top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2: Advanced algorithms and operators / edited by Thomas Back, David B. Fogel and Zbigniew Michalewicz
2: Advanced algorithms and operators / edited by Thomas Back, David B. Fogel and Zbigniew Michalewicz
Pubbl/distr/stampa Bristol ; Philadelphia, : Institute of Physics Publishing, 2000
Descrizione fisica XXXIV, 270 p. ; 24 cm.
Disciplina 006.3
ISBN 0750306653
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISANNIO-UBO1264125
Bristol ; Philadelphia, : Institute of Physics Publishing, 2000
Materiale a stampa
Lo trovi qui: Univ. del Sannio
Opac: Controlla la disponibilità qui
2D Materials for Energy Storage and Conversion
2D Materials for Energy Storage and Conversion
Autore Pillai Suresh C
Edizione [1st ed.]
Pubbl/distr/stampa Bristol : , : Institute of Physics Publishing, , 2022
Descrizione fisica 1 online resource (341 pages)
Altri autori (Persone) GangulyPriyanka
JohnHoney
ForouzandehParnia
PeriyatPradeepan
CunninghamGraeme
SandhyaraniN
ThomasReny Thankam
JoseSujin P
GhoshSrabanti
Collana IOP Ebooks Series
Soggetto topico Nanostructured materials
Energy storage
ISBN 9780750345842
0750345845
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Editors biography -- Suresh C Pillai -- Priyanka Ganguly -- List of contributors -- Chapter 1 2D nanomaterials and composites for energy storage and conversion -- 1.1 Introduction to the two-dimensional world of materials -- 1.2 Fundamentals of nanomaterials -- 1.3 The introduction of two-dimensional terminology for nanomaterials -- 1.4 Extraordinary behaviour of 2D nanomaterials -- 1.4.1 Absence of van der Waals interactions in 2D nanomaterials -- 1.4.2 Higher specific surface area -- 1.4.3 Electron confinement and direct bandgap in 2D nanomaterial -- 1.5 Various classes of two-dimensional materials -- 1.5.1 Graphene -- 1.5.2 Hexagonal boron nitride (h-BN) -- 1.5.3 Transition metal dichalcogenides (TMDs) -- 1.5.4 Layered double hydroxides (LDHs) -- 1.5.5 Black phosphorus (BP) -- 1.5.6 Metal-organic frameworks (MOFs) -- 1.5.7 Covalent organic frameworks (COFs) -- 1.5.8 MXene -- 1.6 Nanocomposite-based material -- 1.7 Synthesis methods for the preparation of nanoparticles -- 1.7.1 Top-down procedure -- 1.7.2 Bottom-up procedure -- 1.8 Characterisation of the 2D nanomaterials -- 1.9 Fantastic properties of 2D materials and their applications -- 1.10 Future perspectives -- References -- Chapter 2 2D nanomaterials and their heterostructures for hydrogen storage applications -- 2.1 Introduction -- 2.2 2D nanomaterials and their heterostructures as potential candidates for hydrogen storage -- 2.2.1 Graphene and graphitic monolayers -- 2.2.2 Metal hydrides -- 2.2.3 Zeolites -- 2.2.4 2D metal-organic frameworks (MOFs) -- 2.2.5 MXenes -- 2.2.6 Transition metal dichalcogenides -- 2.3 Current challenges and future perspectives of 2D material-based hydrogen economy -- 2.4 Conclusions -- References -- Chapter 3 Defect engineering in 2D materials and its application for storage and conversion -- 3.1 Introduction.
3.2 Defect engineering in energy storage application -- 3.2.1 Batteries -- 3.2.2 Electrochemical capacitors -- 3.3 Defect engineering in the energy conversion reaction -- 3.3.1 Hydrogen evolution reactions (HER) -- 3.3.2 Oxygen reduction reaction -- 3.3.3 Oxygen evolution reaction (OER) -- 3.4 Conclusion and outlook -- References -- Chapter 4 2D nanomaterials and their heterostructures as cathode and anode materials for lithium- and sodium-ion batteries -- 4.1 Introduction to rechargeable batteries -- 4.1.1 Brief history and operating principle of the current SOA LIB -- 4.1.2 Research focus for future rechargeable alkali-ion batteries -- 4.2 Two-dimensional nanomaterials as active materials for LIBs and NIBs -- 4.2.1 2D nanomaterials -- 4.2.2 Motivation for incorporation of 2D nanomaterials into future LIBs and NIBs -- 4.2.3 Higher capacity charge-storage reaction mechanisms in 2D active-materials -- 4.2.4 Intercalation reactions -- 4.2.5 Candidate 2D active-materials for future LIBs and NIBs -- 4.3 Hybrid 2D active-materials-nanocomposites and layered heterostructures -- 4.3.1 2D-2D nanocomposites -- 4.3.2 2D Van der Waals layered heterostructures as LIB and NIB active materials -- 4.4 The rate-performance of 2D active-materials for LIBs and NIBs -- 4.4.1 Quantifying the factors limiting rate-performance in battery electrodes -- 4.4.2 Relationship between τ and physical properties -- 4.4.3 Quantifying the trade-off between absolute capacity and rate-performance in battery electrodes -- 4.4.4 The rate-performance of 2D material based battery electrodes may not be as good as commonly believed -- References -- Chapter 5 Graphene analogues and their heterostructures for ultrafast lithium and sodium-ion battery -- 5.1 Introduction -- 5.2 Lithium ion battery -- 5.3 Carbonaceous nanomaterials -- 5.3.1 Graphene -- 5.4 Graphene analogues.
