6 Conclusion -- References -- Chapter 6 Advancements in Bioprinting for Medical Applications -- 6.1 Introduction -- 6.2 Bioprinting for Drug Development and Testing -- 6.2.1 Overview -- 6.2.2 3D Bioprinted Organoids -- 6.2.3 Organ-on-a-Chip/Microfluidic Systems -- 6.2.4 Bioprinted Models for Cancer Research -- 6.2.5 3D Bioprinting for Immunotherapy and Cell Therapy -- 6.3 Bioprinting in Tissue Engineering, Regenerative Medicine, and Organ Transplantation -- 6.3.1 Ocular Tissue Engineering -- 6.3.1.1 Retina -- 6.3.1.2 Cornea -- 6.3.2 Neural Tissue -- 6.3.3 Skin -- 6.3.3.1 Disease and Pharmaceutical Studies -- 6.3.3.2 Wound Healing -- 6.3.3.3 Reconstructive Surgery -- 6.3.4 Cartilage and Bone -- 6.3.4.1 Cartilage Printing Modalities -- 6.3.4.2 Cartilage Regeneration -- 6.3.5 Vascular Tissue. 6.3.6 Cardiac Tissue Engineering -- 6.3.7 Pancreas -- 6.3.7.1 Modulating Bioink Formulation to Enhance Tissue Viability -- 6.3.7.2 Controlling Other Printing Parameters to Enhance Tissue Viability -- 6.3.7.3 Using Printed Models to Study Pancreatic Cancer -- 6.3.8 Liver -- 6.3.8.1 Developing Suitable In Vitro Models -- 6.3.9 Lungs -- 6.3.9.1 Developing Suitable In Vitro Models -- 6.3.9.2 Application of 3D Construct -- 6.3.10 Renal/Kidney -- 6.3.10.1 Printing Parameters Affecting the Viability of Printed Model -- 6.3.10.2 Applications of 3D-PrintedModel -- 6.3.11 Composite Tissues -- 6.3.12 Other Tissues -- 6.4 Bioprinting in Tissue: Challenges, Barriers to Clinical Translation, and Future Directions -- 6.4.1 Introduction -- 6.4.1.1 Current Challenges in Organ Transplantation -- 6.4.1.2 Potential of Bioprinted Organs for Transplantation -- 6.4.1.3 Challenges and Limitations in Bioprinting Tissues and Organs -- 6.4.2 Insight on Barriers to Clinical Translation of Bioprinting Technology -- 6.4.3 Future Directions -- 6.5 Conclusions -- Acknowledgments -- References -- Chapter 7 4D-Printed, Smart, Multiresponsive Structures and Their Applications -- 7.1 Introduction -- 7.2 4D-Printing Technologies -- 7.3 Biomaterials for 4D Bioprinting -- 7.3.1 Water-Responsive Polymers -- 7.3.2 Temperature-Responsive Polymers (Hydrogels) -- 7.3.3 Electrical/Magnetic-Responsive Polymers -- 7.4 Biomedical Applications for 4D Bioprinting -- 7.4.1 Limitations of 3D Bioprinting -- 7.4.2 Biomedical Applications of 4D Printing -- 7.4.3 Scaffold Preparation -- 7.4.4 Drug Delivery -- 7.4.5 Sensors -- 7.4.6 Medical Devices -- 7.4.7 Tissue Engineering and Organ Regeneration -- 7.5 Future Perspectives -- References -- Chapter 8 Toxicity Aspects and Ethical Issues of Bioprinting -- 8.1 Introduction -- 8.2 Toxicity Issues in Bioprinting -- 8.2.1 Cell Harvesting and Culture. 8.2.2 Aseptic Techniques in Bioprinting -- 8.3 Ethical Issues in Bioprinting -- 8.3.1 Purpose -- 8.3.2 Cell Source -- 8.3.3 Data and Consent -- 8.3.4 Safety -- 8.3.5 Cost and Equity -- 8.3.6 Reproductive Organs -- 8.4 Issues in Clinical Trials -- 8.4.1 Personalized Treatment -- 8.4.2 Inability to Withdraw or Access Alternate Treatments -- 8.5 Legal Issues in Bioprinting -- 8.5.1 Intellectual Property Rights and Product Classification -- 8.5.2 Lack of Regulatory Guidelines -- 8.6 Conclusion -- References -- Chapter 9 Planning Bioprinting Project -- 9.1 Introduction -- 9.2 Background: Image Capturing and Solid Model Preparation of Virtual Anatomical Model for 3D Printing -- 9.2.1 Other Imaging Techniques -- 9.2.2 Digital Process for STL Generation -- 9.2.3 Blueprint Modeling -- 9.2.4 CAD-Based Systems Characteristics -- 9.2.5 Image-Based Systems -- 9.2.6 Freeform Systems -- 9.2.7 Designs Using Implicit Surfaces -- 9.2.8 Space-Filling Curves -- 9.2.9 Planning of Toolpath for Bioprinting -- 9.2.10 Cartesian Form Toolpath Planning -- 9.2.11 Parametric Form in Toolpath Planning -- 9.2.12 Bioprinting Methods -- 9.2.12.1 Extrusion Bioprinting -- 9.2.12.2 Inkjet Printing -- 9.2.12.3 Laser-AssistedPrinting -- 9.3 Conclusion -- References -- Chapter 10 Computational Engineering for 3D Bioprinting: Models, Methods, and Emerging Technologies -- 10.1 Introduction -- 10.2 Fundamentals of Numerical Methods in Bioprinting -- 10.2.1 Finite Element Analysis -- 10.2.2 Computational Fluid Dynamics -- 10.2.3 Agent-Based Modeling -- 10.2.4 Lattice Boltzmann Method -- 10.2.5 Molecular Dynamics -- 10.3 Application of Machine Learning for 3D Bioprinting -- 10.4 Summary -- References -- Chapter 11 Controlling Factors of Bioprinting -- 11.1 Introduction -- 11.2 Factors Influencing the Printability of Hydrogel Bioink -- 11.2.1 Extrudability -- 11.2.2 Filament Type. 11.2.3 Shape Fidelity. |
Record Nr. | UNINA-9910877612803321 |
Saha Prosenjit | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
3D Printing in Healthcare : Novel Applications |
Autore | Malviya Rishabha |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (308 pages) |
Altri autori (Persone) | SharmaRishav |
ISBN |
1-394-23421-X
1-394-23422-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910900181603321 |
Malviya Rishabha | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
3D Printing of Pharmaceutical and Drug Delivery Devices : Progress from Bench to Bedside |
Autore | Lamprou Dimitrios A. |
Edizione | [First eddition.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (265 pages) |
Disciplina | 615.19 |
Altri autori (Persone) |
DouroumisDennis
QiSheng |
Collana | Advances in Pharmaceutical Technology Series |
ISBN |
1-119-83600-X
1-119-83598-4 1-119-83599-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- 3D Printing of Pharmaceutical and Drug Delivery Devices -- Contents -- About the Editors -- List of Contributors -- Series Preface -- Preface -- 1 Materials for 3D Printing -- 1.1 Introduction -- 1.2 Material Processability Considerations for Pharmaceutical 3DP -- 1.2.1 Thermal Extrusion-Based 3D Printing -- 1.2.1.1 Thermal Considerations -- 1.2.1.2 Solubility Enhancement -- 1.2.1.3 Mechanical Considerations -- 1.2.2 Semi-Solid Extrusion 3DP -- 1.2.2.1 Rheological Considerations -- 1.2.2.2 Example Applications -- 1.2.3 Powder Bed Fusion 3D Printing -- 1.2.3.1 Powder Flowability Considerations -- 1.2.3.2 Powder Packing Density Considerations -- 1.2.3.3 Powder Energy Absorbance Considerations -- 1.2.4 Stereolithography 3D Printing -- 1.3 Classification of Common Materials Used in Pharmaceutical 3DP -- 1.3.1 Alcohol Derived Polymers -- 1.3.2 Eudragits -- 1.3.3 Other Polymers -- 1.3.4 Graft Polymers -- 1.3.5 Photocrosslinkable -- 1.3.6 Natural Materials -- 1.3.7 Lipid Materials -- 1.4 Conclusions and Future Perspectives -- References -- 2 The Use of Microstructure Design and 3D Printing for Tailored Drug Release -- 2.1 Introduction -- 2.2 3D-Printing Technologies -- 2.3 3D Design for Drug-Loaded Device -- 2.3.1 CAD Design-Based Design -- 2.3.2 Computational Software-Based Design -- 2.3.3 3D-Printing Parameter-Based Design -- 2.3.4 Polypills and Complex Designs -- 2.4 3D Designs Influence Drug Release -- 2.4.1 Controlling Drug Release -- 2.4.2 Modifying Drug Release -- 2.5 Challenges and Perspective -- References -- 3 3D Printing of Oral Solid Dosage Forms Using Selective Laser Sintering -- 3.1 Introduction -- 3.2 Operational Principles of Selective Laser Sintering -- 3.2.1 Manufacturing Challenges for SLS -- 3.2.2 Laser Selection and Scanning Speed -- 3.2.3 Powder Material Parameters -- 3.2.4 Powder Bed and Recoater Parameters.
3.3 3D-Printed Oral Dosages -- 3.4 Advantages of SLS -- 3.4.1 Printing Features -- 3.4.2 Control of Surface Properties -- 3.4.3 Printing of Complex Geometries -- 3.4.4 Using a Wide Range of Materials -- 3.4.5 Drug Loading and Dose Combinations -- 3.4.6 Personalised Dosage Forms -- 3.4.7 SLS Disadvantages -- 3.5 Conclusions -- References -- 4 3D Printing for Medical Device Applications -- 4.1 Introduction -- 4.2 3D Printers -- 4.2.1 SLA -- 4.2.2 FFF -- 4.2.3 Selective Laser Sintering (SLS) -- 4.3 Biomaterials for 3D-Printed Medical Devices -- 4.3.1 Bioresorbable Polymers -- 4.3.1.1 Synthetic Bioresorbable Polymers -- 4.3.1.2 Natural Bioresorbable Polymers -- 4.3.2 Non-Bioresorbable Polymers -- 4.3.3 Smart Polymers -- 4.3.4 Metal and Ceramic -- 4.4 3D-Printed Personalised Medical Devices -- 4.4.1 Vascular Repair Devices -- 4.4.2 Splints -- 4.4.3 Nerve Guidance Conduits -- 4.4.4 Tissue Engineering -- 4.4.5 3D Printing in Dentistry -- 4.4.6 3D-Printed Orthopaedic Devices -- 4.5 Regulatory -- 4.6 Future Perspectives -- References -- 5 3D Printed Implants for Long-Acting Drug Delivery -- 5.1 Introduction -- 5.2 Types of 3D-Printed Scaffolds -- 5.2.1 Implantable Scaffolds -- 5.2.1.1 Passive Implants -- 5.2.1.2 Active Implants -- 5.2.2 Injectable Scaffolds -- 5.2.3 Innovative 3D-Printed Scaffolds -- 5.3 Critical Parameters in Designing 3D-Printed Implantable Scaffolds -- 5.3.1 Structural Characteristics -- 5.3.1.1 Geometry of Implants -- 5.3.1.2 Porosity Properties and Pore Features -- 5.3.1.3 Surface Properties -- 5.3.2 Mechanical Properties -- 5.3.3 Biological and Physiological Parameters -- 5.3.3.1 Cellular Adhesion -- 5.3.3.2 Absorption and Degradation Rates -- 5.3.3.3 Biocompatibility Aspects -- 5.4 Critical Parameters in Selecting Materials for 3D-Printed Scaffolds -- 5.4.1 Materials Used in 3D-Printed Long-Acting Scaffolds -- 5.4.1.1 Natural Polymers. 5.4.1.2 Synthetic Polymers -- 5.4.1.3 Ceramics and Metals -- 5.4.1.4 Composites -- References -- 5.5 Manufacturing Techniques for Implantable Scaffolds -- 5.5.1 Hot-Melt Extrusion -- 5.5.2 Compression -- 5.5.3 Injection Moulding -- 5.5.4 Solvent Casting -- 5.5.5 3D Printing -- 5.5.6 Scale-Up in 3D-Printing Process for the Manufacturing of Scaffolds -- 5.6 Drug Release Mechanism of Long-Acting 3D-Printing Polymeric Implantable Systems -- 5.7 Outlining Regulatory Framework for 3D-Printed Implantable Scaffolds -- 5.7.1 Commercial Implantable Scaffolds -- 5.8 Conclusions -- References -- 6 Wound Dressings by 3D Printing -- 6.1 Wound Healing Process -- 6.1.1 Haemostasis/Coagulation -- 6.1.2 Inflammation -- 6.1.3 Proliferation -- 6.1.4 Re-epithelisation/Remodelling -- 6.1.5 Wound Classification -- 6.1.6 Wound Dressings -- 6.1.7 3D Printing -- 6.1.8 3D-Printed Dressings -- 6.2 Case Studies -- 6.3 Summary/Conclusions -- References -- 7 3D Printing of Hydrogels -- 7.1 Introduction -- 7.2 Applications of 3D-Printed Hydrogels -- 7.2.1 Tissue Engineering -- 7.2.2 Wound Healing -- 7.2.3 Drug Delivery -- 7.3 Types of Hydrogel Materials for 3D Printing -- 7.3.1 Natural Polymers -- 7.3.2 Synthetic Polymers -- 7.3.3 Natural-Synthetic Hybrid Polymers -- 7.3.4 Ionically Charged Polymers -- 7.3.5 Crosslinked Polymers -- 7.3.6 Method of Hydrogel Preparation -- 7.4 3D Printing Techniques for Hydrogels -- 7.4.1 Laser-Based 3D Printing -- 7.4.1.1 Stereolithography -- 7.4.1.2 Two-Photon Polymerisation -- 7.4.1.3 Laser-Induced Forward Transfer -- 7.4.2 Extrusion-Based Printing -- 7.4.3 Inkjet-Based Printing -- 7.5 Printability and Printing Parameters -- 7.5.1 Bioink Design -- 7.5.1.1 Materials Selection, Concentration and Viscosity -- 7.5.1.2 Rheological Properties -- 7.5.1.3 Shear-Thinning -- 7.5.1.4 Viscoelasticity and Yield Stress -- 7.5.1.5 Cell Encapsulation. 7.5.2 Crosslinking Techniques -- 7.5.2.1 Thermal Crosslinking -- 7.5.2.2 Physical Ionic Crosslinking -- 7.5.2.3 Chemical Crosslinking -- 7.5.2.4 Photocrosslinking -- 7.5.3 3D Printing Parameters -- 7.5.3.1 Temperature -- 7.5.3.2 Pressure -- 7.5.3.3 Speed -- 7.6 Clinical Translation -- 7.6.1 Regulatory Considerations -- 7.6.2 Manufacturing Considerations -- 7.6.3 Limitations and Future Direction -- 7.7 Conclusions -- References -- 8 Analytical Characterisation of 3D-Printed Medicines -- 8.1 Introduction -- 8.2 Preformulation -- 8.2.1 Thermal Analysis -- 8.2.2 X-Ray Powder Diffraction (XRPD) -- 8.2.3 Infrared Spectroscopy -- 8.2.4 Hot-Stage Microscopy (HSM) -- 8.2.5 Customizsd Sample Preparation for the Preformulation Protocol -- 8.3 In-Process Characterisations -- 8.3.1 Mechanical Analysis -- 8.3.2 Rheological Analysis -- 8.3.3 Drug Characterisation -- 8.4 Final Product -- 8.4.1 Morphological Analysis -- 8.4.2 X-Ray Computed Microtomography (XμCT) -- 8.4.3 Terahertz Pulsed Imaging (TPI) -- 8.4.4 Mercury Porosimetry -- 8.4.5 Helium Pycnometry -- 8.5 Conclusions -- References -- 9 Adoption of 3D Printing in Pharmaceutical Industry -- 9.1 Partnering and Growing -- 9.2 Regulatory Strategy -- 9.2.1 Product Development -- 9.2.2 Manufacturing -- 9.3 Business Model -- 9.3.1 In-House Pipeline Products -- 9.3.2 Co-Development -- 9.4 Regulatory Strategy -- 9.5 Partnering and Growing -- 9.6 Business Model and Strategy -- 9.6.1 Closing Remarks -- References -- 10 Clinical Benefits of 3D Printing in Healthcare -- 10.1 Introduction -- 10.2 3D Printing Technologies -- 10.2.1 Binder Jetting -- 10.2.2 Vat Photopolymerization -- 10.2.3 Powder Bed Fusion -- 10.2.4 Material Jetting -- 10.2.5 Material Extrusion -- 10.2.5.1 Fused Deposition Modelling -- 10.2.5.2 Semi-Solid Extrusion -- 10.2.5.3 Direct Powder Extrusion -- 10.3 Preclinical Applications of 3D Printing. 10.3.1 Immediate and Modified Release Oral Printlets -- 10.3.2 3D-Printed Drug Delivery Devices for Other Routes of Administration -- 10.4 Clinical Applications of 3D Printing -- 10.4.1 Personalised Medications -- 10.4.2 Improved Acceptability and Medication Compliance -- 10.4.2.1 Paediatric Patients -- 10.4.2.2 Adult and Geriatric Patients -- 10.4.3 Mass Manufacturing -- 10.4.4 Decentralised On-Demand Fabrication -- 10.4.5 Veterinary Applications -- 10.5 Challenges, Regulatory View and Future Applications -- 10.6 Conclusion -- References -- 11 Regulatory Aspects of 3D-Printed Medicinal Products -- 11.1 Introduction -- 11.2 Current Regulatory Framework -- 11.3 Quality Aspects of 3D-Printed Medicinal Products -- 11.4 3D-Printed Paediatric Medicinal Products -- 11.5 3D-Printed Systems With Tailored Release Profiles -- 11.6 Conclusions -- Disclaimer -- References -- Index -- EULA. |
Record Nr. | UNINA-9910876527503321 |
Lamprou Dimitrios A. | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
4d printing 1 : between disruptive research and industrial applications / / Frédéric Demoly, Jean-Claude André |
Autore | Demoly Frédéric |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022] |
Descrizione fisica | 1 online resource (367 pages) |
Disciplina | 514.742 |
Collana | Systems and industrial engineering series |
Soggetto topico |
Additive manufacturing
Three-dimensional printing |
ISBN |
1-394-16378-9
1-394-16376-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Preamble: 4D Printing, Between the Why(s) and the How(s) -- P.1. Introduction -- P.2. Toward a more "total" integration of autonomy and matter -- P.3. From research to product(s) -- P.4. References -- Introduction -- I.1. Attempt to define 3D printing -- I.2. What about 4D printing? -- I.3. An "explosion" of complexities in 4D printing -- I.3.1. Stimulation process -- I.3.2. Materials -- I.3.3. Controlling deformations -- I.4. Conclusion -- I.5. References -- Chapter 1. Is 4D Printing Disruptive or Incremental, or a Bit of Both? -- 1.1. Introduction -- 1.2. Prospective approach -- 1.3. A tectonics of paradigms -- 1.3.1. 3D printing -- 1.3.2. 4D printing -- 1.3.3. The potential development of 4D innovations -- 1.3.4. Note: example of 4D printing in structural electronics (SE) -- 1.3.5. Partial conclusion -- 1.4. 4D printing: breakthrough or increment? -- 1.4.1. Creativity and 4D printing -- 1.4.2. Getting out of blindly following? Where to go? -- 1.4.3. Application to additive manufacturing -- 1.4.4. Application to 4D printing -- 1.5. Financial and organizational aspects -- 1.5.1. Research funding and direction -- 1.5.2. Constraints/opportunities related to research orientation -- 1.6. A hopeful conclusion within an organization that learns -- 1.6.1. General framework -- 1.6.2. Organizing research in 4D printing -- 1.7. Appendix 1: Processing an external file -- 1.8. Appendix 2: Going a step further (working document) -- 1.8.1. Can we break the deadlock? -- 1.8.2. So what? -- 1.9. References -- Chapter 2. Is There External Creativity to Support 4D Printing? -- 2.1. Introduction -- 2.2. A survey for the general public -- 2.2.1. The survey -- 2.2.2. Items not transmitted -- 2.2.3. Some general survey results -- 2.2.4. Note: English language survey.
2.3. Results of the survey -- 2.3.1. Specific ideas and proposals (open questions) -- 2.3.2. Presentation and analysis of the quantified results of the survey -- 2.4. Discussion -- 2.4.1. Non-response (voluntary) -- 2.4.2. Survey responses -- 2.5. Conclusion -- 2.6. Appendix 1: The blank survey -- 2.6.1 What is 4D printing? -- 2.7. Appendix 2: Answers as of February 16, 2021 -- 2.8. References of scientific articles with "4D printing" or "applications" in their titles -- 2.9. References -- 3. Who Would Prevail Today from Lamarck or Darwin to Help the Controlled Evolution of 4D Printing? -- Preamble -- 3.1. Introduction -- 3.2. General considerations -- 3.2.1. The 4D fabrications concerned by this chapter -- 3.2.2. Toward a transposition between theories of nature and 4D printing -- 3.3. General considerations -- 3.3.1. The question of arrangements and the control of the arrow of time -- 3.3.2. Complexity induced by the stimulation -- 3.3.3. Toward a principle of parsimony? -- 3.3.4. To go a little further -- 3.3.5. A partial fallback situation -- 3.3.6. The reverse problem -- 3.4. A view from thermodynamics -- 3.5. Darwin, Lamarck and others… -- 3.5.1. Between Lamarck and Darwin -- 3.5.2. Evolutions -- 3.5.3. Notion of morphogenetic field -- 3.5.3.1. General considerations -- 3.5.3.2. From a more practical point of view -- 3.5.3.3. 4D printing? -- 3.6. Conclusion -- 3.7. References -- Chapter 4. Toward a Possibly Programmable Self-organization? -- 4.1. Introduction -- 4.2. A look at the technology -- 4.3. Natural (spontaneous) self-organization -- 4.3.1. Nonlinearities -- 4.3.2. Achieving the desired shape? -- 4.4. Self-organization and 3D/4D printing -- 4.4.1. General considerations -- 4.4.2. Creation of 3D artifacts -- 4.4.3. What about 4D printing? Stimulated self-organizing systems: bottom-up coupling -- 4.4.3.1. Chemical robots. 4.4.3.2. Some results of stimulated or constrained self-organization -- 4.4.4. Can we envisage a "learning" 4D system? -- 4.4.4.1. Information gathering -- 4.4.4.2. The act of learning -- 4.4.4.2.1. First example -- 4.4.4.2.2. Second example -- 4.4.4.3. Toward an operating manual -- 4.4.5. Removal of a blocking element -- 4.5. Conclusion -- 4.6. References -- Index -- Other titles from iSTE in Systems and Industrial Engineering - Robotics -- EULA. |
Record Nr. | UNINA-9910829834503321 |
Demoly Frédéric | ||
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
4D Printing, Volume 1 : Between Disruptive Research and Industrial Applications |
Autore | Demoly Frederic |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
Descrizione fisica | 1 online resource (367 pages) |
Altri autori (Persone) | AndreJean-Claude |
Soggetto genere / forma | Electronic books. |
ISBN |
1-394-16378-9
1-394-16376-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Preamble: 4D Printing, Between the Why(s) and the How(s) -- P.1. Introduction -- P.2. Toward a more "total" integration of autonomy and matter -- P.3. From research to product(s) -- P.4. References -- Introduction -- I.1. Attempt to define 3D printing -- I.2. What about 4D printing? -- I.3. An "explosion" of complexities in 4D printing -- I.3.1. Stimulation process -- I.3.2. Materials -- I.3.3. Controlling deformations -- I.4. Conclusion -- I.5. References -- Chapter 1. Is 4D Printing Disruptive or Incremental, or a Bit of Both? -- 1.1. Introduction -- 1.2. Prospective approach -- 1.3. A tectonics of paradigms -- 1.3.1. 3D printing -- 1.3.2. 4D printing -- 1.3.3. The potential development of 4D innovations -- 1.3.4. Note: example of 4D printing in structural electronics (SE) -- 1.3.5. Partial conclusion -- 1.4. 4D printing: breakthrough or increment? -- 1.4.1. Creativity and 4D printing -- 1.4.2. Getting out of blindly following? Where to go? -- 1.4.3. Application to additive manufacturing -- 1.4.4. Application to 4D printing -- 1.5. Financial and organizational aspects -- 1.5.1. Research funding and direction -- 1.5.2. Constraints/opportunities related to research orientation -- 1.6. A hopeful conclusion within an organization that learns -- 1.6.1. General framework -- 1.6.2. Organizing research in 4D printing -- 1.7. Appendix 1: Processing an external file -- 1.8. Appendix 2: Going a step further (working document) -- 1.8.1. Can we break the deadlock? -- 1.8.2. So what? -- 1.9. References -- Chapter 2. Is There External Creativity to Support 4D Printing? -- 2.1. Introduction -- 2.2. A survey for the general public -- 2.2.1. The survey -- 2.2.2. Items not transmitted -- 2.2.3. Some general survey results -- 2.2.4. Note: English language survey.
2.3. Results of the survey -- 2.3.1. Specific ideas and proposals (open questions) -- 2.3.2. Presentation and analysis of the quantified results of the survey -- 2.4. Discussion -- 2.4.1. Non-response (voluntary) -- 2.4.2. Survey responses -- 2.5. Conclusion -- 2.6. Appendix 1: The blank survey -- 2.6.1 What is 4D printing? -- 2.7. Appendix 2: Answers as of February 16, 2021 -- 2.8. References of scientific articles with "4D printing" or "applications" in their titles -- 2.9. References -- 3. Who Would Prevail Today from Lamarck or Darwin to Help the Controlled Evolution of 4D Printing? -- Preamble -- 3.1. Introduction -- 3.2. General considerations -- 3.2.1. The 4D fabrications concerned by this chapter -- 3.2.2. Toward a transposition between theories of nature and 4D printing -- 3.3. General considerations -- 3.3.1. The question of arrangements and the control of the arrow of time -- 3.3.2. Complexity induced by the stimulation -- 3.3.3. Toward a principle of parsimony? -- 3.3.4. To go a little further -- 3.3.5. A partial fallback situation -- 3.3.6. The reverse problem -- 3.4. A view from thermodynamics -- 3.5. Darwin, Lamarck and others… -- 3.5.1. Between Lamarck and Darwin -- 3.5.2. Evolutions -- 3.5.3. Notion of morphogenetic field -- 3.5.3.1. General considerations -- 3.5.3.2. From a more practical point of view -- 3.5.3.3. 4D printing? -- 3.6. Conclusion -- 3.7. References -- Chapter 4. Toward a Possibly Programmable Self-organization? -- 4.1. Introduction -- 4.2. A look at the technology -- 4.3. Natural (spontaneous) self-organization -- 4.3.1. Nonlinearities -- 4.3.2. Achieving the desired shape? -- 4.4. Self-organization and 3D/4D printing -- 4.4.1. General considerations -- 4.4.2. Creation of 3D artifacts -- 4.4.3. What about 4D printing? Stimulated self-organizing systems: bottom-up coupling -- 4.4.3.1. Chemical robots. 4.4.3.2. Some results of stimulated or constrained self-organization -- 4.4.4. Can we envisage a "learning" 4D system? -- 4.4.4.1. Information gathering -- 4.4.4.2. The act of learning -- 4.4.4.2.1. First example -- 4.4.4.2.2. Second example -- 4.4.4.3. Toward an operating manual -- 4.4.5. Removal of a blocking element -- 4.5. Conclusion -- 4.6. References -- Index -- Other titles from iSTE in Systems and Industrial Engineering - Robotics -- EULA. |
Record Nr. | UNINA-9910590098403321 |
Demoly Frederic | ||
Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|