top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2D Nanomaterials : Synthesis, Properties, and Applications
2D Nanomaterials : Synthesis, Properties, and Applications
Autore Chakroborty Subhendu
Edizione [1st ed.]
Pubbl/distr/stampa John Wiley & Sons, Inc, 2024
Descrizione fisica 1 online resource (514 pages)
Altri autori (Persone) PalKaushik
ISBN 1-394-16787-3
1-394-16788-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Synthesis of 2D Nanomaterials -- Chapter 1 Top-Down Strategies Synthesis of 2D Nanomaterial -- 1.1 Introduction -- 1.2 Top-Down Strategy Synthesis Method -- 1.2.1 Etching -- 1.2.2 Mechanical Milling -- 1.2.3 Sputtering -- 1.3 Laser Ablation -- 1.4 Characterizations and Toxicity of 2D Nanomaterials -- 1.5 Conclusions -- References -- Chapter 2 Bottom-Up Strategies for Synthesis of 2D Nanomaterial -- 2.1 Introduction -- 2.2 Types of 2D Nanomaterial -- 2.2.1 Graphene -- 2.2.2 MXenes -- 2.2.3 Black Phosphorus -- 2.2.4 Hexagonal Boron Nitride -- 2.2.5 Transition Metal Dichalcogenides -- 2.2.6 Graphitic Carbon Nitride -- 2.2.7 MOF and COF -- 2.3 Synthesis Strategies -- 2.3.1 Top-Down -- 2.3.1.1 Mechanical Milling -- 2.3.1.2 Electrospinning -- 2.3.1.3 Lithography -- 2.3.1.4 Sputtering -- 2.3.1.5 The Arc Discharge Method -- 2.3.1.6 Laser Ablation -- 2.3.2 Bottom-Up Method -- 2.3.2.1 Chemical Vapor Deposition -- 2.3.2.2 Sol-Gel Method -- 2.3.2.3 Solvothermal and Hydrothermal Methods -- 2.3.2.4 Soft and Hard Template and Reverse Micelle Methods -- 2.4 Bottom-Up Strategies for Synthesis of 2D Nanomaterial -- 2.5 Conclusion and Outlook -- References -- Chapter 3 Unveiling the Intricacies: Characterization Techniques for 2D Nanomaterials -- 3.1 Introduction -- 3.2 Characterization Techniques -- 3.2.1 XRD -- 3.2.2 SEM and TEM -- 3.2.3 Optical Microscope -- 3.2.4 AFM -- 3.2.5 XPS -- 3.2.6 RAMAN -- 3.3 Conclusion -- References -- Part II: Properties of 2D Nanomaterials -- Chapter 4 Crystal Structure, Magnetic and Mechanical Properties of 2D Nanomaterials -- 4.1 Introduction -- 4.2 Structure of 2D Materials -- 4.2.1 Graphene -- 4.2.2 Black Phosphorous -- 4.2.3 Transition Metal Dichalcogenide (TMDC) -- 4.3 Magnetic 2D Materials -- 4.4 Origin of Magnetization in 2D Materials.
4.5 Mechanical Properties of 2D Nanomaterials -- 4.6 Conclusion -- References -- Chapter 5 Electrical, Plasmonic, and Optical Properties of 2D Nanomaterials -- 5.1 Introduction -- 5.2 Overview of Two-Dimensional Nanomaterials (2D NMs) -- 5.3 Electrical Properties of 2D NMs -- 5.4 Optical Properties of 2D NMs -- 5.5 Plasmonic Properties of 2D NMs -- 5.6 Recent Applications of 2D NMs -- 5.6.1 2D NMs for BioMedical Application -- 5.6.2 2D NMs in the Field of Energy -- 5.6.3 2D NMs as Lubricant Additive -- 5.7 Challenges and Prospective -- 5.8 Conclusion -- Acknowledgments -- References -- Part III: Application of 2D Nanomaterials -- Chapter 6 Challenges Surrounding 2D Nanomaterials and Their Application to Photocatalytic Industrial Wastewater Treatment -- 6.1 Introduction -- 6.2 Photocatalysis for Industrial Wastewater Treatment -- 6.2.1 Principles of Photocatalysis -- 6.2.2 Photocatalytic Processes for Industrial Wastewater Treatment -- 6.2.3 Advantages and Limitations of Photocatalysis -- 6.3 2D Nanomaterials in Photocatalysis -- 6.3.1 Introduction to 2D Nanomaterials and Types Used in Photocatalysis -- 6.3.2 Key Properties and Characteristics of 2D Nanomaterials -- 6.3.3 Role of 2D Nanomaterials in Enhancing Photocatalytic Performance -- 6.4 Challenges in Utilizing 2D Nanomaterials for Photocatalytic Wastewater Treatment -- 6.4.1 Synthesis and Fabrication Challenges -- 6.4.2 Stability and Degradation Issues -- 6.4.3 Efficiency and Selectivity Considerations -- 6.4.4 Scalability and Cost-Effectiveness Challenges -- 6.5 Strategies to Overcome Challenges -- 6.5.1 Improvement of Synthesis and Fabrication Techniques -- 6.5.2 Enhancement of Stability and Durability -- 6.5.3 Optimization of Photocatalytic Performance -- 6.5.4 Economical and Scalable Production Methods -- 6.6 Case Studies and Applications.
6.6.1 Examples of Successful Applications of 2D Nanomaterials -- 6.6.2 Case Studies in Photocatalytic Industrial Wastewater Treatment -- 6.6.3 Lessons Learned and Future Prospects -- 6.7 Conclusion -- References -- Chapter 7 Application of 2D Nanomaterials for Energy Storage -- 7.1 Introduction -- 7.2 2D Nanomaterials for Application of Lithium Ion Batteries -- 7.3 Application of 2D Nanomaterials in Sodium Ion Batteries -- 7.4 Application of 2D Nanomaterials in Potassium Ion Batteries -- 7.5 Applications of 2D Nanomaterials in Supercapacitors -- Conclusions -- References -- Chapter 8 Innovation in Photoinduced Antibacterial 2D Nanomaterials -- 8.1 Introduction -- 8.2 Antibacterial Applications Based on Graphene-Induced Photostimulation -- 8.2.1 Nanomaterials for Antibacterial Transition-Metal Dichalcogenides/Oxides -- 8.2.2 Antibacterial Nanomaterials Based on Carbon Nitride -- 8.2.3 Antibacterial Nanomaterials Based on Black Phosphorus -- 8.2.4 Other 2D Antibacterial Nanomaterials -- 8.3 Antibacterial Mechanisms of Graphene-Based Family -- 8.3.1 Physical Contact Destruction -- 8.3.2 Oxidative Stress -- 8.3.3 Disruption of Bacterial Protein Interactions -- 8.3.4 Photo-Induced Mechanisms -- 8.4 Conclusion -- References -- Chapter 9 2D Nanomaterials for Drug Delivery System -- 9.1 Introduction -- 9.2 2D Material Biosynthesis -- 9.3 Encapsulation of 2D Materials -- 9.4 Hydrogel Encapsulation-2D Materials -- 9.5 2D Material Encapsulation-Liposomes -- 9.6 2D Supply Encapsulation-Micelle -- 9.7 Stimuli Responsive 2D Material SDDSs-Classification -- 9.8 Light-Sensitive SDDSs -- 9.9 Magnetic Field-Responsive SDDSs -- 9.10 Various Response Exhibits Diverse-Advantages/Disadvantages -- 9.11 2D Material SDDS Therapy-Cancer -- 9.12 Antibacterial -- 9.12.1 Central Nervous System -- 9.13 Orthopedic -- 9.14 Diabetes Mellitus.
9.15 2D Materials in Intelligent Drug Delivery System-Advantages -- 9.16 Disadvantages -- 9.17 Conclusion and Future Perspective -- Acknowledgements -- References -- Chapter 10 New Technology 2D Nanomaterials for Neural Tissue Engineering -- 10.1 Introduction -- 10.2 Regeneration of Tissue and Organ Repair in Nature -- 10.2.1 The 'Curious Case' of Lizard: A Nature's Classic -- 10.2.2 Regenerative Capabilities of Amphibians -- 10.2.3 Regeneration in Humans -- 10.3 Nanotechnology and Neural Tissue Engineering -- 10.3.1 Definition of Nanotechnology -- 10.3.2 Synthesis of Nanomaterials or Nanoparticles -- 10.4 2D Nanomaterials for Tissue Engineering Application -- 10.4.1 Graphene-Based Nanomaterials in Tissue Engineering -- 10.4.2 Black-Phosphorus (BP)-Based Nanosheets in Tissue Engineering -- 10.4.3 Application of 2D Nanoclay in Tissue Engineering -- 10.5 2D Nanomaterials and Peripheral Nerve Engineering -- 10.5.1 Peripheral Nerve -- 10.5.2 Damage and Regeneration in Peripheral Nerve -- 10.5.3 Key Features of Nanomaterials in Neural Tissue Engineering -- 10.5.4 Mechanism of 2D Nanomaterial-Based Neural Regeneration -- 10.5.4.1 Graphene -- 10.5.4.2 Graphene Oxide -- 10.5.4.3 Black Phosphorus (BP) -- 10.6 Application of 2D Nanomaterials in Spinal Cord Repair -- 10.7 2D Nanomaterials for Drug/Gene Delivery -- 10.8 Challenges and Prospects -- References -- Chapter 11 Theranostic Approach of 2D Nanomaterials in Breast Cancer -- 11.1 Introduction -- 11.2 Applications -- Conclusion -- Acknowledgments -- References -- Chapter 12 2D Nanomaterials for Photocatalytic Hydrogen Production -- 12.1 Introduction -- 12.2 Basics of Photocatalytic Hydrogen Production -- 12.3 2D Nanomaterials for Photocatalytic Hydrogen Production -- 12.3.1 Graphene-Based -- 12.3.2 Carbon Nitrides -- 12.3.3 Transition Metal Dichalcogenides -- 12.3.4 MXene.
12.4 Enhancing the Photocatalytic Performance -- 12.5 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 13 Supercapacitor Based on 2D Nanomaterials and Their Hybrid -- 13.1 Introduction -- 13.2 Structure Design of 2D Nanomaterial-Based Supercapacitors -- 13.3 2D Nanomaterials for Supercapacitor Technology -- 13.3.a Transition Metal Oxides (TMOs) and Transition Metal Hydroxides (TMHs)-Based Supercapacitor -- 13.3.a.1 Transition Metal Oxides -- 13.3.a.2 Transition Metal Hydroxides -- 13.3.b Transition Metal Carbide/Carbonitride (MXene)-Based Supercapacitor -- 13.3.c Transition Metal Dichalcogenide (TMD)-Based Supercapacitor -- 13.3.d Black Phosphorous-Based Supercapacitor -- 13.4 Conclusions -- References -- Chapter 14 2D Nanomaterials Based for Electrocatalytic Application -- 14.1 Introduction -- 14.1.1 Introduction to 2D Nanomaterials and Their Unique Properties -- 14.1.2 Motivation for Utilizing 2D Nanomaterials in Electrocatalytic Applications -- 14.2 Types of 2D Nanomaterials -- 14.2.1 Graphene -- 14.2.2 Dichalcogenides (TMDs) -- 14.2.3 Brief Overview of Their Structures and Properties -- 14.3 Electrocatalytic Reactions Enabled by 2D Nanomaterials -- 14.3.1 Oxygen Reduction Reaction (ORR) -- 14.3.2 Hydrogen Evolution Reaction (HER) -- 14.3.3 Carbon Dioxide Reduction Reaction (CO2RR) -- 14.3.4 Synthesis and Characterization Techniques -- 14.3.4.1 Synthesis Methods for 2D Nanomaterials -- 14.3.4.2 Characterization Techniques for 2D Nanomaterials -- 14.3.4.3 Relationship Between Synthesis, Structure, and Electrocatalytic Performance -- 14.4 Challenges and Future Perspectives -- 14.4.1 Current Challenges in Utilizing 2D Nanomaterials for Electrocatalytic Applications -- 14.4.2 Potential Strategies to Overcome These Challenges -- 14.4.3 Future Directions and Emerging Trends in the Field -- 14.5 Conclusion -- References.
Chapter 15 Engineering 2D Nanomaterials for Biomedical Applications.
Record Nr. UNINA-9910854000303321
Chakroborty Subhendu  
John Wiley & Sons, Inc, 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
2D Nanomaterials: Synthesis, Properties, and Applications
2D Nanomaterials: Synthesis, Properties, and Applications
Autore Subhendu Chakroborty
Pubbl/distr/stampa John Wiley & Sons, Inc, 2024
ISBN 1-394-16788-1
1-394-16787-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910847601303321
Subhendu Chakroborty  
John Wiley & Sons, Inc, 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
77th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume xxxviii Issue 001
77th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume xxxviii Issue 001
Pubbl/distr/stampa John Wiley & Sons, Inc
ISBN 1-119-41748-1
1-119-41750-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 77th Conference on Glass Problems
Record Nr. UNINA-9910271009303321
John Wiley & Sons, Inc
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Accessing Uncultivated Microorganisms
Accessing Uncultivated Microorganisms
Pubbl/distr/stampa John Wiley & Sons, Inc
ISBN 1-68367-146-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555155803321
John Wiley & Sons, Inc
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Acid Sulfate Weathering
Acid Sulfate Weathering
Autore Kittrick, J.A
Pubbl/distr/stampa John Wiley & Sons, Inc
Altri autori (Persone) Fanning D.S
Hossner, L.R
ISBN 0-89118-905-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555253503321
Kittrick, J.A  
John Wiley & Sons, Inc
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced analysis of variance / / Chihiro Hirotsu
Advanced analysis of variance / / Chihiro Hirotsu
Autore Hirotsu Chihiro <1939->
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc, , 2017
Descrizione fisica 1 online resource (413 pages)
Disciplina 519.5/38
Collana Wiley Series in Probability and Statistics
THEi Wiley ebooks
Soggetto topico Analysis of variance
ISBN 1-119-30335-4
1-119-30334-6
1-119-30337-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to design and analysis of experiments -- Estimation theory -- Basic test theory -- Multiple decision processes and accompanying confidence region -- Two-sample problem -- One-way layout, normal model -- Onw-way layout, binomial populations -- Poisson process -- Block experiments -- Two-way layout, normal model -- Analysis of two-way categorical data -- Mixed and random effects model -- Profile analysis of repeated measurements -- Analysis of three-way categorical data -- Design and analysis of experiments by orthogonal arrays.
Record Nr. UNINA-9910270878003321
Hirotsu Chihiro <1939->  
Hoboken, New Jersey : , : John Wiley & Sons, Inc, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced analysis of variance / / Chihiro Hirotsu
Advanced analysis of variance / / Chihiro Hirotsu
Autore Hirotsu Chihiro <1939->
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc, , 2017
Descrizione fisica 1 online resource (413 pages)
Disciplina 519.5/38
Collana Wiley Series in Probability and Statistics
THEi Wiley ebooks
Soggetto topico Analysis of variance
ISBN 1-119-30335-4
1-119-30334-6
1-119-30337-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to design and analysis of experiments -- Estimation theory -- Basic test theory -- Multiple decision processes and accompanying confidence region -- Two-sample problem -- One-way layout, normal model -- Onw-way layout, binomial populations -- Poisson process -- Block experiments -- Two-way layout, normal model -- Analysis of two-way categorical data -- Mixed and random effects model -- Profile analysis of repeated measurements -- Analysis of three-way categorical data -- Design and analysis of experiments by orthogonal arrays.
Record Nr. UNINA-9910814764003321
Hirotsu Chihiro <1939->  
Hoboken, New Jersey : , : John Wiley & Sons, Inc, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Redox Flow Technology
Advanced Redox Flow Technology
Autore Inamuddin
Pubbl/distr/stampa John Wiley & Sons, Inc, 2024
ISBN 1-119-90496-X
1-119-90495-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910847601003321
Inamuddin  
John Wiley & Sons, Inc, 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Redox Flow Technology
Advanced Redox Flow Technology
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa John Wiley & Sons, Inc, 2024
Descrizione fisica 1 online resource (266 pages)
ISBN 1-119-90495-1
1-119-90496-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Membranes for Redox Flow Batteries -- 1.1 Introduction -- 1.2 Membranes Used in Aqueous Organic Redox Flow Batteries -- 1.2.1 Classification of Membranes Used in Aqueous Organic RFBs -- 1.2.1.1 Nafion-Based Membranes -- 1.2.1.2 Microporous Membranes -- 1.2.1.3 Anion-Exchange Membranes (AEMs) -- 1.2.1.4 Cation Exchange Membranes (CEMs) -- 1.3 Membranes Used in Non-Aqueous Redox Flow Batteries (NARFBs) -- 1.3.1 Stability of Membrane in Diverse Solvents -- 1.3.2 Ionic Permeability and Selectivity -- 1.3.3 Ionic Conductivity -- 1.3.4 Swelling -- 1.3.5 Mechanical and Chemical Stability -- 1.3.6 Cycling Performance -- 1.3.7 Classification of Membranes Used in NARFBs -- 1.3.7.1 Dense Membranes -- 1.3.7.2 Dense Ceramic Membranes -- 1.3.7.3 Porous Membranes -- 1.4 Ion-Exchange Membranes or Ion-Conducting Membranes for RFBs -- 1.4.1 Cation Ion Exchange Membrane (CEMs) -- 1.4.2 Anion Exchange Membrane (AEMs) -- 1.4.2.1 Preparation by Condensation Reaction of Ionic Monomeric Compounds -- 1.4.2.2 Preparation by Polymerization of Vinyl Monomers -- 1.4.2.3 Preparation from Conventional Polymers -- 1.4.2.4 Preparation by Plasma Polymerization -- 1.5 Polymer Electrolyte Membranes -- 1.5.1 Membrane Properties -- 1.5.1.1 Ion Exchange Capacity -- 1.5.1.2 Chemical Stability -- 1.5.1.3 Thermal Stability -- 1.5.1.4 Mechanical Property -- 1.5.1.5 Ionic Conductivity -- 1.5.1.6 Vanadium Ion Permeability -- 1.5.1.7 Water or Electrolyte Uptake -- 1.5.2 Transport Mechanisms -- 1.5.2.1 Proton Transport -- 1.5.2.2 Vanadium Ion Transport -- 1.5.2.3 Water (H2O) Transport -- 1.5.3 Membrane Preparation -- 1.5.3.1 Cation-Exchange Membrane (CEM) -- 1.5.4 Anion-Exchange Membrane -- 1.5.4.1 Polysulfone (PSF) -- 1.5.4.2 Poly(aryl-ether-ketone) (PAEK) -- 1.5.5 Amphoteric Membranes -- 1.5.6 Porous Membrane.
1.5.7 Polybenzimidazole (PBI) -- 1.5.8 Polyacrylonitrile (PAN) -- 1.6 Amphoteric Ion-Exchange Membranes -- 1.7 Protonated Polybenzimidazole (PBI) Membrane -- 1.8 Summary -- References -- Chapter 2 Electrolytes Materials for Redox Flow Batteries -- 2.1 Introduction -- 2.2 Overview of Redox Flow Battery -- 2.3 Measurement of the Capacity of the Redox Flow Battery -- 2.4 Formation of Redox-Active Constituents for RFB -- 2.4.1 Inorganic Redox Flow Battery -- 2.4.1.1 All Vanadium RFBs -- 2.4.1.2 Zinc/Bromine RFBs -- 2.4.1.3 Tin/Bromine Redox Flow Battery -- 2.4.1.4 Iron-Chromium RFB -- 2.4.1.5 Polysulfide-Bromine RFB -- 2.4.1.6 Titanium-Manganese Redox Flow Battery -- 2.4.2 Organic Redox Flow Battery -- 2.4.2.1 Quinone-Based Redox Active Materials -- 2.4.2.2 Tempo-Based Redox-Active Materials -- 2.4.2.3 Redox Active Materials Based on Alkoxybenzene -- 2.5 Hybrid Electrolytes Used in a Lithium Redox Flow Battery -- 2.6 Levelised Cost of the Redox Active Materials -- 2.7 Conclusion -- References -- Chapter 3 Zinc Hybrid Redox Flow Batteries -- 3.1 Introduction -- 3.2 Zn Electrode and Dendrite Formation -- 3.3 The Electrolyte -- 3.4 Effect of Temperature -- 3.5 The Membrane -- 3.6 Hydrogen Evolution Reaction -- 3.7 Conclusion -- References -- Chapter 4 Zinc-Bromine Hybrid Redox Flow Batteries -- 4.1 Introduction -- 4.2 Electro-Chemical Energy Storage -- 4.3 Redox Flow Batteries -- 4.4 Zinc/Bromine Flow Batteries -- 4.5 Types of Zinc-Based Hybrid Flow Batteries -- 4.5.1 Zinc-Sulphur (Zn-S) Hybrid Battery -- 4.5.2 Zinc-Nickel (Zn/Ni) Batteries -- 4.5.3 Zinc-Sodium Hybrid Ion Batteries (ZSHIBs) -- 4.5.4 Zn-Ion Batteries (ZIBs) -- 4.6 Electrochemistry of Zinc/Bromine Deposition -- 4.6.1 Electrochemical Performance -- 4.6.2 Reduction of Dendrite Deposition -- 4.6.3 Bio-Mass Electrocatalyst -- 4.6.4 Surface Chemistry -- 4.6.5 Effect of Zinc Utilization.
4.7 Applications of Zinc-Bromine Hybrid Flow Batteries -- 4.8 Future Challenges -- 4.8.1 Electric Vehicles -- 4.8.2 Energy Management -- 4.8.3 Size and Cost -- 4.8.4 Safety Measures -- 4.9 Conclusion -- References -- Chapter 5 Zinc-Cerium Hybrid Redox Flow Batteries -- 5.1 Introduction -- 5.1.1 Redox Flow Batteries (RFBs) -- 5.1.2 The Basic Concept of Redox Flow Batteries -- 5.1.3 Progress and Challenges in the Redox Flow Batteries -- 5.1.4 Types of Redox Flow Batteries -- 5.1.4.1 Aqueous Redox Flow Batteries -- 5.1.4.2 Nonaqueous Redox Flow Batteries -- 5.1.4.3 Hybrid Redox Flow Batteries -- 5.2 Zinc-Cerium Hybrid Redox Flow Battery -- 5.2.1 Working Principle of Zn-Ce Redox Flow Cell -- 5.2.1.1 Components of Zn-Ce Redox Flow Battery -- 5.2.2 Factors Affecting the Performance of Zn-Ce Redox Flow Battery -- 5.2.2.1 Temperature -- 5.2.2.2 Electrolyte Flow Rate -- 5.2.2.3 Current Density -- 5.2.2.4 Charge Conditions and Cycle Life -- 5.3 Summary -- Acknowledgment -- References -- Chapter 6 Vanadium Redox Flow Batteries (VRFB) -- 6.1 Introduction and Overview -- 6.1.1 Working Principle of VRFB -- 6.1.2 Main Components of the VRFB System -- 6.1.2.1 Electrodes -- 6.1.2.2 Electrolytes -- 6.1.2.3 Membranes -- 6.1.2.4 Bipolar Plates -- 6.2 VRFB System as Compared to Other Energy Storage Systems -- 6.3 Recent Research on VRFB -- 6.3.1 Positive and Negative Electrodes -- 6.3.2 Electrolytes -- 6.4 Conclusion and Perspective -- References -- Chapter 7 Vanadium-Based Redox Flow Batteries -- 7.1 Introduction -- 7.2 Redox Flow Batteries (RFBs) -- 7.2.1 The General Structure of RFBs -- 7.2.2 Working of Redox Flow Batteries -- 7.3 Types of Redox Flow Batteries -- 7.3.1 Iron/Chromium -- 7.3.2 All-Vanadium -- 7.3.3 Vanadium/Bromine -- 7.3.4 Bromine/Polysulfide -- 7.4 Vanadium Redox Flow Battery (VRFB) -- 7.4.1 Working Principle of Vanadium Redox Flow Battery.
7.4.2 Role of Different Components in VRFBs -- 7.4.2.1 Role of Membrane -- 7.4.2.2 Role of Electrolyte -- 7.4.2.3 Role of Electrode -- 7.5 Applications of Vanadium Redox Flow Batteries (VRFBs) -- 7.6 Summary -- References -- Chapter 8 System for the Redox Flow Technology -- 8.1 Introduction -- 8.2 General Construction of Redox Flow Battery -- 8.3 Energy Capacity -- 8.4 Optimization -- 8.5 Classification of RFB Based on Active Electrolyte -- 8.5.1 Inorganic Redox Flow Battery -- 8.5.1.1 Vanadium Redox Flow Battery -- 8.5.1.2 The Iron Redox Flow Battery (IRFB) -- 8.5.1.3 Polysulphide-Bromine Redox Flow Battery (PBBs) -- 8.5.1.4 Zinc-Polyiodide Redox Flow Battery -- 8.6 Organic Redox Flow Battery -- 8.7 Membrane-Less RFB -- 8.8 Semi-Solid RFB -- 8.9 Conclusion -- References -- Chapter 9 An Overview of Large-Scale Energy Storage Systems -- 9.1 Introduction -- 9.2 Progression of Energy Storage Method -- 9.3 Categorization of Energy Storage System -- 9.3.1 Mechanical Energy Storage -- 9.3.2 Thermal Energy Storage -- 9.3.3 Electrostatic and Magnetic Energy Storage System -- 9.3.4 The Electrochemical Energy Storage System -- 9.3.5 The Chemical Energy Storage System -- 9.4 Implementations of Energy Storage Systems -- 9.5 Commercial Prototype of Energy Storage Systems -- 9.6 Environmental Repercussions of Energy Storage Systems -- 9.7 Energy Storage Guidelines -- 9.8 Blockades and Effective Solutions -- 9.9 Future Prospects -- 9.10 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910853999403321
Inamuddin  
John Wiley & Sons, Inc, 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced testing of systems-of-systems 2 : practical aspects / / Bernard Homes
Advanced testing of systems-of-systems 2 : practical aspects / / Bernard Homes
Autore Homès Bernard
Pubbl/distr/stampa John Wiley & Sons, Inc
Descrizione fisica 1 online resource (306 pages)
Disciplina 929.605
Collana Computer engineering series
Soggetto topico Computer software
ISBN 1-394-18848-X
1-394-18846-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Title Page -- Copyright Page -- Contents -- Dedication and Acknowledgments -- Preface -- Chapter 1. Test Project Management -- 1.1. General principles -- 1.1.1. Quality of requirements -- 1.1.2. Completeness of deliveries -- 1.1.3. Availability of test environments -- 1.1.4. Availability of test data -- 1.1.5. Compliance of deliveries and schedules -- 1.1.6. Coordinating and setting up environments -- 1.1.7. Validation of prerequisites - Test Readiness Review (TRR) -- 1.1.8. Delivery of datasets (TDS) -- 1.1.9. Go-NoGo decision - Test Review Board (TRB) -- 1.1.10. Continuous delivery and deployment -- 1.2. Tracking test projects -- 1.3. Risks and systems-of-systems -- 1.4. Particularities related to SoS -- 1.5. Particularities related to SoS methodologies -- 1.5.1. Components definition -- 1.5.2. Testing and quality assurance activities -- 1.6. Particularities related to teams -- Chapter 2. Testing Process -- 2.1. Organization -- 2.2. Planning -- 2.2.1. Project WBS and planning -- 2.3. Control of test activities -- 2.4. Analyze -- 2.5. Design -- 2.6. Implementation -- 2.7. Test execution -- 2.8. Evaluation -- 2.9. Reporting -- 2.10. Closure -- 2.11. Infrastructure management -- 2.12. Reviews -- 2.13. Adapting processes -- 2.14. RACI matrix -- 2.15. Automation of processes or tests -- 2.15.1. Automate or industrialize? -- 2.15.2. What to automate? -- 2.15.3. Selecting what to automate -- Chapter 3. Continuous Process Improvement -- 3.1. Modeling improvements -- 3.1.1. PDCA and IDEAL -- 3.1.2. CTP -- 3.1.3. SMART -- 3.2. Why and how to improve? -- 3.3. Improvement methods -- 3.3.1. External/internal referential -- 3.4. Process quality -- 3.4.1. Fault seeding -- 3.4.2. Statistics -- 3.4.3. A posteriori -- 3.4.4. Avoiding introduction of defects -- 3.5. Effectiveness of improvement activities.
3.6. Recommendations -- Chapter 4. Test, QA or IV& -- V Teams -- 4.1. Need for a test team -- 4.2. Characteristics of a good test team -- 4.3. Ideal test team profile -- 4.4. Team evaluation -- 4.4.1. Skills assessment table -- 4.4.2. Composition -- 4.4.3. Select, hire and retain -- 4.5. Test manager -- 4.5.1. Lead or direct? -- 4.5.2. Evaluate and measure -- 4.5.3. Recurring questions for test managers -- 4.6. Test analyst -- 4.7. Technical test analyst -- 4.8. Test automator -- 4.9. Test technician -- 4.10. Choose our testers -- 4.11. Training, certification or experience? -- 4.12. Hire or subcontract) -- 4.12.1. Effective subcontracting -- 4.13. Organization of multi-level test teams -- 4.13.1. Compliance, strategy and organization -- 4.13.2. Unit test teams (UT/CT) -- 4.13.3. Integration testing team (IT) -- 4.13.4. System test team (SYST) -- 4.13.5. Acceptance testing team (UAT) -- 4.13.6. Technical test teams (TT) -- 4.14. Insourcing and outsourcing challenges -- 4.14.1. Internalization and collocation -- 4.14.2. Near outsourcing -- 4.14.3. Geographically distant outsourcing -- Chapter 5. Test Workload Estimation -- 5.1. Difficulty to estimate workload -- 5.2. Evaluation techniques -- 5.2.1. Experience-based estimation -- 5.2.2. Based on function points or TPA -- 5.2.3. Requirements scope creep -- 5.2.4. Estimations based on historical data -- 5.2.5. WBS or TBS -- 5.2.6. Agility, estimation and velocity -- 5.2.7. Retroplanning -- 5.2.8. Ratio between developers - testers -- 5.2.9. Elements influencing the estimate -- 5.3. Test workload overview -- 5.3.1. Workload assessment verification and validation -- 5.3.2. Some values -- 5.4. Understanding the test workload -- 5.4.1. Component coverage -- 5.4.2. Feature coverage -- 5.4.3. Technical coverage -- 5.4.4. Test campaign preparation -- 5.4.5. Running test campaigns -- 5.4.6. Defects management.
5.5. Defending our test workload estimate -- 5.6. Multi-tasking and crunch -- 5.7. Adapting and tracking the test workload -- Chapter 6. Metrics, KPI and Measurements -- 6.1. Selecting metrics -- 6.2. Metrics precision -- 6.2.1. Special case of the cost of defaults -- 6.2.2. Special case of defects -- 6.2.3. Accuracy or order of magnitude? -- 6.2.4. Measurement frequency -- 6.2.5. Using metrics -- 6.2.6. Continuous improvement of metrics -- 6.3. Product metrics -- 6.3.1. FTR: first time right -- 6.3.2. Coverage rate -- 6.3.3. Code churn -- 6.4. Process metrics -- 6.4.1. Effectiveness metrics -- 6.4.2. Efficiency metrics -- 6.5. Definition of metrics -- 6.5.1. Quality model metrics -- 6.6. Validation of metrics and measures -- 6.6.1. Baseline -- 6.6.2. Historical data -- 6.6.3. Periodic improvements -- 6.7. Measurement reporting -- 6.7.1. Internal test reporting -- 6.7.2. Reporting to the development team -- 6.7.3. Reporting to the management -- 6.7.4. Reporting to the clients or product owners -- 6.7.5. Reporting to the direction and upper management -- Chapter 7. Requirements Management -- 7.1. Requirements documents -- 7.2. Qualities of requirements -- 7.3. Good practices in requirements management -- 7.3.1. Elicitation -- 7.3.2. Analysis -- 7.3.3. Specifications -- 7.3.4. Approval and validation -- 7.3.5. Requirements management -- 7.3.6. Requirements and business knowledge management -- 7.3.7. Requirements and project management -- 7.4. Levels of requirements -- 7.5. Completeness of requirements -- 7.5.1. Management of TBDs and TBCs -- 7.5.2. Avoiding incompleteness -- 7.6. Requirements and agility -- 7.7. Requirements issues -- Chapter 8. Defects Management -- 8.1. Defect management, MOA and MOE -- 8.1.1. What is a defect? -- 8.1.2. Defects and MOA -- 8.1.3. Defects and MOE -- 8.2. Defect management workflow -- 8.2.1. Example -- 8.2.2. Simplify.
8.3. Triage meetings -- 8.3.1. Priority and severity of defects -- 8.3.2. Defect detection -- 8.3.3. Correction and urgency -- 8.3.4. Compliance with processes -- 8.4. Specificities of TDDs, ATDDs and BDDs -- 8.4.1. TDD: test-driven development -- 8.4.2. ATDD and BDD -- 8.5. Defects reporting -- 8.5.1. Defects backlog management -- 8.6. Other useful reporting -- 8.7. Don't forget minor defects -- Chapter 9. Configuration Management -- 9.1. Why manage configuration? -- 9.2. Impact of configuration management -- 9.3. Components -- 9.4. Processes -- 9.5. Organization and standards -- 9.6. Baseline or stages, branches and merges -- 9.6.1. Stages -- 9.6.2. Branches -- 9.6.3. Merge -- 9.7. Change control board (CCB) -- 9.8. Delivery frequencies -- 9.9. Modularity -- 9.10. Version management -- 9.11. Delivery management -- 9.11.1. Preparing for delivery -- 9.11.2. Delivery validation -- 9.12. Configuration management and deployments -- Chapter 10. Test Tools and Test Automation -- 10.1. Objectives of test automation -- 10.1.1. Find more defects -- 10.1.2. Automating dynamic tests -- 10.1.3. Find all regressions -- 10.1.4. Run test campaigns faster -- 10.2. Test tool challenges -- 10.2.1. Positioning test automation -- 10.2.2. Test process analysis -- 10.2.3. Test tool integration -- 10.2.4. Qualification of tools -- 10.2.5. Synchronizing test cases -- 10.2.6. Managing test data -- 10.2.7. Managing reporting (level of trust in test tools) -- 10.3. What to automate? -- 10.4. Test tooling -- 10.4.1. Selecting tools -- 10.4.2. Computing the return on investment (ROI) -- 10.4.3. Avoiding abandonment of tools and automation -- 10.5. Automated testing strategies -- 10.6. Test automation challenge for SoS -- 10.6.1. Mastering test automation -- 10.6.2. Preparing test automation -- 10.6.3. Defect injection/fault seeding.
10.7. Typology of test tools and their specific challenges -- 10.7.1. Static test tools versus dynamic test tools -- 10.7.2. Data-driven testing (DDT) -- 10.7.3. Keyword-driven testing (KDT) -- 10.7.4. Model-based testing (MBT) -- 10.8. Automated regression testing -- 10.8.1. Regression tests in builds -- 10.8.2. Regression tests when environments change -- 10.8.3. Prevalidation regression tests, sanity checks and smoke tests -- 10.8.4. What to automate? -- 10.8.5. Test frameworks -- 10.8.6. E2E test cases -- 10.8.7. Automated test case maintenance or not? -- 10.9. Reporting -- 10.9.1. Automated reporting for the test manager -- Chapter 11. Standards and Regulations -- 11.1. Definition of standards -- 11.2. Usefulness and interest -- 11.3. Implementation -- 11.4. Demonstration of compliance - IADT -- 11.5. Pseudo-standards and good practices -- 11.6. Adapting standards to needs -- 11.7. Standards and procedures -- 11.8. Internal and external coherence of standards -- Chapter 12. Case Study -- 12.1. Case study: improvement of an existing complex system -- 12.1.1. Context and organization -- 12.1.2. Risks, characteristics and business domains -- 12.1.3. Approach and environment -- 12.1.4. Resources, tools and personnel -- 12.1.5. Deliverables, reporting and documentation -- 12.1.6. Planning and progress -- 12.1.7. Logistics and campaigns -- 12.1.8. Test techniques -- 12.1.9. Conclusions and return on experience -- Chapter 13. Future Testing Challenges -- 13.1. Technical debt -- 13.1.1. Origin of the technical debt -- 13.1.2. Technical debt elements -- 13.1.3. Measuring technical debt -- 13.1.4. Reducing technical debt -- 13.2. Systems-of-systems specific challenges -- 13.3. Correct project management -- 13.4. DevOps -- 13.4.1. DevOps ideals -- 13.4.2. DevOps-specific challenges -- 13.5. IoT (Internet of Things) -- 13.6. Big Data.
13.7. Services and microservices.
Record Nr. UNINA-9910830133203321
Homès Bernard  
John Wiley & Sons, Inc
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui