2: Advanced algorithms and operators / edited by Thomas Back, David B. Fogel and Zbigniew Michalewicz |
Pubbl/distr/stampa | Bristol ; Philadelphia, : Institute of Physics Publishing, 2000 |
Descrizione fisica | XXXIV, 270 p. ; 24 cm. |
Disciplina | 006.3 |
ISBN | 0750306653 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISANNIO-UBO1264125 |
Bristol ; Philadelphia, : Institute of Physics Publishing, 2000 | ||
![]() | ||
Lo trovi qui: Univ. del Sannio | ||
|
A handbook of public speaking for scientists and engineers / Peter Kenny |
Autore | Kenny, Peter |
Pubbl/distr/stampa | Bristol [etc.] : Institute of Physics Publishing, copyr. 1982 |
Disciplina | 808.51 |
Soggetto non controllato | oratoria - manuali |
ISBN | 0-85274-553-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-990000154580203316 |
Kenny, Peter
![]() |
||
Bristol [etc.] : Institute of Physics Publishing, copyr. 1982 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
A random walk in science / an anthology compiled by R. L. Weber ; edited by E. Mendoza ; with foreword by William Cooper |
Autore | Weber, Robert L. |
Pubbl/distr/stampa | Bristol [etc.] : Institute of Physics Publishing, copyr. 1973 |
Disciplina | 502.07 |
Soggetto non controllato | scienze aneddoti |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-990000170710203316 |
Weber, Robert L.
![]() |
||
Bristol [etc.] : Institute of Physics Publishing, copyr. 1973 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
A unified grand tour of theoretical physics / Ian D. Lawrie |
Autore | Lawrie, Ian D. |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Bristol [etc.] : Institute of Physics Publishing, 2002 |
Descrizione fisica | xvi, 564 p. : ill. ; 24 cm |
Soggetto non controllato |
Fisica matematica
Fisica teorica |
ISBN | 0-7503-0604-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-990001503440403321 |
Lawrie, Ian D.
![]() |
||
Bristol [etc.] : Institute of Physics Publishing, 2002 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Active materials and adaptive structures : proceedings : 4-8 November, 1991, Alexandria, Virginia / edited by Gareth J. Knowles |
Pubbl/distr/stampa | Bristol : Institute of Physics Publishing, copyr. 1992 |
Disciplina | 620.11 |
Soggetto non controllato | tecnologia dei materiali congressi 1992 |
ISBN | 0-7503-0191-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-990000137450203316 |
Bristol : Institute of Physics Publishing, copyr. 1992 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advanced Metamaterials for Engineers |
Autore | Wang Lulu |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2023 |
Descrizione fisica | 1 online resource (358 pages) |
Altri autori (Persone) | KaraaslanMuharrem |
Collana | IOP Ebooks Series |
Soggetto topico |
Metamaterials
Engineering |
ISBN |
9780750357562
0750357568 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Editor biographies -- Lulu Wang -- Muharrem Karaaslan -- List of contributors -- Chapter Characterization of metamaterials -- 1.1 Classification of metamaterials -- 1.1.1 Double positive (DPS) materials -- 1.1.2 Epsilon negative (ENG) materials -- 1.1.3 Mu negative (MNG) materials -- 1.1.4 Double negative (DNG) materials -- 1.2 Types of MTM -- 1.2.1 Artificial dielectrics -- 1.2.2 Artificial magnetics -- 1.2.3 Chiral materials -- 1.2.4 Plasmonic materials -- 1.2.5 Omega shape materials -- 1.2.6 Tunable materials -- 1.3 Metamaterials' properties dependence -- 1.3.1 Frequency -- 1.3.2 Geometry and size -- 1.3.3 Temperature -- 1.3.4 Homogenity -- 1.4 Techniques of characterization of MTMs -- 1.4.1 Resonator methods -- 1.4.2 S-parameter -- 1.4.3 Waveguide method -- 1.4.4 Nicolson-Ross-Weir method -- 1.4.5 Free-space method -- 1.5 Results and discussion -- 1.6 Conclusions -- Bibliography -- Chapter Microwave metamaterial sensors -- 2.1 Introduction -- 2.2 Microfluidic sensors -- 2.3 THz metamaterial sensors -- 2.4 The metamaterial absorber based sensors -- 2.5 New approaches in metamaterial sensors by using machine learning or a three-dimensional (3D) metamaterial-based sensor -- 2.6 Future challenges and future works -- 2.7 Conclusion -- References -- Chapter Metamaterial absorbers in the microwave range -- 3.1 Introduction -- 3.2 Microwave region of the electromagnetic spectrum -- 3.3 Microwave absorption mechanism -- 3.4 Absorber design processes -- 3.5 Flexible metamaterial absorber designs -- 3.6 Discussions -- 3.7 Future works -- 3.8 Conclusions -- References -- Chapter Dual-band terahertz metamaterial absorber with high sensitivity for sensing applications -- 4.1 Introduction -- 4.2 The unit cell model's design -- 4.3 Results and analysis -- 4.4 Conclusions -- References -- Chapter Metamaterial energy harvesters.
5.1 Introduction -- 5.2 Piezoelectric-based acoustic and acoustoelastic wave energy harvesting -- 5.3 RF regime energy harvesting -- 5.4 Infrared and visible regime energy harvesting -- 5.5 Results and discussions -- 5.6 Conclusion -- References -- Chapter Frequency selective surfaces (FSSs) in metamaterials -- 6.1 Introduction -- 6.2 Operational principles of periodic structures -- 6.3 Explanation of the functional mechanism of frequency selective surfaces -- 6.4 Equivalent circuit of FSS -- 6.5 Applications of FSS -- 6.5.1 Spatial filter based on FSS -- 6.5.2 Integration of the FSS with antennas -- 6.5.3 MIMO system based on FSSs -- 6.5.4 Electromagnetic shielding based on FSS -- 6.5.5 Meta-skin -- 6.5.6 3D FSS structures -- 6.5.7 Reconfigurable FSS -- 6.5.8 FSS impacted textiles -- 6.6 Effective approaches for analyzing, optimizing, and fabricating frequency selective surfaces -- 6.7 Results and discussion -- 6.8 Conclusion -- Conflicts of interest -- References -- Chapter Metasurfaces -- 7.1 Introduction -- 7.2 About MSs -- 7.2.1 The generalized law of refraction -- 7.2.2 Huygens' MS -- 7.2.3 MSs based on the Pancharatnam-Berry phase -- 7.3 Applications of MSs -- 7.3.1 Polarization -- 7.3.2 MS-based polarization converters -- 7.3.3 MS-based polarization converter studies -- 7.4 Conclusion -- References -- Chapter Flexible metamaterials -- 8.1 Introduction -- 8.2 Flexible materials for MTMs -- 8.3 Electronics for flexible MTMs -- 8.4 Antennas for flexible MTMs -- 8.5 Energy harvesting for flexible MTMs -- 8.6 Flexible mechanical MTMs -- 8.7 Flexible THz MTMs -- 8.8 Discussion, challenges, and future perspectives -- 8.9 Conclusion -- References -- Chapter Acoustic metamaterials -- 9.1 Introduction -- 9.1.1 Negative refractive index of phononic crystals and acoustic lens property -- 9.1.2 Fractal phononic crystals and their band structure. 9.2 Phononic crystal based tunable piezoelectric waveguide -- 9.3 Second harmonic generation in acoustic metamaterials -- 9.4 Acoustic subwavelength structures -- 9.4.1 FEM model of resonant arrays for numerical analysis -- 9.4.2 Transmission analysis -- 9.4.3 Complementary split rectangular resonator (CSRR) locally resonant sonic crystal -- 9.5 Acoustic Weyl point materials -- 9.5.1 Design of a phononic crystal with type-III Weyl points -- 9.6 Challenges and future works -- 9.7 Conclusion -- Author contributions -- Data availability statement -- Acknowledgments -- Conflicts of Interest -- References -- Chapter Data-driven modeling of microstrip reflectarray unit element design -- 10.1 Introduction -- 10.2 Methods -- 10.3 Modeling of the RA unit element -- 10.4 Sampling strategies for gathering data points -- 10.5 Artificial intelligence based surrogate modeling -- 10.5.1 Artificial neural networks -- 10.5.2 Support vector regression machine -- 10.5.3 Ensemble learning -- 10.5.4 Gaussian process regression -- 10.5.5 Deep neural network -- 10.5.6 Hyperparameter optimization -- 10.5.7 Benchmarking -- 10.6 Results and discussion -- 10.7 Challenges and future works -- References -- Chapter Metamaterials for sensing and biomedical applications -- 11.1 Introduction -- 11.2 Theory and analytical treatment of a prism-coupled waveguide sensor -- 11.2.1 Results and discussion of PCWS -- 11.3 Hyperbolic metamaterial-based sensor for detection of cancer cells -- 11.3.1 Results and discussion -- 11.4 Nanoscale sensor for temperature sensing -- 11.4.1 Theory and design of a temperature sensor -- 11.5 Conclusion and future work -- Author contributions -- Data availability statement -- Acknowledgments -- Conflicts of interest -- References -- Chapter Metamaterial signal absorbers and applications -- 12.1 Introduction -- 12.2 Absorption mechanism. 12.3 Multiple reflection -- 12.4 Absorber applications -- 12.5 Absorber designs for energy harvesting -- 12.6 Absorber for solar energy -- 12.7 Absorber for sensor applications -- 12.8 Tunable metamaterial absorber -- 12.9 Conclusion -- References. |
Record Nr. | UNINA-9910915777503321 |
Wang Lulu
![]() |
||
Bristol : , : Institute of Physics Publishing, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Security Solutions for Multimedia |
Autore | Ansari Irshad Ahmad |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2021 |
Descrizione fisica | 1 online resource (276 pages) |
Altri autori (Persone) |
BajajVarun
SinhalRishi SharmaTarun Kumar NajafiEsmaeil ShahManan GohilJay PatelJay WuHanzhou AbazarMahdie |
Collana | IOP Ebooks Series |
Soggetto topico |
Data encryption (Computer science)
Digital watermarking |
ISBN | 0-7503-4572-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Editor biographies -- Irshad Ahmad Ansari -- Varun Bajaj -- Contributor biographies -- Mahdie Abazar -- Parmeshwar Birajadar -- Seyed Mostafa FakhrAhmad -- Vikram M Gadre -- Ali Ghorbani -- Jay Gohil -- Abdelhamid Helali -- Sunil Kumar Jauhar -- Ameya Kshirsagar -- S Kuppa -- Hassen Maaref -- V M Manikandan -- Suja Cherukullapurath Mana -- Peyman Masjedi -- Ridha Mghaieth -- Amina Msolli -- Esmaeil Najafi -- Akash S Palde -- Jay Patel -- D S Raghukumar -- Vishal Rajput -- Antti Rissanen -- Marjo Rissanen -- T Saipraba -- Sagar G Sangodkar -- Manan Shah -- Tarun Kumar Sharma -- Rishi Sinhal -- M Suresha -- Niranjan Suthar -- Mohammad Taheri -- Hanzhou Wu -- Chapter 1 Blind image watermarking with efficient dual restoration feature -- 1.1 Introduction -- 1.2 Literature review -- 1.3 Proposed fragile watermarking scheme -- 1.3.1 Watermark pre-processing -- 1.3.2 Watermark embedding -- 1.3.3 Watermark extraction -- 1.3.4 Self-recovery process -- 1.4 Experimental results and discussion -- 1.4.1 Tamper detection anaylsis -- 1.4.2 Self-recovery of the tampered portion -- 1.5 Conclusion -- Acknowledgements -- References -- Chapter 2 Secure, robust and imperceptible image watermarking scheme based on sharp frequency localized contourlet transform -- 2.1 Introduction -- 2.2 The properties of SFLCT -- 2.3 The proposed SFLCT watermarking scheme -- 2.3.1 Computing strength factors -- 2.4 Implementations and results of the proposed SFLCT scheme -- 2.4.1 Robustness of the proposed SFLCT scheme -- 2.4.2 The security examination of the proposed scheme -- 2.5 Comparative analysis of the proposed scheme -- 2.6 Conclusion -- References -- Chapter 3 Content watermarking and data hiding in multimedia security -- 3.1 Introduction -- 3.2 Content watermarking in multimedia security -- 3.2.1 Introduction.
3.2.2 Content watermarking technique reviews -- 3.2.3 Table pertaining to research work on content watermarking in multimedia security -- 3.2.4 Inference -- 3.3 Data hiding in multimedia security -- 3.3.1 Background -- 3.3.2 Data hiding technique reviews -- 3.3.3 Table pertaining to research work on data hiding in multimedia security -- 3.3.4 Inference -- 3.4 Conclusion -- Acknowledgments -- References -- Chapter 4 Recent advances in reversible watermarking in an encrypted domain -- 4.1 Introduction -- 4.2 Preliminaries -- 4.2.1 Cover source and formats -- 4.2.2 Encryption methods -- 4.2.3 Evaluation metrics -- 4.2.4 Auxiliary data -- 4.3 State-of-the-art methods -- 4.3.1 General framework -- 4.3.2 Reserving room after encryption -- 4.3.3 Reserving room before encryption -- 4.3.4 Challenges and opportunities -- 4.4 Conclusion -- Acknowledgements -- References -- Chapter 5 An analysis of deep steganography and steganalysis -- 5.1 Introduction -- 5.2 Deep learning -- 5.2.1 Steganalysis -- 5.2.2 Steganography -- 5.3 Conclusion -- References -- Chapter 6 Recent trends in reversible data hiding techniques -- 6.1 Introduction -- 6.2 Types of RDH schemes -- 6.2.1 RDH in natural images -- 6.2.2 RDH in encrypted images -- 6.2.3 RDH through encryption (RDHTE) -- 6.3 Analysis of RDH schemes -- 6.4 Image dataset for experimental study -- 6.5 Future scope of the research in RDH -- 6.6 Conclusion -- References -- Chapter 7 Anatomized study of security solutions for multimedia: deep learning-enabled authentication, cryptography and information hiding -- 7.1 Introduction -- 7.2 Hurdles in conventional approaches for security -- 7.2.1 Vulnerability due to expansion -- 7.2.2 Authentication and computational latency -- 7.2.3 Discrepancy in authentication -- 7.3 Vulnerability to multimedia content -- 7.3.1 Data disclosure -- 7.3.2 Content manipulation. 7.3.3 Link sharing -- 7.3.4 Steganography -- 7.3.5 Common workspace -- 7.4 Analysis of security solutions for multimedia content -- 7.4.1 Cryptography -- 7.4.2 Data hiding -- 7.4.3 Deep learning enabled authentication -- 7.5 Future scope -- 7.6 Conclusion -- Acknowledgements -- References -- Chapter 8 New lightweight image encryption algorithm for the Internet of Things and wireless multimedia sensor networks -- 8.1 Introduction -- 8.2 Cryptographic primitives -- 8.2.1 Cryptanalysis -- 8.2.2 Cryptography system -- 8.3 Proposed lightweight algorithm -- 8.4 Safety assessment -- 8.4.1 Statistical analysis -- 8.4.2 Sensitivity test: robustness against differential attacks -- 8.4.3 Calculations speed analysis -- 8.5 Conclusion -- References -- Chapter 9 Applying the capabilities of machine learning for multimedia security: an analysis -- 9.1 Introduction -- 9.2 Overview of machine learning -- 9.2.1 Classification -- 9.2.2 Regression -- 9.2.3 Deep learning -- 9.3 Machine learning algorithms for multimedia security -- 9.4 Advantages of using ML based security mechanism for multimedia -- 9.5 Conclusion -- References -- Chapter 10 Assistive communication technology options for elderly care -- 10.1 Introduction -- 10.2 Cameras for patient monitoring in hospitals -- 10.2.1 Cameras for patient supervising in elderly care -- 10.2.2 Extending camera monitoring from the hospital to the home -- 10.2.3 Home-access video service as experienced by family members -- 10.2.4 Home-access video service as experienced by staff -- 10.2.5 New contexts and possibilities for camera surveillance in elderly care -- 10.3 Home-access monitoring and security -- 10.4 Benefits of the service -- 10.4.1 Benefit for the hospital patient -- 10.4.2 Benefit to the patient's relatives -- 10.4.3 Benefit to the organization -- 10.5 Requirements for the service model. 10.5.1 When is a home-access camera a facet of quality? -- 10.5.2 Conditions for practice -- 10.6 Security issues in networked health infrastructure -- 10.6.1 Information security at the strategic level -- 10.6.2 Different layers of security -- 10.6.3 Key elements of safe IT infrastructure in healthcare in the future -- 10.7 Deploying novel surveillance services in healthcare -- 10.7.1 Underlining the basics -- 10.7.2 Design cycles and relevant frames for design -- 10.7.3 Shared leadership -- 10.7.4 Challenges of innovation adaptation -- 10.7.5 New service models and translational design challenges -- 10.8 Conclusion -- References -- Chapter 11 Deep learning approach for scenario-based abnormality detection -- 11.1 Introduction -- 11.2 Literature study -- 11.3 Scenario understanding -- 11.3.1 Key frame extraction using instance segmentation -- 11.3.2 State full artifacts modelling -- 11.3.3 Action recognition and attention of key action -- 11.3.4 A hybrid model for spatio-temporal features -- 11.3.5 Classification and captioning -- 11.4 Abnormality detection -- 11.4.1 Natural abnormality translation -- 11.5 Datasets -- 11.6 Challenges -- 11.7 Trends and strengths -- 11.8 Conclusion -- References -- Chapter 12 Ear recognition for multimedia security -- 12.1 Introduction -- 12.1.1 Components of a biometric system -- 12.1.2 Modes of operation -- 12.1.3 Performance evaluation metrics -- 12.2 Ear recognition -- 12.3 Ear detection -- 12.4 Ear feature extraction -- 12.4.1 Multiresolution technique for feature extraction -- 12.4.2 Deep learning technique for feature extraction -- 12.4.3 Identification and verification experiments -- 12.5 Conclusion -- Acknowledgements -- References -- Chapter 13 Secure multimedia management: currents trends and future avenues -- 13.1 Introduction -- 13.2 Data collection and screening -- 13.3 Results. 13.3.1 General performance of selected publications -- 13.3.2 Performance of countries, institutions, and authors -- 13.3.3 Performance of journals, citations, and keywords -- 13.3.4 Factorial analysis -- 13.3.5 Co-citation network -- 13.3.6 Collaboration worldwide -- 13.4 Conclusion -- References. |
Record Nr. | UNINA-9910915783003321 |
Ansari Irshad Ahmad
![]() |
||
Bristol : , : Institute of Physics Publishing, , 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Optical Form and Coordinate Metrology |
Autore | Leach Richard |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2021 |
Descrizione fisica | 1 online resource (229 pages) |
Altri autori (Persone) |
SeninNicola
CatalucciSofia IsaMohammed A PianoSamanta Sims-WaterhouseDanny ChenRui XuJing ZhangSong EastwoodJoe |
Collana | IOP Series in Emerging Technologies in Optics and Photonics Series |
ISBN | 0-7503-4101-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Editor biography -- Richard Leach -- List of contributors -- Chapter 1 Terms, definitions and standards -- 1.1 Introduction -- 1.2 Surface and coordinate terms and definitions -- 1.3 General metrology terms and definitions -- 1.4 Specification standards for coordinate metrology -- 1.4.1 Coordinate metrology standards -- Acknowledgements -- References -- Chapter 2 State-of-the-art in point cloud analysis -- 2.1 Introduction -- 2.1.1 Mathematical representation of 3D point clouds -- 2.1.2 Common 3D point cloud file formats -- 2.1.3 Point cloud transformations -- 2.2 Extracting properties and organising information in point clouds -- 2.2.1 Convex hull and bounding boxes -- 2.2.2 Centroid and principal axes of a point cloud -- 2.2.3 Spatial subdivision of point clouds -- 2.3 Point cloud pre-processing -- 2.3.1 Point cloud simplification, decimation and resampling -- 2.3.2 Elimination of isolated points and noise reduction -- 2.3.3 Triangle meshes and conversion to/from point clouds -- 2.4 Point features and partitioning -- 2.4.1 Point normals -- 2.4.2 Point curvatures -- 2.4.3 Partitioning and segmentation -- 2.5 Point cloud fitting -- 2.5.1 Fitting methods -- 2.6 Registration of point clouds -- 2.6.1 Registration based on external references or based on matching landmarks -- 2.6.2 The absolute orientation problem -- 2.6.3 Alignment by means of principal component analysis -- 2.6.4 RANSAC alignment -- 2.6.5 Alignment by iterative closest points -- 2.6.6 Landmark matching and alignment using similarity metrics -- 2.7 Measurement uncertainty in point cloud surface data -- 2.7.1 Approaches to the estimation of measurement uncertainty -- 2.7.2 Uncertainty associated with point clouds -- 2.8 Conclusions -- References -- Chapter 3 Laser triangulation -- 3.1 Laser triangulation -- 3.2 Laser triangulation sensors.
3.3 Laser triangulation measurement dependence on surface properties -- 3.3.1 Measurement uncertainty limit -- 3.3.2 Surface reflectance perspective -- 3.3.3 Measurement dependence on surface form -- 3.4 Laser triangulation systems -- 3.4.1 Extension of a point based laser triangulation sensor -- 3.4.2 Point measurement systems -- 3.4.3 Profile measurement systems -- 3.4.4 Surface measurement systems -- 3.4.5 Advanced laser triangulation systems -- 3.5 Working process of laser triangulation -- 3.5.1 Characterisation of intrinsic parameters -- 3.5.2 Characterisation of extrinsic parameters -- 3.5.3 Pre-calibration of laser triangulation systems -- 3.5.4 Scanning path planning -- 3.5.5 Image pre-processing -- 3.5.6 Laser feature extraction -- 3.5.7 Refinement and postprocessing -- 3.6 Application of laser triangulation measurements -- 3.6.1 Application of laser triangulation in emerging manufacturing methods -- 3.6.2 Application for geometric inspection -- 3.6.3 Application of 3D reconstructed models -- 3.7 Conclusions -- References -- Chapter 4 Close-range photogrammetry -- 4.1 Introduction -- 4.1.1 Modern photogrammetry -- 4.1.2 Camera projection theory -- 4.1.3 The pinhole camera model -- 4.1.4 Distortion modelling -- 4.2 Characterisation and calibration -- 4.2.1 Camera characterisation -- 4.2.2 Linear techniques -- 4.2.3 Non-linear methods -- 4.2.4 Self-calibration -- 4.3 System calibration -- 4.3.1 Arbitrary scale -- 4.4 Image acquisition -- 4.4.1 Depth of field -- 4.4.2 Imaging procedure optimisation -- 4.5 Summary -- References -- Chapter 5 Digital fringe projection profilometry -- 5.1 Introduction -- 5.2 Fringe pattern generation methods -- 5.2.1 Conventional fringe generation methods -- 5.2.2 Digital binary defocusing techniques -- 5.2.3 New fringe pattern generation methods -- 5.3 Fringe analysis. 5.3.1 Conventional fringe analysis techniques -- 5.3.2 Machine learning enhanced fringe analysis methods -- 5.4 Phase unwrapping -- 5.4.1 Conventional phase unwrapping methods -- 5.4.2 Non-conventional phase unwrapping methods -- 5.4.3 Machine-learning-based phase unwrapping methods -- 5.5 High dynamic range techniques -- 5.6 Calibration -- 5.6.1 Conventional methods -- 5.6.2 Recent developments -- 5.7 High-speed FPP realisation -- 5.7.1 Conventional high-speed FPP methods -- 5.7.2 Recent developments -- 5.8 Towards automation -- 5.9 Towards integrated solutions -- 5.9.1 3D imaging system for crime scene evidence collection -- 5.9.2 Robotic path planning -- 5.10 Summary -- References -- Chapter 6 Machine learning approaches -- 6.1 Introduction -- 6.2 Overview of machine learning and machine learning methods -- 6.3 Machine learning for stereo matching -- 6.3.1 Learned stereo machines -- 6.4 Machine learning for phase unwrapping -- 6.5 Learning depth from a single image -- 6.5.1 Characterisation of cameras and projectors -- 6.6 Machine learning for point cloud analysis -- 6.6.1 Point cloud segmentation -- 6.6.2 Point cloud registration -- 6.6.3 Point cloud completion -- 6.7 Conclusions -- References -- Chapter 7 Precision freeform metrology -- 7.1 Overview of freeform surfaces -- 7.2 Framework for precision freeform metrology -- 7.3 Characterisation of freeform surfaces -- 7.3.1 Surface fitting and reconstruction -- 7.3.2 Surface matching -- 7.3.3 Surface parameters for form error evaluation -- 7.4 Conclusions and future research -- Acknowledgments -- References -- Chapter 8 Performance verification for optical co-ordinate metrology -- 8.1 Introduction -- 8.2 Material measures -- 8.2.1 Material measure 1 -- 8.2.2 Material measure 2 -- 8.2.3 Material measure 3 -- 8.2.4 Material measure 4 -- 8.3 The different types of performance verification test. 8.4 Specification of errors -- 8.4.1 General guidelines for performance verification -- 8.5 Performance verification procedures -- 8.5.1 Measurements with representative points -- 8.5.2 General preparation for the performance verification test -- 8.5.3 Probing characteristics -- 8.5.4 Distortion characteristics -- 8.5.5 Length measurement errors -- 8.6 Compliance with specifications -- 8.6.1 Formal definition of performance verification -- 8.6.2 Retesting after a failed compliance with specifications -- 8.7 A final note on the validity of performance verification -- References. |
Record Nr. | UNINA-9910861040103321 |
Leach Richard
![]() |
||
Bristol : , : Institute of Physics Publishing, , 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Affective Computing in Healthcare : Applications Based on Biosignals and Artificial Intelligence |
Autore | Murugappan M |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2023 |
Descrizione fisica | 1 online resource (225 pages) |
Collana | IPEM-IOP Series in Physics and Engineering in Medicine and Biology Series |
Soggetto topico |
Biomedical engineering
Emotions and cognition |
ISBN | 0-7503-5184-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Editor biography -- M Murugappan -- List of contributors -- Chapter 1 Anxiety recognition using a new EEG signal analysis approach based on sample density in a Chebyshev chaotic map -- 1.1 Introduction -- 1.2 Material and methods -- 1.2.1 EEG DASPS database -- 1.2.2 Normalisation -- 1.2.3 Chebyshev chaotic map -- 1.2.4 Feature selection -- 1.2.5 Classification -- 1.3 Results -- 1.4 Discussions -- 1.5 Conclusion -- Acknowledgments -- Compliance with ethical standards -- Funding -- Conflict of interest -- Statements of ethical approval -- References -- Chapter 2 Evaluating cognitive load during lexical decision tasks for monolinguals and bilinguals using EEG -- 2.1 Introduction -- 2.2 Methodology -- 2.2.1 Block diagram -- 2.2.2 Participant selection -- 2.2.3 Lexical decision task -- 2.2.4 Data acquisition -- 2.2.5 Experiment protocol -- 2.2.6 EEG data processing -- 2.2.7 Statistical analysis -- 2.3 Results -- 2.3.1 Task performance analysis -- 2.3.2 Reaction-time analysis -- 2.3.3 Event-related changes within frequency bands -- 2.4 Discussion -- 2.5 Conclusion -- References -- Chapter 3 Detection of psychological stress using principal component analysis of phonocardiography signals -- 3.1 Introduction -- 3.2 Methodology -- 3.2.1 Signal acquisition -- 3.2.2 Inter-beat interval signal formation -- 3.2.3 Empirical mode decomposition -- 3.2.4 Principal component analysis -- 3.2.5 Classifiers -- 3.2.6 Performance metrics -- 3.3 Results and discussions -- 3.4 Conclusions -- Acknowledgements -- References -- Chapter 4 Affective computational advertising based on perceptual metrics -- 4.1 Introduction -- 4.2 Related work -- 4.2.1 Advertisements as affective stimuli -- 4.2.2 Advertising and healthcare -- 4.2.3 Programme influence on ad perception -- 4.2.4 Strategic video-in-video advertising.
4.2.5 Inference summary and research questions -- 4.3 Materials and methods -- 4.3.1 Materials -- 4.3.2 Participants -- 4.3.3 Procedure -- 4.3.4 User data analyses -- 4.3.5 Inferences and Affective Computational ADvertising design rules -- 4.4 Affective Computational ADvertising formulation -- 4.4.1 Brute-force Affective Computational ADvertising algorithm -- Algorithm 4.1: Brute-force ACAD implementation -- 4.4.2 Computational affective advertising versus Affective Computational ADvertising scheduling -- 4.5 Validational study and hypotheses -- 4.5.1 Materials and methods -- 4.5.2 Results -- 4.6 Summary and conclusions -- References -- Chapter 5 Machine-learning-based emotion recognition in arousal-valence space using photoplethysmogram signals -- 5.1 Introduction and background -- 5.2 Materials and methods -- 5.2.1 Dataset description -- 5.2.2 Data pre-processing -- 5.2.3 Feature extraction -- 5.2.4 Feature reduction -- 5.2.5 Data balancing -- 5.2.6 Machine-learning models -- 5.2.7 Evaluation criteria -- 5.3 Results and discussion -- 5.4 Conclusion -- References -- Chapter 6 EEG-based human emotion classification from channel-wise feature extraction and feature selection -- 6.1 Introduction -- 6.2 Related literature -- 6.2.1 Affective computing -- 6.2.2 Brain-computer interface devices -- 6.2.3 Elicitation of human emotions -- 6.2.4 Pre-processing methods -- 6.2.5 Feature extraction -- 6.2.6 Feature selection -- 6.2.7 Machine-learning classification -- 6.3 Methodology -- 6.3.1 The experiment and experimental data -- 6.3.2 Pre-processing -- 6.3.3 Feature extraction -- 6.3.4 Feature selection -- 6.3.5 Machine-learning classification -- 6.4 Results and analysis -- 6.4.1 Experimental results -- 6.4.2 SEED-IV dataset -- 6.4.3 Application to healthcare -- 6.5 Discussion and conclusions -- 6.6 Challenges and future works -- References. Chapter 7 Detection of physiological body movements in affective disorder patients using EEG signals and deep neural networks -- 7.1 Introduction -- 7.1.1 Chapter organisation -- 7.2 Literature survey -- 7.3 Proposed system -- 7.3.1 Data collection -- 7.3.2 Pre-processing -- 7.3.3 Data training -- 7.3.4 Classification by neural networks -- 7.4 Results -- 7.4.1 Summary of the utilised datasets -- 7.4.2 Comparison of different hyperparameters -- 7.4.3 Statistical parameter comparison of different datasets -- 7.4.4 Comparative analysis -- 7.5 Conclusion -- 7.6 Limitations and future work -- References -- Chapter 8 Voice-enabled real-time affective framework for negative emotion monitoring -- 8.1 Introduction -- 8.1.1 Wearables for emotion monitoring -- 8.1.2 Real-time stress detection -- 8.1.3 Cognitive behavioural therapy -- 8.1.4 Privacy in health-monitoring systems -- 8.2 Methods -- 8.2.1 Real-time emotion detection -- 8.2.2 Use of cognitive behavioural therapy in real time -- 8.3 Experimental results -- 8.3.1 Emotion-detection accuracy -- 8.3.2 False positives and audio sample size -- 8.3.3 Voice types and unknown users -- 8.3.4 Error patterns -- 8.3.5 Employing cognitive behavioural therapy -- 8.3.6 Conclusion for deployment -- 8.4 Conclusion -- References -- Chapter 9 Differential diagnosis tool in healthcare application using respiratory sounds and convolutional neural network -- 9.1 Introduction -- 9.1.1 Literature review -- 9.2 Methodology -- 9.2.1 Dataset -- 9.2.2 Pre-processing -- 9.2.3 Classification using deep-learning algorithms -- 9.3 Results and discussion -- 9.4 Conclusions -- Authors' contributions -- Conflict of interest -- Acknowledgements -- Ethical approval -- References -- Chapter 10 Virtual reality and augmented reality based affective computing applications in healthcare, challenges, and its future direction -- 10.1 Introduction. 10.2 Generic applications of augmented reality/virtual reality -- 10.3 Design of affective augmented reality/virtual reality applications for the medical domain -- 10.4 Affective augmented reality/virtual reality applications in healthcare -- 10.4.1 Mental health disorders -- 10.4.2 Rehabilitation related to traumatic brain injuries -- 10.4.3 Rehabilitation and physiotherapy -- 10.5 Assessment of affective responses in augmented reality/virtual reality applications -- 10.6 Design challenges of affective applications using augmented reality/virtual reality technology in healthcare -- 10.7 Conclusion -- References. |
Record Nr. | UNINA-9910915777903321 |
Murugappan M
![]() |
||
Bristol : , : Institute of Physics Publishing, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Algorithmic Information Theory for Physicists and Natural Scientists |
Autore | Devine Sean D |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2020 |
Descrizione fisica | 1 online resource (238 pages) |
Collana | IOP Ebooks Series |
ISBN | 0-7503-4149-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910861039403321 |
Devine Sean D
![]() |
||
Bristol : , : Institute of Physics Publishing, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|