5.5 Graphene, graphene analogues and their heterostructures as electrode materials for LIBs -- 5.5.1 Graphene -- 5.5.2 Graphene analogues and heterostructures -- 5.5.3 Graphene heterostructures -- 5.5.4 Graphene quantum dots (GQD) -- 5.6 Sodium-ion battery -- 5.6.1 Graphene and its composites as anode materials for NIBs -- 5.6.2 Graphene analogues and their composites as anode materials for NIBs -- 5.7 Conclusions -- References -- Chapter 6 MXenes for improved electrochemical applications -- 6.1 Introduction -- 6.2 Properties of MXene related to energy storage applications -- 6.3 MXene based electrodes for capacitors -- 6.3.1 MXene-based electrode materials for supercapacitor -- 6.3.2 MXene-graphene composite electrode materials for supercapacitor -- 6.3.3 Other MXene based composite electrode materials for supercapacitor -- 6.3.4 MXene based electrode materials for microsupercapacitors -- 6.4 MXenes in batteries -- 6.5 MXenes for transparent conductive electrodes and transparent energy storage devices -- 6.6 MXene for energy conversion -- 6.6.1 MXenes for oxygen reduction reaction (ORR) -- 6.6.2 MXenes for hydrogen evolution reaction -- 6.6.3 MXenes for CO2 reduction -- 6.7 Conclusions and future perspectives -- References -- Chapter 7 MXenes for solid-state asymmetric supercapacitors -- 7.1 Introduction -- 7.2 Synthetic methods -- 7.2.1 Top-down approach -- 7.2.2 Bottom-up approach -- 7.3 Characterisation of MXenes -- 7.3.1 Microstructure and morphology -- 7.3.2 Surface chemistry -- 7.4 MXene supercapacitors -- 7.4.1 Symmetric supercapacitors -- 7.4.2 Asymmetric supercapacitors -- 7.5 Research trend and summary -- Acknowledgements -- References -- Chapter 8 Advances in 2D nanomaterials and their heterostructures for photocatalytic energy conversion -- 8.1 Introduction -- 8.2 Photocatalytic water splitting.
8.2.1 Inorganic metal 2D semiconductors and their heterostructures -- 8.2.2 Inorganic nonmetallic 2D semiconductors and their heterostructures -- 8.2.3 Organic 2D polymer or carbon-based semiconductors and their heterostructures -- 8.3 Perspectives and future advances -- 8.4 Conclusions -- References -- Chapter 9 Theoretical prediction of catalytic activity of 2D nanomaterials for energy applications -- 9.1 Introduction -- 9.2 Theoretical foundation -- Density functional theory -- GW approximation -- BSE approximation -- 9.3 Electronic structure properties -- 9.3.1 Band structure and band alignments -- 9.3.2 Optical absorption -- 9.3.3 Charge carrier effective masses -- 9.4 Thermodynamic stability -- 9.5 pH dependence -- 9.6 Aqueous stability -- 9.7 Conclusion -- References -- Chapter 10 Emerging trends in 2D-MoS2 as an electrode material for supercapacitive application -- 10.1 Background-energy crisis -- 10.2 Supercapacitors for powering the future -- 10.3 2D-MoS2 as an electrode material for supercapacitor -- 10.3.1 Crystal structure -- 10.3.2 Synthesis routes -- 10.3.3 Electrochemical properties of MoS2 -- 10.4 Hybrid electrode for supercapacitor -- 10.4.1 MoS2/carbonaceous networks -- 10.4.2 MoS2-metal based hybrid electrodes -- 10.4.3 MoS2-conducting polymers hybrid electrodes -- 10.4.4 Flexible and wearable MoS2 supercapacitors -- 10.5 Future perspectives -- References.
Record Nr. UNINA-9910985661403321
Pillai Suresh C  
Bristol : , : Institute of Physics Publishing, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A handbook of public speaking for scientists and engineers / Peter Kenny
A handbook of public speaking for scientists and engineers / Peter Kenny
Autore Kenny, Peter
Pubbl/distr/stampa Bristol [etc.] : Institute of Physics Publishing, copyr. 1982
Disciplina 808.51
Soggetto non controllato oratoria - manuali
ISBN 0-85274-553-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990000154580203316
Kenny, Peter  
Bristol [etc.] : Institute of Physics Publishing, copyr. 1982
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
A random walk in science / an anthology compiled by R. L. Weber ; edited by E. Mendoza ; with foreword by William Cooper
A random walk in science / an anthology compiled by R. L. Weber ; edited by E. Mendoza ; with foreword by William Cooper
Autore Weber, Robert L.
Pubbl/distr/stampa Bristol [etc.] : Institute of Physics Publishing, copyr. 1973
Disciplina 502.07
Soggetto non controllato scienze aneddoti
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990000170710203316
Weber, Robert L.  
Bristol [etc.] : Institute of Physics Publishing, copyr. 1973
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
A unified grand tour of theoretical physics / Ian D. Lawrie
A unified grand tour of theoretical physics / Ian D. Lawrie
Autore Lawrie, Ian D.
Edizione [2nd ed.]
Pubbl/distr/stampa Bristol [etc.] : Institute of Physics Publishing, 2002
Descrizione fisica xvi, 564 p. : ill. ; 24 cm
Soggetto non controllato Fisica matematica
Fisica teorica
ISBN 0-7503-0604-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990001503440403321
Lawrie, Ian D.  
Bristol [etc.] : Institute of Physics Publishing, 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Active materials and adaptive structures : proceedings : 4-8 November, 1991, Alexandria, Virginia / edited by Gareth J. Knowles
Active materials and adaptive structures : proceedings : 4-8 November, 1991, Alexandria, Virginia / edited by Gareth J. Knowles
Pubbl/distr/stampa Bristol : Institute of Physics Publishing, copyr. 1992
Disciplina 620.11
Soggetto non controllato tecnologia dei materiali congressi 1992
ISBN 0-7503-0191-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990000137450203316
Bristol : Institute of Physics Publishing, copyr. 1992
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Metamaterials for Engineers
Advanced Metamaterials for Engineers
Autore Wang Lulu
Edizione [1st ed.]
Pubbl/distr/stampa Bristol : , : Institute of Physics Publishing, , 2023
Descrizione fisica 1 online resource (358 pages)
Altri autori (Persone) KaraaslanMuharrem
Collana IOP Ebooks Series
Soggetto topico Metamaterials
Engineering
ISBN 9780750357562
0750357568
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Editor biographies -- Lulu Wang -- Muharrem Karaaslan -- List of contributors -- Chapter Characterization of metamaterials -- 1.1 Classification of metamaterials -- 1.1.1 Double positive (DPS) materials -- 1.1.2 Epsilon negative (ENG) materials -- 1.1.3 Mu negative (MNG) materials -- 1.1.4 Double negative (DNG) materials -- 1.2 Types of MTM -- 1.2.1 Artificial dielectrics -- 1.2.2 Artificial magnetics -- 1.2.3 Chiral materials -- 1.2.4 Plasmonic materials -- 1.2.5 Omega shape materials -- 1.2.6 Tunable materials -- 1.3 Metamaterials' properties dependence -- 1.3.1 Frequency -- 1.3.2 Geometry and size -- 1.3.3 Temperature -- 1.3.4 Homogenity -- 1.4 Techniques of characterization of MTMs -- 1.4.1 Resonator methods -- 1.4.2 S-parameter -- 1.4.3 Waveguide method -- 1.4.4 Nicolson-Ross-Weir method -- 1.4.5 Free-space method -- 1.5 Results and discussion -- 1.6 Conclusions -- Bibliography -- Chapter Microwave metamaterial sensors -- 2.1 Introduction -- 2.2 Microfluidic sensors -- 2.3 THz metamaterial sensors -- 2.4 The metamaterial absorber based sensors -- 2.5 New approaches in metamaterial sensors by using machine learning or a three-dimensional (3D) metamaterial-based sensor -- 2.6 Future challenges and future works -- 2.7 Conclusion -- References -- Chapter Metamaterial absorbers in the microwave range -- 3.1 Introduction -- 3.2 Microwave region of the electromagnetic spectrum -- 3.3 Microwave absorption mechanism -- 3.4 Absorber design processes -- 3.5 Flexible metamaterial absorber designs -- 3.6 Discussions -- 3.7 Future works -- 3.8 Conclusions -- References -- Chapter Dual-band terahertz metamaterial absorber with high sensitivity for sensing applications -- 4.1 Introduction -- 4.2 The unit cell model's design -- 4.3 Results and analysis -- 4.4 Conclusions -- References -- Chapter Metamaterial energy harvesters.
5.1 Introduction -- 5.2 Piezoelectric-based acoustic and acoustoelastic wave energy harvesting -- 5.3 RF regime energy harvesting -- 5.4 Infrared and visible regime energy harvesting -- 5.5 Results and discussions -- 5.6 Conclusion -- References -- Chapter Frequency selective surfaces (FSSs) in metamaterials -- 6.1 Introduction -- 6.2 Operational principles of periodic structures -- 6.3 Explanation of the functional mechanism of frequency selective surfaces -- 6.4 Equivalent circuit of FSS -- 6.5 Applications of FSS -- 6.5.1 Spatial filter based on FSS -- 6.5.2 Integration of the FSS with antennas -- 6.5.3 MIMO system based on FSSs -- 6.5.4 Electromagnetic shielding based on FSS -- 6.5.5 Meta-skin -- 6.5.6 3D FSS structures -- 6.5.7 Reconfigurable FSS -- 6.5.8 FSS impacted textiles -- 6.6 Effective approaches for analyzing, optimizing, and fabricating frequency selective surfaces -- 6.7 Results and discussion -- 6.8 Conclusion -- Conflicts of interest -- References -- Chapter Metasurfaces -- 7.1 Introduction -- 7.2 About MSs -- 7.2.1 The generalized law of refraction -- 7.2.2 Huygens' MS -- 7.2.3 MSs based on the Pancharatnam-Berry phase -- 7.3 Applications of MSs -- 7.3.1 Polarization -- 7.3.2 MS-based polarization converters -- 7.3.3 MS-based polarization converter studies -- 7.4 Conclusion -- References -- Chapter Flexible metamaterials -- 8.1 Introduction -- 8.2 Flexible materials for MTMs -- 8.3 Electronics for flexible MTMs -- 8.4 Antennas for flexible MTMs -- 8.5 Energy harvesting for flexible MTMs -- 8.6 Flexible mechanical MTMs -- 8.7 Flexible THz MTMs -- 8.8 Discussion, challenges, and future perspectives -- 8.9 Conclusion -- References -- Chapter Acoustic metamaterials -- 9.1 Introduction -- 9.1.1 Negative refractive index of phononic crystals and acoustic lens property -- 9.1.2 Fractal phononic crystals and their band structure.
9.2 Phononic crystal based tunable piezoelectric waveguide -- 9.3 Second harmonic generation in acoustic metamaterials -- 9.4 Acoustic subwavelength structures -- 9.4.1 FEM model of resonant arrays for numerical analysis -- 9.4.2 Transmission analysis -- 9.4.3 Complementary split rectangular resonator (CSRR) locally resonant sonic crystal -- 9.5 Acoustic Weyl point materials -- 9.5.1 Design of a phononic crystal with type-III Weyl points -- 9.6 Challenges and future works -- 9.7 Conclusion -- Author contributions -- Data availability statement -- Acknowledgments -- Conflicts of Interest -- References -- Chapter Data-driven modeling of microstrip reflectarray unit element design -- 10.1 Introduction -- 10.2 Methods -- 10.3 Modeling of the RA unit element -- 10.4 Sampling strategies for gathering data points -- 10.5 Artificial intelligence based surrogate modeling -- 10.5.1 Artificial neural networks -- 10.5.2 Support vector regression machine -- 10.5.3 Ensemble learning -- 10.5.4 Gaussian process regression -- 10.5.5 Deep neural network -- 10.5.6 Hyperparameter optimization -- 10.5.7 Benchmarking -- 10.6 Results and discussion -- 10.7 Challenges and future works -- References -- Chapter Metamaterials for sensing and biomedical applications -- 11.1 Introduction -- 11.2 Theory and analytical treatment of a prism-coupled waveguide sensor -- 11.2.1 Results and discussion of PCWS -- 11.3 Hyperbolic metamaterial-based sensor for detection of cancer cells -- 11.3.1 Results and discussion -- 11.4 Nanoscale sensor for temperature sensing -- 11.4.1 Theory and design of a temperature sensor -- 11.5 Conclusion and future work -- Author contributions -- Data availability statement -- Acknowledgments -- Conflicts of interest -- References -- Chapter Metamaterial signal absorbers and applications -- 12.1 Introduction -- 12.2 Absorption mechanism.
12.3 Multiple reflection -- 12.4 Absorber applications -- 12.5 Absorber designs for energy harvesting -- 12.6 Absorber for solar energy -- 12.7 Absorber for sensor applications -- 12.8 Tunable metamaterial absorber -- 12.9 Conclusion -- References.
Record Nr. UNINA-9910915777503321
Wang Lulu  
Bristol : , : Institute of Physics Publishing, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Nuclear Radiation Detectors : Materials, Processing, Properties and Applications
Advanced Nuclear Radiation Detectors : Materials, Processing, Properties and Applications
Autore Batra Ashok K
Edizione [1st ed.]
Pubbl/distr/stampa Bristol : , : Institute of Physics Publishing, , 2021
Descrizione fisica 1 online resource (80 pages)
Collana IOP Series in Emerging Technologies in Optics and Photonics Series
Soggetto topico Gamma ray detectors
Scintillators
ISBN 9780750343756
0750343753
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PRELIMS.pdf -- Preface -- Foreword -- Acknowledgments -- Author biography -- Ashok Batra -- CH001.pdf -- Chapter 1 Interaction of gammas with matter -- 1.1 Introduction -- 1.2 Gamma-ray -- 1.2.1 Gamma-ray interactions with matter -- 1.2.2 Types of basic gamma-ray scintillators -- 1.3 Principles of operation of gamma-ray detectors -- 1.3.1 Scintillation detectors -- 1.3.2 Semiconductor detectors -- 1.4 Material requirements for scintillators -- 1.5 Detailed scintillation mechanism -- 1.5.1 Scintillation mechanism in an inorganic scintillator -- 1.5.2 Prefered properties of scintillators -- References -- CH002.pdf -- Chapter 2 Performance of gamma radiation detectors materials -- 2.1 The performance parameters [1] -- 2.1.1 Energy resolution -- 2.1.2 Rate and timing -- 2.1.3 Spatial resolution -- 2.1.4 Efficiency of detection -- 2.1.5 Geometric efficiency -- 2.1.6 Detection of neutron -- 2.1.7 Operational factors
Record Nr. UNINA-9911009384503321
Batra Ashok K  
Bristol : , : Institute of Physics Publishing, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Security Solutions for Multimedia
Advanced Security Solutions for Multimedia
Autore Ansari Irshad Ahmad
Edizione [1st ed.]
Pubbl/distr/stampa Bristol : , : Institute of Physics Publishing, , 2021
Descrizione fisica 1 online resource (276 pages)
Altri autori (Persone) BajajVarun
SinhalRishi
SharmaTarun Kumar
NajafiEsmaeil
ShahManan
GohilJay
PatelJay
WuHanzhou
AbazarMahdie
Collana IOP Ebooks Series
Soggetto topico Data encryption (Computer science)
Digital watermarking
ISBN 0-7503-4572-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Editor biographies -- Irshad Ahmad Ansari -- Varun Bajaj -- Contributor biographies -- Mahdie Abazar -- Parmeshwar Birajadar -- Seyed Mostafa FakhrAhmad -- Vikram M Gadre -- Ali Ghorbani -- Jay Gohil -- Abdelhamid Helali -- Sunil Kumar Jauhar -- Ameya Kshirsagar -- S Kuppa -- Hassen Maaref -- V M Manikandan -- Suja Cherukullapurath Mana -- Peyman Masjedi -- Ridha Mghaieth -- Amina Msolli -- Esmaeil Najafi -- Akash S Palde -- Jay Patel -- D S Raghukumar -- Vishal Rajput -- Antti Rissanen -- Marjo Rissanen -- T Saipraba -- Sagar G Sangodkar -- Manan Shah -- Tarun Kumar Sharma -- Rishi Sinhal -- M Suresha -- Niranjan Suthar -- Mohammad Taheri -- Hanzhou Wu -- Chapter 1 Blind image watermarking with efficient dual restoration feature -- 1.1 Introduction -- 1.2 Literature review -- 1.3 Proposed fragile watermarking scheme -- 1.3.1 Watermark pre-processing -- 1.3.2 Watermark embedding -- 1.3.3 Watermark extraction -- 1.3.4 Self-recovery process -- 1.4 Experimental results and discussion -- 1.4.1 Tamper detection anaylsis -- 1.4.2 Self-recovery of the tampered portion -- 1.5 Conclusion -- Acknowledgements -- References -- Chapter 2 Secure, robust and imperceptible image watermarking scheme based on sharp frequency localized contourlet transform -- 2.1 Introduction -- 2.2 The properties of SFLCT -- 2.3 The proposed SFLCT watermarking scheme -- 2.3.1 Computing strength factors -- 2.4 Implementations and results of the proposed SFLCT scheme -- 2.4.1 Robustness of the proposed SFLCT scheme -- 2.4.2 The security examination of the proposed scheme -- 2.5 Comparative analysis of the proposed scheme -- 2.6 Conclusion -- References -- Chapter 3 Content watermarking and data hiding in multimedia security -- 3.1 Introduction -- 3.2 Content watermarking in multimedia security -- 3.2.1 Introduction.
3.2.2 Content watermarking technique reviews -- 3.2.3 Table pertaining to research work on content watermarking in multimedia security -- 3.2.4 Inference -- 3.3 Data hiding in multimedia security -- 3.3.1 Background -- 3.3.2 Data hiding technique reviews -- 3.3.3 Table pertaining to research work on data hiding in multimedia security -- 3.3.4 Inference -- 3.4 Conclusion -- Acknowledgments -- References -- Chapter 4 Recent advances in reversible watermarking in an encrypted domain -- 4.1 Introduction -- 4.2 Preliminaries -- 4.2.1 Cover source and formats -- 4.2.2 Encryption methods -- 4.2.3 Evaluation metrics -- 4.2.4 Auxiliary data -- 4.3 State-of-the-art methods -- 4.3.1 General framework -- 4.3.2 Reserving room after encryption -- 4.3.3 Reserving room before encryption -- 4.3.4 Challenges and opportunities -- 4.4 Conclusion -- Acknowledgements -- References -- Chapter 5 An analysis of deep steganography and steganalysis -- 5.1 Introduction -- 5.2 Deep learning -- 5.2.1 Steganalysis -- 5.2.2 Steganography -- 5.3 Conclusion -- References -- Chapter 6 Recent trends in reversible data hiding techniques -- 6.1 Introduction -- 6.2 Types of RDH schemes -- 6.2.1 RDH in natural images -- 6.2.2 RDH in encrypted images -- 6.2.3 RDH through encryption (RDHTE) -- 6.3 Analysis of RDH schemes -- 6.4 Image dataset for experimental study -- 6.5 Future scope of the research in RDH -- 6.6 Conclusion -- References -- Chapter 7 Anatomized study of security solutions for multimedia: deep learning-enabled authentication, cryptography and information hiding -- 7.1 Introduction -- 7.2 Hurdles in conventional approaches for security -- 7.2.1 Vulnerability due to expansion -- 7.2.2 Authentication and computational latency -- 7.2.3 Discrepancy in authentication -- 7.3 Vulnerability to multimedia content -- 7.3.1 Data disclosure -- 7.3.2 Content manipulation.
7.3.3 Link sharing -- 7.3.4 Steganography -- 7.3.5 Common workspace -- 7.4 Analysis of security solutions for multimedia content -- 7.4.1 Cryptography -- 7.4.2 Data hiding -- 7.4.3 Deep learning enabled authentication -- 7.5 Future scope -- 7.6 Conclusion -- Acknowledgements -- References -- Chapter 8 New lightweight image encryption algorithm for the Internet of Things and wireless multimedia sensor networks -- 8.1 Introduction -- 8.2 Cryptographic primitives -- 8.2.1 Cryptanalysis -- 8.2.2 Cryptography system -- 8.3 Proposed lightweight algorithm -- 8.4 Safety assessment -- 8.4.1 Statistical analysis -- 8.4.2 Sensitivity test: robustness against differential attacks -- 8.4.3 Calculations speed analysis -- 8.5 Conclusion -- References -- Chapter 9 Applying the capabilities of machine learning for multimedia security: an analysis -- 9.1 Introduction -- 9.2 Overview of machine learning -- 9.2.1 Classification -- 9.2.2 Regression -- 9.2.3 Deep learning -- 9.3 Machine learning algorithms for multimedia security -- 9.4 Advantages of using ML based security mechanism for multimedia -- 9.5 Conclusion -- References -- Chapter 10 Assistive communication technology options for elderly care -- 10.1 Introduction -- 10.2 Cameras for patient monitoring in hospitals -- 10.2.1 Cameras for patient supervising in elderly care -- 10.2.2 Extending camera monitoring from the hospital to the home -- 10.2.3 Home-access video service as experienced by family members -- 10.2.4 Home-access video service as experienced by staff -- 10.2.5 New contexts and possibilities for camera surveillance in elderly care -- 10.3 Home-access monitoring and security -- 10.4 Benefits of the service -- 10.4.1 Benefit for the hospital patient -- 10.4.2 Benefit to the patient's relatives -- 10.4.3 Benefit to the organization -- 10.5 Requirements for the service model.
10.5.1 When is a home-access camera a facet of quality? -- 10.5.2 Conditions for practice -- 10.6 Security issues in networked health infrastructure -- 10.6.1 Information security at the strategic level -- 10.6.2 Different layers of security -- 10.6.3 Key elements of safe IT infrastructure in healthcare in the future -- 10.7 Deploying novel surveillance services in healthcare -- 10.7.1 Underlining the basics -- 10.7.2 Design cycles and relevant frames for design -- 10.7.3 Shared leadership -- 10.7.4 Challenges of innovation adaptation -- 10.7.5 New service models and translational design challenges -- 10.8 Conclusion -- References -- Chapter 11 Deep learning approach for scenario-based abnormality detection -- 11.1 Introduction -- 11.2 Literature study -- 11.3 Scenario understanding -- 11.3.1 Key frame extraction using instance segmentation -- 11.3.2 State full artifacts modelling -- 11.3.3 Action recognition and attention of key action -- 11.3.4 A hybrid model for spatio-temporal features -- 11.3.5 Classification and captioning -- 11.4 Abnormality detection -- 11.4.1 Natural abnormality translation -- 11.5 Datasets -- 11.6 Challenges -- 11.7 Trends and strengths -- 11.8 Conclusion -- References -- Chapter 12 Ear recognition for multimedia security -- 12.1 Introduction -- 12.1.1 Components of a biometric system -- 12.1.2 Modes of operation -- 12.1.3 Performance evaluation metrics -- 12.2 Ear recognition -- 12.3 Ear detection -- 12.4 Ear feature extraction -- 12.4.1 Multiresolution technique for feature extraction -- 12.4.2 Deep learning technique for feature extraction -- 12.4.3 Identification and verification experiments -- 12.5 Conclusion -- Acknowledgements -- References -- Chapter 13 Secure multimedia management: currents trends and future avenues -- 13.1 Introduction -- 13.2 Data collection and screening -- 13.3 Results.
13.3.1 General performance of selected publications -- 13.3.2 Performance of countries, institutions, and authors -- 13.3.3 Performance of journals, citations, and keywords -- 13.3.4 Factorial analysis -- 13.3.5 Co-citation network -- 13.3.6 Collaboration worldwide -- 13.4 Conclusion -- References.
Record Nr. UNINA-9910915783003321
Ansari Irshad Ahmad  
Bristol : , : Institute of Physics Publishing, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Modern Sensors : Physics, Design, Simulation and Applications
Advances in Modern Sensors : Physics, Design, Simulation and Applications
Autore Sinha G. R
Edizione [1st ed.]
Pubbl/distr/stampa Bristol : , : Institute of Physics Publishing, , 2020
Descrizione fisica 1 online resource (367 pages)
Altri autori (Persone) PatelBhagwati Charan
GoelNaveen
ThakurKavita
VyasPrafulla
DeshmukhKusumanjali
MehtaNeeraj
LiJin
LiuZilong
NHema
Collana IOP Series in Sensors and Sensor Systems Series
Soggetto topico Intelligent sensors
Wearable technology
ISBN 9780750341141
0750341149
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Editor biography -- G R Sinha -- List of contributors -- Chapter 1 Introduction to sensors -- 1.1 Introduction -- 1.2 Sensor characteristics -- 1.2.1 Transfer function -- 1.2.2 Full-scale input (FSI) -- 1.2.3 Full-scale output (FSO) -- 1.2.4 Accuracy -- 1.2.5 Calibration -- 1.2.6 Hysteresis -- 1.2.7 Non-linearity -- 1.2.8 Resolution -- 1.2.9 Saturation -- 1.2.10 Repeatability -- 1.2.11 Dead band -- 1.2.12 Reliability -- 1.2.13 Output characteristics -- 1.2.14 Impedance -- 1.2.15 Excitation -- 1.2.16 Dynamic characteristics -- 1.2.17 Precision -- 1.2.18 Environmental factors -- 1.2.19 Uncertainty -- 1.2.20 Application characteristics -- 1.3 Types of sensors -- 1.3.1 Temperature sensors -- 1.3.2 Position sensors -- 1.3.3 Light sensors -- 1.3.4 Sound sensor -- 1.3.5 Proximity sensor -- 1.3.6 Accelerometer -- 1.3.7 Infrared sensor -- 1.3.8 Pressure sensor -- 1.3.9 Ultrasonic sensors -- 1.3.10 Touch sensor -- 1.3.11 Humidity sensor -- 1.3.12 Colour sensor -- 1.3.13 Chemical sensor -- 1.3.14 Seismic sensor -- 1.3.15 Magnetic sensor -- 1.4 Comparison of different sensors -- 1.5 Modern sensors -- 1.6 Conclusions -- References -- Chapter 2 Classification and characteristics of sensors -- 2.1 Introduction -- 2.2 Classification -- 2.3 Commonly used sensors and their features -- 2.4 Transfer function -- 2.5 Characteristics of sensors -- 2.6 Sensors should meet the following basic requirements -- 2.7 Factors for choosing sensors -- 2.8 Conclusion -- References -- Chapter 3 Optical sensors: overview, characteristics and applications -- 3.1 Introduction -- 3.2 Optical sensors: fundamentals -- 3.2.1 Modes of operation -- 3.2.2 Light sources for optical sensors -- 3.2.3 Advantages of optical sensors -- 3.3 Optical sensing devices (detectors) -- 3.3.1 Photoemissive cells (photoemitters).
3.3.2 Photoresistor or light dependent resistors -- 3.3.3 Photodiodes -- 3.3.4 Phototransistor -- 3.3.5 Infrared sensors -- 3.3.6 Fiber optic sensor -- References -- Chapter 4 Recent applications of chalcogenide glasses (ChGs) based sensors -- 4.1 ChGs based sensors: a brief introduction -- 4.2 Fabrication and molding of ChGs in the form of different devices for sensing applications -- 4.2.1 Infrared optical fibers -- 4.2.2 Infrared optical lenses -- 4.2.3 Thin film membranes -- 4.3 Description of some principals behind the sensing applications -- 4.3.1 Attenuated total internal reflection -- 4.3.2 Fiber evanescent wave spectroscopy -- 4.3.3 Thermal imaging -- 4.4 Some exclusive examples of sensing applications of ChGs based sensors -- 4.4.1 Application in bio-sensing and food security -- 4.4.2 Early cancer diagnostics -- 4.4.3 Monitoring of pollutants in groundwater -- 4.4.4 Night vision systems for surveillance assignments -- 4.4.5 Monitoring of global warming -- 4.4.6 Other significant applications -- 4.5 Conclusions -- References -- Chapter 5 Advanced dynamic and static calibration methods for optical imaging sensors -- 5.1 Introduction -- 5.2 Principle of camera calibrations -- 5.2.1 Position determination principle using optical cameras -- 5.2.2 Camera calibration principle -- 5.2.3 Camera calibration model -- 5.2.4 Distortion model in camera calibration -- 5.3 Dynamic calibration approaches -- 5.3.1 The principle of the dynamic camera calibration -- 5.3.2 Calibration model used for the dynamic calibration -- 5.3.3 Dynamic calibration with multi-aperture MEMS light lead-in devices -- 5.4 Static calibration principle with mSOL -- 5.4.1 Static calibration general principle -- 5.4.2 Static calibration principle with DOEs -- 5.4.3 Calibration configurations with mSOL -- 5.4.4 Calibration theory.
5.4.5 The position extraction approach of the predefined target images -- 5.4.6 Applied examples -- 5.5 Discussion and future development directions -- 5.6 Conclusion -- References -- Chapter 6 Smart and wearable sensors used in numerous modern applications and their significance -- 6.1 Introduction -- 6.2 Smart sensors properties -- 6.2.1 Self-calibration -- 6.2.2 Reliability or self-health assessment -- 6.2.3 Self-healing -- 6.2.4 Compensated measurements -- 6.2.5 Self-adaptability: exchange accuracy for speed and vice versa -- 6.3 Smart sensors types -- 6.4 Smart sensor applications -- 6.4.1 Smart cities -- 6.4.2 Smart environment -- 6.4.3 Smart factories -- 6.5 Case study: smart home surveillance system using a smart camera -- 6.6 Wearable sensors -- 6.7 Applications of wearable sensors -- 6.7.1 Programmable bio-electric ASIC sensors -- 6.7.2 Diabetes wearable medical device -- 6.7.3 Cancer detecting wearable device -- 6.7.4 Wearable sweat-sensor -- 6.7.5 Wearable peritoneal dialysis device -- 6.7.6 Predicting the progress of Alzheimer's and dementia diseases -- 6.7.7 Monitoring Parkinson's disease -- 6.7.8 Vision-related biosensors -- 6.8 Conclusion -- References -- Chapter 7 Smart stick for the visually impaired -- 7.1 Introduction -- 7.2 Smart blind stick -- 7.3 Hardware description -- 7.3.1 Arduino UNO -- 7.3.2 Ultrasonic sensor -- 7.3.3 Water sensor -- 7.3.4 GPS module -- 7.3.5 LDR-light dependent resistor -- 7.3.6 Alarm unit -- 7.4 Results -- 7.4.1 Ultrasonic sensor -- 7.4.2 Detection of water by water sensor -- 7.4.3 Detection of light by using LDR -- 7.4.4 Location of the stick -- 7.5 Conclusion -- References -- Chapter 8 Smart and wearable sensors -- 8.1 Introduction -- 8.2 Features of smart sensors -- 8.3 Evaluation of smart sensors -- 8.3.1 Third-generation -- 8.3.2 Fourth-generation -- 8.3.3 Fifth-generation.
8.4 Design of a smart sensor -- 8.4.1 Data acquisition -- 8.4.2 Data transfer -- 8.4.3 Data processing -- 8.5 Consequences -- 8.5.1 Advantages of smart sensor -- 8.5.2 Disadvantages -- 8.6 General applications -- 8.7 Wearable sensors -- 8.7.1 Need for wearable sensors -- 8.7.2 Smart sensor as a wearable sensor -- 8.8 Wearable sensor devices -- 8.8.1 Wristwatches architecture and performance -- 8.8.2 Electronic T-Shirt architecture and working principle -- 8.8.3 BP monitoring using PPG -- 8.9 Conclusion -- References -- Chapter 9 Cognitive and biosensors: an overview -- 9.1 Introduction and background -- 9.2 Cognitive sensors -- 9.2.1 Research challenges -- 9.2.2 Application of cognitive sensors -- 9.2.3 Cognitive sensors and machine learning -- 9.2.4 Cognitive sensors and security threats -- 9.3 Biosensors -- 9.3.1 Research challenges -- 9.3.2 Application of biosensors -- 9.4 Conclusion -- Acknowledgment -- References -- Chapter 10 Sensor technologies combined with AI helping in smart transport systems as driverless cars -- 10.1 History of driverless cars using smart sensors -- 10.2 Automation levels -- 10.3 Sensors and other technologies used by manufacturing companies -- 10.4 Design components -- 10.5 Sensor technology -- 10.5.1 GPS -- 10.5.2 LiDAR -- 10.5.3 Cameras -- 10.5.4 Radar sensors -- 10.5.5 Ultrasonic sensors -- 10.6 Challenges and future research -- 10.7 Conclusions -- References -- Chapter 11 Recent advancements in smart and wearable sensors -- 11.1 Introduction -- 11.1.1 Basics of SWSs -- 11.1.2 Working principle of a smart sensor -- 11.2 Types of wearable sensors -- 11.2.1 Optical sensors -- 11.2.2 Physical sensors -- 11.2.3 Chemical sensors -- 11.2.4 Multiplexed sensors -- 11.2.5 Wireless sensors -- 11.3 Challenges in wearable chemical sensors and possible solutions -- 11.3.1 Materials-based challenges with possible solution.
11.3.2 Operational challenges and possible solutions -- 11.4 Conclusion and future direction -- References -- Chapter 12 Design and implementation of a wearable gaze tracking device with near-infrared and visible-light image sensors -- 12.1 Introduction -- 12.2 Proposed wearable gaze tracking design -- 12.2.1 Near-infrared image sensor based wearable eye tracker design [13, 14] -- 12.2.2 Visible-light image sensor based wearable eye tracker design [17-19] -- 12.2.3 Calibration and gaze tracking function for wearable eye tracking device -- 12.3 Experimental results and comparisons -- 12.4 Conclusion and future works -- Acknowledgments -- References -- Chapter 13 Vibration powered wireless sensor networks-harvesting energy from good vibrations -- 13.1 Introduction -- 13.2 literature survey -- 13.2.1 Piezoelectric sensors -- 13.2.2 Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation -- 13.2.3 Feasibility of structural monitoring with vibration powered sensors -- 13.2.4 Vibration powered wireless sensor networks -- 13.3 Existing methodology -- 13.3.1 Proposed methodology -- 13.3.2 Comparison of proposed methodology with existing methodology -- 13.3.3 Advantages -- 13.3.4 Disadvantages -- 13.4 Conclusion -- References -- Chapter 14 Comprehensive review on brain-computer interface sensor-based smart home appliances control system -- 14.1 Introduction -- 14.1.1 Motivation and requirement -- 14.2 Background -- 14.2.1 Electroencephalography (EEG) -- 14.2.2 Brain waves -- 14.2.3 EEG artifacts -- 14.2.4 Control signal of BCI -- 14.3 Step involved in BCI-based controlling home appliances system -- 14.3.1 Data acquisition framework -- 14.3.2 Preprocessing and feature extraction -- 14.3.3 Classification results -- 14.4 Controlling methods based on single and multiple appliances -- 14.4.1 Single appliance control.
14.4.2 Multiple appliance control.
Record Nr. UNINA-9911009381703321
Sinha G. R  
Bristol : , : Institute of Physics Publishing, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui