2: Advanced algorithms and operators / edited by Thomas Back, David B. Fogel and Zbigniew Michalewicz
| 2: Advanced algorithms and operators / edited by Thomas Back, David B. Fogel and Zbigniew Michalewicz |
| Pubbl/distr/stampa | Bristol ; Philadelphia, : Institute of Physics Publishing, 2000 |
| Descrizione fisica | XXXIV, 270 p. ; 24 cm. |
| Disciplina | 006.3 |
| ISBN | 0750306653 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISANNIO-UBO1264125 |
| Bristol ; Philadelphia, : Institute of Physics Publishing, 2000 | ||
| Lo trovi qui: Univ. del Sannio | ||
| ||
2D Materials for Energy Storage and Conversion
| 2D Materials for Energy Storage and Conversion |
| Autore | Pillai Suresh C |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2022 |
| Descrizione fisica | 1 online resource (341 pages) |
| Altri autori (Persone) |
GangulyPriyanka
JohnHoney ForouzandehParnia PeriyatPradeepan CunninghamGraeme SandhyaraniN ThomasReny Thankam JoseSujin P GhoshSrabanti |
| Collana | IOP Ebooks Series |
| Soggetto topico |
Nanostructured materials
Energy storage |
| ISBN |
9780750345842
0750345845 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Editors biography -- Suresh C Pillai -- Priyanka Ganguly -- List of contributors -- Chapter 1 2D nanomaterials and composites for energy storage and conversion -- 1.1 Introduction to the two-dimensional world of materials -- 1.2 Fundamentals of nanomaterials -- 1.3 The introduction of two-dimensional terminology for nanomaterials -- 1.4 Extraordinary behaviour of 2D nanomaterials -- 1.4.1 Absence of van der Waals interactions in 2D nanomaterials -- 1.4.2 Higher specific surface area -- 1.4.3 Electron confinement and direct bandgap in 2D nanomaterial -- 1.5 Various classes of two-dimensional materials -- 1.5.1 Graphene -- 1.5.2 Hexagonal boron nitride (h-BN) -- 1.5.3 Transition metal dichalcogenides (TMDs) -- 1.5.4 Layered double hydroxides (LDHs) -- 1.5.5 Black phosphorus (BP) -- 1.5.6 Metal-organic frameworks (MOFs) -- 1.5.7 Covalent organic frameworks (COFs) -- 1.5.8 MXene -- 1.6 Nanocomposite-based material -- 1.7 Synthesis methods for the preparation of nanoparticles -- 1.7.1 Top-down procedure -- 1.7.2 Bottom-up procedure -- 1.8 Characterisation of the 2D nanomaterials -- 1.9 Fantastic properties of 2D materials and their applications -- 1.10 Future perspectives -- References -- Chapter 2 2D nanomaterials and their heterostructures for hydrogen storage applications -- 2.1 Introduction -- 2.2 2D nanomaterials and their heterostructures as potential candidates for hydrogen storage -- 2.2.1 Graphene and graphitic monolayers -- 2.2.2 Metal hydrides -- 2.2.3 Zeolites -- 2.2.4 2D metal-organic frameworks (MOFs) -- 2.2.5 MXenes -- 2.2.6 Transition metal dichalcogenides -- 2.3 Current challenges and future perspectives of 2D material-based hydrogen economy -- 2.4 Conclusions -- References -- Chapter 3 Defect engineering in 2D materials and its application for storage and conversion -- 3.1 Introduction.
3.2 Defect engineering in energy storage application -- 3.2.1 Batteries -- 3.2.2 Electrochemical capacitors -- 3.3 Defect engineering in the energy conversion reaction -- 3.3.1 Hydrogen evolution reactions (HER) -- 3.3.2 Oxygen reduction reaction -- 3.3.3 Oxygen evolution reaction (OER) -- 3.4 Conclusion and outlook -- References -- Chapter 4 2D nanomaterials and their heterostructures as cathode and anode materials for lithium- and sodium-ion batteries -- 4.1 Introduction to rechargeable batteries -- 4.1.1 Brief history and operating principle of the current SOA LIB -- 4.1.2 Research focus for future rechargeable alkali-ion batteries -- 4.2 Two-dimensional nanomaterials as active materials for LIBs and NIBs -- 4.2.1 2D nanomaterials -- 4.2.2 Motivation for incorporation of 2D nanomaterials into future LIBs and NIBs -- 4.2.3 Higher capacity charge-storage reaction mechanisms in 2D active-materials -- 4.2.4 Intercalation reactions -- 4.2.5 Candidate 2D active-materials for future LIBs and NIBs -- 4.3 Hybrid 2D active-materials-nanocomposites and layered heterostructures -- 4.3.1 2D-2D nanocomposites -- 4.3.2 2D Van der Waals layered heterostructures as LIB and NIB active materials -- 4.4 The rate-performance of 2D active-materials for LIBs and NIBs -- 4.4.1 Quantifying the factors limiting rate-performance in battery electrodes -- 4.4.2 Relationship between τ and physical properties -- 4.4.3 Quantifying the trade-off between absolute capacity and rate-performance in battery electrodes -- 4.4.4 The rate-performance of 2D material based battery electrodes may not be as good as commonly believed -- References -- Chapter 5 Graphene analogues and their heterostructures for ultrafast lithium and sodium-ion battery -- 5.1 Introduction -- 5.2 Lithium ion battery -- 5.3 Carbonaceous nanomaterials -- 5.3.1 Graphene -- 5.4 Graphene analogues. 5.5 Graphene, graphene analogues and their heterostructures as electrode materials for LIBs -- 5.5.1 Graphene -- 5.5.2 Graphene analogues and heterostructures -- 5.5.3 Graphene heterostructures -- 5.5.4 Graphene quantum dots (GQD) -- 5.6 Sodium-ion battery -- 5.6.1 Graphene and its composites as anode materials for NIBs -- 5.6.2 Graphene analogues and their composites as anode materials for NIBs -- 5.7 Conclusions -- References -- Chapter 6 MXenes for improved electrochemical applications -- 6.1 Introduction -- 6.2 Properties of MXene related to energy storage applications -- 6.3 MXene based electrodes for capacitors -- 6.3.1 MXene-based electrode materials for supercapacitor -- 6.3.2 MXene-graphene composite electrode materials for supercapacitor -- 6.3.3 Other MXene based composite electrode materials for supercapacitor -- 6.3.4 MXene based electrode materials for microsupercapacitors -- 6.4 MXenes in batteries -- 6.5 MXenes for transparent conductive electrodes and transparent energy storage devices -- 6.6 MXene for energy conversion -- 6.6.1 MXenes for oxygen reduction reaction (ORR) -- 6.6.2 MXenes for hydrogen evolution reaction -- 6.6.3 MXenes for CO2 reduction -- 6.7 Conclusions and future perspectives -- References -- Chapter 7 MXenes for solid-state asymmetric supercapacitors -- 7.1 Introduction -- 7.2 Synthetic methods -- 7.2.1 Top-down approach -- 7.2.2 Bottom-up approach -- 7.3 Characterisation of MXenes -- 7.3.1 Microstructure and morphology -- 7.3.2 Surface chemistry -- 7.4 MXene supercapacitors -- 7.4.1 Symmetric supercapacitors -- 7.4.2 Asymmetric supercapacitors -- 7.5 Research trend and summary -- Acknowledgements -- References -- Chapter 8 Advances in 2D nanomaterials and their heterostructures for photocatalytic energy conversion -- 8.1 Introduction -- 8.2 Photocatalytic water splitting. 8.2.1 Inorganic metal 2D semiconductors and their heterostructures -- 8.2.2 Inorganic nonmetallic 2D semiconductors and their heterostructures -- 8.2.3 Organic 2D polymer or carbon-based semiconductors and their heterostructures -- 8.3 Perspectives and future advances -- 8.4 Conclusions -- References -- Chapter 9 Theoretical prediction of catalytic activity of 2D nanomaterials for energy applications -- 9.1 Introduction -- 9.2 Theoretical foundation -- Density functional theory -- GW approximation -- BSE approximation -- 9.3 Electronic structure properties -- 9.3.1 Band structure and band alignments -- 9.3.2 Optical absorption -- 9.3.3 Charge carrier effective masses -- 9.4 Thermodynamic stability -- 9.5 pH dependence -- 9.6 Aqueous stability -- 9.7 Conclusion -- References -- Chapter 10 Emerging trends in 2D-MoS2 as an electrode material for supercapacitive application -- 10.1 Background-energy crisis -- 10.2 Supercapacitors for powering the future -- 10.3 2D-MoS2 as an electrode material for supercapacitor -- 10.3.1 Crystal structure -- 10.3.2 Synthesis routes -- 10.3.3 Electrochemical properties of MoS2 -- 10.4 Hybrid electrode for supercapacitor -- 10.4.1 MoS2/carbonaceous networks -- 10.4.2 MoS2-metal based hybrid electrodes -- 10.4.3 MoS2-conducting polymers hybrid electrodes -- 10.4.4 Flexible and wearable MoS2 supercapacitors -- 10.5 Future perspectives -- References. |
| Record Nr. | UNINA-9910985661403321 |
Pillai Suresh C
|
||
| Bristol : , : Institute of Physics Publishing, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
A handbook of public speaking for scientists and engineers / Peter Kenny
| A handbook of public speaking for scientists and engineers / Peter Kenny |
| Autore | Kenny, Peter |
| Pubbl/distr/stampa | Bristol [etc.] : Institute of Physics Publishing, copyr. 1982 |
| Disciplina | 808.51 |
| Soggetto non controllato | oratoria - manuali |
| ISBN | 0-85274-553-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-990000154580203316 |
Kenny, Peter
|
||
| Bristol [etc.] : Institute of Physics Publishing, copyr. 1982 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
A random walk in science / an anthology compiled by R. L. Weber ; edited by E. Mendoza ; with foreword by William Cooper
| A random walk in science / an anthology compiled by R. L. Weber ; edited by E. Mendoza ; with foreword by William Cooper |
| Autore | Weber, Robert L. |
| Pubbl/distr/stampa | Bristol [etc.] : Institute of Physics Publishing, copyr. 1973 |
| Disciplina | 502.07 |
| Soggetto non controllato | scienze aneddoti |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-990000170710203316 |
Weber, Robert L.
|
||
| Bristol [etc.] : Institute of Physics Publishing, copyr. 1973 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
A unified grand tour of theoretical physics / Ian D. Lawrie
| A unified grand tour of theoretical physics / Ian D. Lawrie |
| Autore | Lawrie, Ian D. |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Bristol [etc.] : Institute of Physics Publishing, 2002 |
| Descrizione fisica | xvi, 564 p. : ill. ; 24 cm |
| Soggetto non controllato |
Fisica matematica
Fisica teorica |
| ISBN | 0-7503-0604-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-990001503440403321 |
Lawrie, Ian D.
|
||
| Bristol [etc.] : Institute of Physics Publishing, 2002 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Active materials and adaptive structures : proceedings : 4-8 November, 1991, Alexandria, Virginia / edited by Gareth J. Knowles
| Active materials and adaptive structures : proceedings : 4-8 November, 1991, Alexandria, Virginia / edited by Gareth J. Knowles |
| Pubbl/distr/stampa | Bristol : Institute of Physics Publishing, copyr. 1992 |
| Disciplina | 620.11 |
| Soggetto non controllato | tecnologia dei materiali congressi 1992 |
| ISBN | 0-7503-0191-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-990000137450203316 |
| Bristol : Institute of Physics Publishing, copyr. 1992 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Advanced Metamaterials for Engineers
| Advanced Metamaterials for Engineers |
| Autore | Wang Lulu |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2023 |
| Descrizione fisica | 1 online resource (358 pages) |
| Altri autori (Persone) | KaraaslanMuharrem |
| Collana | IOP Ebooks Series |
| Soggetto topico |
Metamaterials
Engineering |
| ISBN |
9780750357562
0750357568 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Editor biographies -- Lulu Wang -- Muharrem Karaaslan -- List of contributors -- Chapter Characterization of metamaterials -- 1.1 Classification of metamaterials -- 1.1.1 Double positive (DPS) materials -- 1.1.2 Epsilon negative (ENG) materials -- 1.1.3 Mu negative (MNG) materials -- 1.1.4 Double negative (DNG) materials -- 1.2 Types of MTM -- 1.2.1 Artificial dielectrics -- 1.2.2 Artificial magnetics -- 1.2.3 Chiral materials -- 1.2.4 Plasmonic materials -- 1.2.5 Omega shape materials -- 1.2.6 Tunable materials -- 1.3 Metamaterials' properties dependence -- 1.3.1 Frequency -- 1.3.2 Geometry and size -- 1.3.3 Temperature -- 1.3.4 Homogenity -- 1.4 Techniques of characterization of MTMs -- 1.4.1 Resonator methods -- 1.4.2 S-parameter -- 1.4.3 Waveguide method -- 1.4.4 Nicolson-Ross-Weir method -- 1.4.5 Free-space method -- 1.5 Results and discussion -- 1.6 Conclusions -- Bibliography -- Chapter Microwave metamaterial sensors -- 2.1 Introduction -- 2.2 Microfluidic sensors -- 2.3 THz metamaterial sensors -- 2.4 The metamaterial absorber based sensors -- 2.5 New approaches in metamaterial sensors by using machine learning or a three-dimensional (3D) metamaterial-based sensor -- 2.6 Future challenges and future works -- 2.7 Conclusion -- References -- Chapter Metamaterial absorbers in the microwave range -- 3.1 Introduction -- 3.2 Microwave region of the electromagnetic spectrum -- 3.3 Microwave absorption mechanism -- 3.4 Absorber design processes -- 3.5 Flexible metamaterial absorber designs -- 3.6 Discussions -- 3.7 Future works -- 3.8 Conclusions -- References -- Chapter Dual-band terahertz metamaterial absorber with high sensitivity for sensing applications -- 4.1 Introduction -- 4.2 The unit cell model's design -- 4.3 Results and analysis -- 4.4 Conclusions -- References -- Chapter Metamaterial energy harvesters.
5.1 Introduction -- 5.2 Piezoelectric-based acoustic and acoustoelastic wave energy harvesting -- 5.3 RF regime energy harvesting -- 5.4 Infrared and visible regime energy harvesting -- 5.5 Results and discussions -- 5.6 Conclusion -- References -- Chapter Frequency selective surfaces (FSSs) in metamaterials -- 6.1 Introduction -- 6.2 Operational principles of periodic structures -- 6.3 Explanation of the functional mechanism of frequency selective surfaces -- 6.4 Equivalent circuit of FSS -- 6.5 Applications of FSS -- 6.5.1 Spatial filter based on FSS -- 6.5.2 Integration of the FSS with antennas -- 6.5.3 MIMO system based on FSSs -- 6.5.4 Electromagnetic shielding based on FSS -- 6.5.5 Meta-skin -- 6.5.6 3D FSS structures -- 6.5.7 Reconfigurable FSS -- 6.5.8 FSS impacted textiles -- 6.6 Effective approaches for analyzing, optimizing, and fabricating frequency selective surfaces -- 6.7 Results and discussion -- 6.8 Conclusion -- Conflicts of interest -- References -- Chapter Metasurfaces -- 7.1 Introduction -- 7.2 About MSs -- 7.2.1 The generalized law of refraction -- 7.2.2 Huygens' MS -- 7.2.3 MSs based on the Pancharatnam-Berry phase -- 7.3 Applications of MSs -- 7.3.1 Polarization -- 7.3.2 MS-based polarization converters -- 7.3.3 MS-based polarization converter studies -- 7.4 Conclusion -- References -- Chapter Flexible metamaterials -- 8.1 Introduction -- 8.2 Flexible materials for MTMs -- 8.3 Electronics for flexible MTMs -- 8.4 Antennas for flexible MTMs -- 8.5 Energy harvesting for flexible MTMs -- 8.6 Flexible mechanical MTMs -- 8.7 Flexible THz MTMs -- 8.8 Discussion, challenges, and future perspectives -- 8.9 Conclusion -- References -- Chapter Acoustic metamaterials -- 9.1 Introduction -- 9.1.1 Negative refractive index of phononic crystals and acoustic lens property -- 9.1.2 Fractal phononic crystals and their band structure. 9.2 Phononic crystal based tunable piezoelectric waveguide -- 9.3 Second harmonic generation in acoustic metamaterials -- 9.4 Acoustic subwavelength structures -- 9.4.1 FEM model of resonant arrays for numerical analysis -- 9.4.2 Transmission analysis -- 9.4.3 Complementary split rectangular resonator (CSRR) locally resonant sonic crystal -- 9.5 Acoustic Weyl point materials -- 9.5.1 Design of a phononic crystal with type-III Weyl points -- 9.6 Challenges and future works -- 9.7 Conclusion -- Author contributions -- Data availability statement -- Acknowledgments -- Conflicts of Interest -- References -- Chapter Data-driven modeling of microstrip reflectarray unit element design -- 10.1 Introduction -- 10.2 Methods -- 10.3 Modeling of the RA unit element -- 10.4 Sampling strategies for gathering data points -- 10.5 Artificial intelligence based surrogate modeling -- 10.5.1 Artificial neural networks -- 10.5.2 Support vector regression machine -- 10.5.3 Ensemble learning -- 10.5.4 Gaussian process regression -- 10.5.5 Deep neural network -- 10.5.6 Hyperparameter optimization -- 10.5.7 Benchmarking -- 10.6 Results and discussion -- 10.7 Challenges and future works -- References -- Chapter Metamaterials for sensing and biomedical applications -- 11.1 Introduction -- 11.2 Theory and analytical treatment of a prism-coupled waveguide sensor -- 11.2.1 Results and discussion of PCWS -- 11.3 Hyperbolic metamaterial-based sensor for detection of cancer cells -- 11.3.1 Results and discussion -- 11.4 Nanoscale sensor for temperature sensing -- 11.4.1 Theory and design of a temperature sensor -- 11.5 Conclusion and future work -- Author contributions -- Data availability statement -- Acknowledgments -- Conflicts of interest -- References -- Chapter Metamaterial signal absorbers and applications -- 12.1 Introduction -- 12.2 Absorption mechanism. 12.3 Multiple reflection -- 12.4 Absorber applications -- 12.5 Absorber designs for energy harvesting -- 12.6 Absorber for solar energy -- 12.7 Absorber for sensor applications -- 12.8 Tunable metamaterial absorber -- 12.9 Conclusion -- References. |
| Record Nr. | UNINA-9910915777503321 |
Wang Lulu
|
||
| Bristol : , : Institute of Physics Publishing, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced Nuclear Radiation Detectors : Materials, Processing, Properties and Applications
| Advanced Nuclear Radiation Detectors : Materials, Processing, Properties and Applications |
| Autore | Batra Ashok K |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2021 |
| Descrizione fisica | 1 online resource (80 pages) |
| Collana | IOP Series in Emerging Technologies in Optics and Photonics Series |
| Soggetto topico |
Gamma ray detectors
Scintillators |
| ISBN |
9780750343756
0750343753 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | PRELIMS.pdf -- Preface -- Foreword -- Acknowledgments -- Author biography -- Ashok Batra -- CH001.pdf -- Chapter 1 Interaction of gammas with matter -- 1.1 Introduction -- 1.2 Gamma-ray -- 1.2.1 Gamma-ray interactions with matter -- 1.2.2 Types of basic gamma-ray scintillators -- 1.3 Principles of operation of gamma-ray detectors -- 1.3.1 Scintillation detectors -- 1.3.2 Semiconductor detectors -- 1.4 Material requirements for scintillators -- 1.5 Detailed scintillation mechanism -- 1.5.1 Scintillation mechanism in an inorganic scintillator -- 1.5.2 Prefered properties of scintillators -- References -- CH002.pdf -- Chapter 2 Performance of gamma radiation detectors materials -- 2.1 The performance parameters [1] -- 2.1.1 Energy resolution -- 2.1.2 Rate and timing -- 2.1.3 Spatial resolution -- 2.1.4 Efficiency of detection -- 2.1.5 Geometric efficiency -- 2.1.6 Detection of neutron -- 2.1.7 Operational factors |
| Record Nr. | UNINA-9911009384503321 |
Batra Ashok K
|
||
| Bristol : , : Institute of Physics Publishing, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced Security Solutions for Multimedia
| Advanced Security Solutions for Multimedia |
| Autore | Ansari Irshad Ahmad |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2021 |
| Descrizione fisica | 1 online resource (276 pages) |
| Altri autori (Persone) |
BajajVarun
SinhalRishi SharmaTarun Kumar NajafiEsmaeil ShahManan GohilJay PatelJay WuHanzhou AbazarMahdie |
| Collana | IOP Ebooks Series |
| Soggetto topico |
Data encryption (Computer science)
Digital watermarking |
| ISBN | 0-7503-4572-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Editor biographies -- Irshad Ahmad Ansari -- Varun Bajaj -- Contributor biographies -- Mahdie Abazar -- Parmeshwar Birajadar -- Seyed Mostafa FakhrAhmad -- Vikram M Gadre -- Ali Ghorbani -- Jay Gohil -- Abdelhamid Helali -- Sunil Kumar Jauhar -- Ameya Kshirsagar -- S Kuppa -- Hassen Maaref -- V M Manikandan -- Suja Cherukullapurath Mana -- Peyman Masjedi -- Ridha Mghaieth -- Amina Msolli -- Esmaeil Najafi -- Akash S Palde -- Jay Patel -- D S Raghukumar -- Vishal Rajput -- Antti Rissanen -- Marjo Rissanen -- T Saipraba -- Sagar G Sangodkar -- Manan Shah -- Tarun Kumar Sharma -- Rishi Sinhal -- M Suresha -- Niranjan Suthar -- Mohammad Taheri -- Hanzhou Wu -- Chapter 1 Blind image watermarking with efficient dual restoration feature -- 1.1 Introduction -- 1.2 Literature review -- 1.3 Proposed fragile watermarking scheme -- 1.3.1 Watermark pre-processing -- 1.3.2 Watermark embedding -- 1.3.3 Watermark extraction -- 1.3.4 Self-recovery process -- 1.4 Experimental results and discussion -- 1.4.1 Tamper detection anaylsis -- 1.4.2 Self-recovery of the tampered portion -- 1.5 Conclusion -- Acknowledgements -- References -- Chapter 2 Secure, robust and imperceptible image watermarking scheme based on sharp frequency localized contourlet transform -- 2.1 Introduction -- 2.2 The properties of SFLCT -- 2.3 The proposed SFLCT watermarking scheme -- 2.3.1 Computing strength factors -- 2.4 Implementations and results of the proposed SFLCT scheme -- 2.4.1 Robustness of the proposed SFLCT scheme -- 2.4.2 The security examination of the proposed scheme -- 2.5 Comparative analysis of the proposed scheme -- 2.6 Conclusion -- References -- Chapter 3 Content watermarking and data hiding in multimedia security -- 3.1 Introduction -- 3.2 Content watermarking in multimedia security -- 3.2.1 Introduction.
3.2.2 Content watermarking technique reviews -- 3.2.3 Table pertaining to research work on content watermarking in multimedia security -- 3.2.4 Inference -- 3.3 Data hiding in multimedia security -- 3.3.1 Background -- 3.3.2 Data hiding technique reviews -- 3.3.3 Table pertaining to research work on data hiding in multimedia security -- 3.3.4 Inference -- 3.4 Conclusion -- Acknowledgments -- References -- Chapter 4 Recent advances in reversible watermarking in an encrypted domain -- 4.1 Introduction -- 4.2 Preliminaries -- 4.2.1 Cover source and formats -- 4.2.2 Encryption methods -- 4.2.3 Evaluation metrics -- 4.2.4 Auxiliary data -- 4.3 State-of-the-art methods -- 4.3.1 General framework -- 4.3.2 Reserving room after encryption -- 4.3.3 Reserving room before encryption -- 4.3.4 Challenges and opportunities -- 4.4 Conclusion -- Acknowledgements -- References -- Chapter 5 An analysis of deep steganography and steganalysis -- 5.1 Introduction -- 5.2 Deep learning -- 5.2.1 Steganalysis -- 5.2.2 Steganography -- 5.3 Conclusion -- References -- Chapter 6 Recent trends in reversible data hiding techniques -- 6.1 Introduction -- 6.2 Types of RDH schemes -- 6.2.1 RDH in natural images -- 6.2.2 RDH in encrypted images -- 6.2.3 RDH through encryption (RDHTE) -- 6.3 Analysis of RDH schemes -- 6.4 Image dataset for experimental study -- 6.5 Future scope of the research in RDH -- 6.6 Conclusion -- References -- Chapter 7 Anatomized study of security solutions for multimedia: deep learning-enabled authentication, cryptography and information hiding -- 7.1 Introduction -- 7.2 Hurdles in conventional approaches for security -- 7.2.1 Vulnerability due to expansion -- 7.2.2 Authentication and computational latency -- 7.2.3 Discrepancy in authentication -- 7.3 Vulnerability to multimedia content -- 7.3.1 Data disclosure -- 7.3.2 Content manipulation. 7.3.3 Link sharing -- 7.3.4 Steganography -- 7.3.5 Common workspace -- 7.4 Analysis of security solutions for multimedia content -- 7.4.1 Cryptography -- 7.4.2 Data hiding -- 7.4.3 Deep learning enabled authentication -- 7.5 Future scope -- 7.6 Conclusion -- Acknowledgements -- References -- Chapter 8 New lightweight image encryption algorithm for the Internet of Things and wireless multimedia sensor networks -- 8.1 Introduction -- 8.2 Cryptographic primitives -- 8.2.1 Cryptanalysis -- 8.2.2 Cryptography system -- 8.3 Proposed lightweight algorithm -- 8.4 Safety assessment -- 8.4.1 Statistical analysis -- 8.4.2 Sensitivity test: robustness against differential attacks -- 8.4.3 Calculations speed analysis -- 8.5 Conclusion -- References -- Chapter 9 Applying the capabilities of machine learning for multimedia security: an analysis -- 9.1 Introduction -- 9.2 Overview of machine learning -- 9.2.1 Classification -- 9.2.2 Regression -- 9.2.3 Deep learning -- 9.3 Machine learning algorithms for multimedia security -- 9.4 Advantages of using ML based security mechanism for multimedia -- 9.5 Conclusion -- References -- Chapter 10 Assistive communication technology options for elderly care -- 10.1 Introduction -- 10.2 Cameras for patient monitoring in hospitals -- 10.2.1 Cameras for patient supervising in elderly care -- 10.2.2 Extending camera monitoring from the hospital to the home -- 10.2.3 Home-access video service as experienced by family members -- 10.2.4 Home-access video service as experienced by staff -- 10.2.5 New contexts and possibilities for camera surveillance in elderly care -- 10.3 Home-access monitoring and security -- 10.4 Benefits of the service -- 10.4.1 Benefit for the hospital patient -- 10.4.2 Benefit to the patient's relatives -- 10.4.3 Benefit to the organization -- 10.5 Requirements for the service model. 10.5.1 When is a home-access camera a facet of quality? -- 10.5.2 Conditions for practice -- 10.6 Security issues in networked health infrastructure -- 10.6.1 Information security at the strategic level -- 10.6.2 Different layers of security -- 10.6.3 Key elements of safe IT infrastructure in healthcare in the future -- 10.7 Deploying novel surveillance services in healthcare -- 10.7.1 Underlining the basics -- 10.7.2 Design cycles and relevant frames for design -- 10.7.3 Shared leadership -- 10.7.4 Challenges of innovation adaptation -- 10.7.5 New service models and translational design challenges -- 10.8 Conclusion -- References -- Chapter 11 Deep learning approach for scenario-based abnormality detection -- 11.1 Introduction -- 11.2 Literature study -- 11.3 Scenario understanding -- 11.3.1 Key frame extraction using instance segmentation -- 11.3.2 State full artifacts modelling -- 11.3.3 Action recognition and attention of key action -- 11.3.4 A hybrid model for spatio-temporal features -- 11.3.5 Classification and captioning -- 11.4 Abnormality detection -- 11.4.1 Natural abnormality translation -- 11.5 Datasets -- 11.6 Challenges -- 11.7 Trends and strengths -- 11.8 Conclusion -- References -- Chapter 12 Ear recognition for multimedia security -- 12.1 Introduction -- 12.1.1 Components of a biometric system -- 12.1.2 Modes of operation -- 12.1.3 Performance evaluation metrics -- 12.2 Ear recognition -- 12.3 Ear detection -- 12.4 Ear feature extraction -- 12.4.1 Multiresolution technique for feature extraction -- 12.4.2 Deep learning technique for feature extraction -- 12.4.3 Identification and verification experiments -- 12.5 Conclusion -- Acknowledgements -- References -- Chapter 13 Secure multimedia management: currents trends and future avenues -- 13.1 Introduction -- 13.2 Data collection and screening -- 13.3 Results. 13.3.1 General performance of selected publications -- 13.3.2 Performance of countries, institutions, and authors -- 13.3.3 Performance of journals, citations, and keywords -- 13.3.4 Factorial analysis -- 13.3.5 Co-citation network -- 13.3.6 Collaboration worldwide -- 13.4 Conclusion -- References. |
| Record Nr. | UNINA-9910915783003321 |
Ansari Irshad Ahmad
|
||
| Bristol : , : Institute of Physics Publishing, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in Modern Sensors : Physics, Design, Simulation and Applications
| Advances in Modern Sensors : Physics, Design, Simulation and Applications |
| Autore | Sinha G. R |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2020 |
| Descrizione fisica | 1 online resource (367 pages) |
| Altri autori (Persone) |
PatelBhagwati Charan
GoelNaveen ThakurKavita VyasPrafulla DeshmukhKusumanjali MehtaNeeraj LiJin LiuZilong NHema |
| Collana | IOP Series in Sensors and Sensor Systems Series |
| Soggetto topico |
Intelligent sensors
Wearable technology |
| ISBN |
9780750341141
0750341149 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Editor biography -- G R Sinha -- List of contributors -- Chapter 1 Introduction to sensors -- 1.1 Introduction -- 1.2 Sensor characteristics -- 1.2.1 Transfer function -- 1.2.2 Full-scale input (FSI) -- 1.2.3 Full-scale output (FSO) -- 1.2.4 Accuracy -- 1.2.5 Calibration -- 1.2.6 Hysteresis -- 1.2.7 Non-linearity -- 1.2.8 Resolution -- 1.2.9 Saturation -- 1.2.10 Repeatability -- 1.2.11 Dead band -- 1.2.12 Reliability -- 1.2.13 Output characteristics -- 1.2.14 Impedance -- 1.2.15 Excitation -- 1.2.16 Dynamic characteristics -- 1.2.17 Precision -- 1.2.18 Environmental factors -- 1.2.19 Uncertainty -- 1.2.20 Application characteristics -- 1.3 Types of sensors -- 1.3.1 Temperature sensors -- 1.3.2 Position sensors -- 1.3.3 Light sensors -- 1.3.4 Sound sensor -- 1.3.5 Proximity sensor -- 1.3.6 Accelerometer -- 1.3.7 Infrared sensor -- 1.3.8 Pressure sensor -- 1.3.9 Ultrasonic sensors -- 1.3.10 Touch sensor -- 1.3.11 Humidity sensor -- 1.3.12 Colour sensor -- 1.3.13 Chemical sensor -- 1.3.14 Seismic sensor -- 1.3.15 Magnetic sensor -- 1.4 Comparison of different sensors -- 1.5 Modern sensors -- 1.6 Conclusions -- References -- Chapter 2 Classification and characteristics of sensors -- 2.1 Introduction -- 2.2 Classification -- 2.3 Commonly used sensors and their features -- 2.4 Transfer function -- 2.5 Characteristics of sensors -- 2.6 Sensors should meet the following basic requirements -- 2.7 Factors for choosing sensors -- 2.8 Conclusion -- References -- Chapter 3 Optical sensors: overview, characteristics and applications -- 3.1 Introduction -- 3.2 Optical sensors: fundamentals -- 3.2.1 Modes of operation -- 3.2.2 Light sources for optical sensors -- 3.2.3 Advantages of optical sensors -- 3.3 Optical sensing devices (detectors) -- 3.3.1 Photoemissive cells (photoemitters).
3.3.2 Photoresistor or light dependent resistors -- 3.3.3 Photodiodes -- 3.3.4 Phototransistor -- 3.3.5 Infrared sensors -- 3.3.6 Fiber optic sensor -- References -- Chapter 4 Recent applications of chalcogenide glasses (ChGs) based sensors -- 4.1 ChGs based sensors: a brief introduction -- 4.2 Fabrication and molding of ChGs in the form of different devices for sensing applications -- 4.2.1 Infrared optical fibers -- 4.2.2 Infrared optical lenses -- 4.2.3 Thin film membranes -- 4.3 Description of some principals behind the sensing applications -- 4.3.1 Attenuated total internal reflection -- 4.3.2 Fiber evanescent wave spectroscopy -- 4.3.3 Thermal imaging -- 4.4 Some exclusive examples of sensing applications of ChGs based sensors -- 4.4.1 Application in bio-sensing and food security -- 4.4.2 Early cancer diagnostics -- 4.4.3 Monitoring of pollutants in groundwater -- 4.4.4 Night vision systems for surveillance assignments -- 4.4.5 Monitoring of global warming -- 4.4.6 Other significant applications -- 4.5 Conclusions -- References -- Chapter 5 Advanced dynamic and static calibration methods for optical imaging sensors -- 5.1 Introduction -- 5.2 Principle of camera calibrations -- 5.2.1 Position determination principle using optical cameras -- 5.2.2 Camera calibration principle -- 5.2.3 Camera calibration model -- 5.2.4 Distortion model in camera calibration -- 5.3 Dynamic calibration approaches -- 5.3.1 The principle of the dynamic camera calibration -- 5.3.2 Calibration model used for the dynamic calibration -- 5.3.3 Dynamic calibration with multi-aperture MEMS light lead-in devices -- 5.4 Static calibration principle with mSOL -- 5.4.1 Static calibration general principle -- 5.4.2 Static calibration principle with DOEs -- 5.4.3 Calibration configurations with mSOL -- 5.4.4 Calibration theory. 5.4.5 The position extraction approach of the predefined target images -- 5.4.6 Applied examples -- 5.5 Discussion and future development directions -- 5.6 Conclusion -- References -- Chapter 6 Smart and wearable sensors used in numerous modern applications and their significance -- 6.1 Introduction -- 6.2 Smart sensors properties -- 6.2.1 Self-calibration -- 6.2.2 Reliability or self-health assessment -- 6.2.3 Self-healing -- 6.2.4 Compensated measurements -- 6.2.5 Self-adaptability: exchange accuracy for speed and vice versa -- 6.3 Smart sensors types -- 6.4 Smart sensor applications -- 6.4.1 Smart cities -- 6.4.2 Smart environment -- 6.4.3 Smart factories -- 6.5 Case study: smart home surveillance system using a smart camera -- 6.6 Wearable sensors -- 6.7 Applications of wearable sensors -- 6.7.1 Programmable bio-electric ASIC sensors -- 6.7.2 Diabetes wearable medical device -- 6.7.3 Cancer detecting wearable device -- 6.7.4 Wearable sweat-sensor -- 6.7.5 Wearable peritoneal dialysis device -- 6.7.6 Predicting the progress of Alzheimer's and dementia diseases -- 6.7.7 Monitoring Parkinson's disease -- 6.7.8 Vision-related biosensors -- 6.8 Conclusion -- References -- Chapter 7 Smart stick for the visually impaired -- 7.1 Introduction -- 7.2 Smart blind stick -- 7.3 Hardware description -- 7.3.1 Arduino UNO -- 7.3.2 Ultrasonic sensor -- 7.3.3 Water sensor -- 7.3.4 GPS module -- 7.3.5 LDR-light dependent resistor -- 7.3.6 Alarm unit -- 7.4 Results -- 7.4.1 Ultrasonic sensor -- 7.4.2 Detection of water by water sensor -- 7.4.3 Detection of light by using LDR -- 7.4.4 Location of the stick -- 7.5 Conclusion -- References -- Chapter 8 Smart and wearable sensors -- 8.1 Introduction -- 8.2 Features of smart sensors -- 8.3 Evaluation of smart sensors -- 8.3.1 Third-generation -- 8.3.2 Fourth-generation -- 8.3.3 Fifth-generation. 8.4 Design of a smart sensor -- 8.4.1 Data acquisition -- 8.4.2 Data transfer -- 8.4.3 Data processing -- 8.5 Consequences -- 8.5.1 Advantages of smart sensor -- 8.5.2 Disadvantages -- 8.6 General applications -- 8.7 Wearable sensors -- 8.7.1 Need for wearable sensors -- 8.7.2 Smart sensor as a wearable sensor -- 8.8 Wearable sensor devices -- 8.8.1 Wristwatches architecture and performance -- 8.8.2 Electronic T-Shirt architecture and working principle -- 8.8.3 BP monitoring using PPG -- 8.9 Conclusion -- References -- Chapter 9 Cognitive and biosensors: an overview -- 9.1 Introduction and background -- 9.2 Cognitive sensors -- 9.2.1 Research challenges -- 9.2.2 Application of cognitive sensors -- 9.2.3 Cognitive sensors and machine learning -- 9.2.4 Cognitive sensors and security threats -- 9.3 Biosensors -- 9.3.1 Research challenges -- 9.3.2 Application of biosensors -- 9.4 Conclusion -- Acknowledgment -- References -- Chapter 10 Sensor technologies combined with AI helping in smart transport systems as driverless cars -- 10.1 History of driverless cars using smart sensors -- 10.2 Automation levels -- 10.3 Sensors and other technologies used by manufacturing companies -- 10.4 Design components -- 10.5 Sensor technology -- 10.5.1 GPS -- 10.5.2 LiDAR -- 10.5.3 Cameras -- 10.5.4 Radar sensors -- 10.5.5 Ultrasonic sensors -- 10.6 Challenges and future research -- 10.7 Conclusions -- References -- Chapter 11 Recent advancements in smart and wearable sensors -- 11.1 Introduction -- 11.1.1 Basics of SWSs -- 11.1.2 Working principle of a smart sensor -- 11.2 Types of wearable sensors -- 11.2.1 Optical sensors -- 11.2.2 Physical sensors -- 11.2.3 Chemical sensors -- 11.2.4 Multiplexed sensors -- 11.2.5 Wireless sensors -- 11.3 Challenges in wearable chemical sensors and possible solutions -- 11.3.1 Materials-based challenges with possible solution. 11.3.2 Operational challenges and possible solutions -- 11.4 Conclusion and future direction -- References -- Chapter 12 Design and implementation of a wearable gaze tracking device with near-infrared and visible-light image sensors -- 12.1 Introduction -- 12.2 Proposed wearable gaze tracking design -- 12.2.1 Near-infrared image sensor based wearable eye tracker design [13, 14] -- 12.2.2 Visible-light image sensor based wearable eye tracker design [17-19] -- 12.2.3 Calibration and gaze tracking function for wearable eye tracking device -- 12.3 Experimental results and comparisons -- 12.4 Conclusion and future works -- Acknowledgments -- References -- Chapter 13 Vibration powered wireless sensor networks-harvesting energy from good vibrations -- 13.1 Introduction -- 13.2 literature survey -- 13.2.1 Piezoelectric sensors -- 13.2.2 Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation -- 13.2.3 Feasibility of structural monitoring with vibration powered sensors -- 13.2.4 Vibration powered wireless sensor networks -- 13.3 Existing methodology -- 13.3.1 Proposed methodology -- 13.3.2 Comparison of proposed methodology with existing methodology -- 13.3.3 Advantages -- 13.3.4 Disadvantages -- 13.4 Conclusion -- References -- Chapter 14 Comprehensive review on brain-computer interface sensor-based smart home appliances control system -- 14.1 Introduction -- 14.1.1 Motivation and requirement -- 14.2 Background -- 14.2.1 Electroencephalography (EEG) -- 14.2.2 Brain waves -- 14.2.3 EEG artifacts -- 14.2.4 Control signal of BCI -- 14.3 Step involved in BCI-based controlling home appliances system -- 14.3.1 Data acquisition framework -- 14.3.2 Preprocessing and feature extraction -- 14.3.3 Classification results -- 14.4 Controlling methods based on single and multiple appliances -- 14.4.1 Single appliance control. 14.4.2 Multiple appliance control. |
| Record Nr. | UNINA-9911009381703321 |
Sinha G. R
|
||
| Bristol : , : Institute of Physics Publishing, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||