top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Engineer your own success : 7 key elements to creating an extraordinary engineering career / / Anthony Fasano, PE
Engineer your own success : 7 key elements to creating an extraordinary engineering career / / Anthony Fasano, PE
Autore Fasano Anthony
Edizione [[Updated and expanded]]
Pubbl/distr/stampa Piscataway, NJ : , : IEEE Press/Wiley, , [2015]
Descrizione fisica 1 online resource (231 p.)
Disciplina 620.0023
Collana IEEE PCS professional engineering communication series
Soggetto topico Engineering - Vocational guidance
ISBN 1-118-88657-7
1-118-88651-8
1-118-98379-3
Classificazione TEC009000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto A Note From The Series Editor xiii -- Acknowledgments xv -- Foreword xvii -- Preface xix -- Introduction: Use This Book Strategically 1 -- PART I YOUR GUIDE TO ENGINEERING A SUCCESSFUL JOB SEARCH 3 -- 1 Building a Winning Résumé 5 -- 1.1 Building a Winning Résumé (Online and Offline) 5 -- 1.2 There Is One Key Factor to a Great Résumé 6 -- 1.3 The Importance of Customizing Your Résumé 6 -- 1.4 There Is a Formula to Building a Winning Résumé 7 -- 1.5 Determining the Proper Length of a Résumé 8 -- 1.6 Effectively Show Non-engineering Experience on Your Résumé 12 -- 1.7 The Importance of Honesty During the Interview Process 13 -- 1.8 Seven Steps to Creating a LinkedIn Profile That Can Land a Job 14 -- 1.9 Your LinkedIn Profile and Your Résumé Should Be Perfect Professional Snapshots 16 -- 1.10 Key Points to Remember 18 -- 2 Landing and Acing an Engineering Job Interview 19 -- 2.1 Leverage LinkedIn Groups to Land a Job Interview 19 -- 2.2 Understanding Prospective Employers and Their Needs 20 -- 2.3 Interview Research and Preparation 22 -- 2.4 Interview Etiquette and Attire 23 -- 2.5 Performing During the Actual Interview 24 -- 2.6 The Follow-Up to the Interview 25 -- 2.7 Jobs Can Affect Your PE License 26 -- 2.8 Key Points to Remember 26 -- Part II THE 7 KEY ELEMENTS TO AN EXTRAORDINARY ENGINEERING CAREER 29 -- 3 Career Goals Act as Your Destination 31 -- 3.1 Career Goals Act as Your Destination 31 -- 3.2 Start by Defining “Success” 32 -- 3.3 Define Your Values 33 -- 3.4 Ask Yourself Where Why What How and Who 34 -- 3.5 More on Why 35 -- 3.6 Think Big and Then Think BIGGER! 36 -- 3.7 Formulate and Prioritize Your Goals 37 -- 3.8 Be SMART and Use Small Steps for Big Results 37 -- 3.9 Let Your Definition of Success Guide You 40 -- 3.10 Motivate Yourself to Pursue Your Goals 41 -- 3.11 Time to Celebrate! 42 -- 3.12 Key Points to Remember 42 -- 4 Obtain Credentials That Will Help You to Reach Your Goals 45 -- 4.1 Credentials Bring You Credibility 45 -- 4.2 Set Yourself Apart from Others 46.
4.3 Recognizing the Difference between Patience and Procrastination 47 -- 4.4 Exam Preparation: Start With the End in Mind 48 -- 4.5 Tips for Approaching the PE Exam 49 -- 4.5.1 Take the Fundamentals of Engineering Exam as Soon as Possible 49 -- 4.5.2 Start the PE Exam Application Process as Early as Possible 50 -- 4.5.3 Submit the Application as Soon as Possible 51 -- 4.5.4 Don't Take the Exam Just to See What It Contains 51 -- 4.5.5 Take a Review Course Whether You Want to or Not 52 -- 4.5.6 Ask Others What Worked for Them 52 -- 4.5.7 Bring the Right Materials to the Exam 53 -- 4.5.8 The Day of the Exam 54 -- 4.5.9 The Day After the Exam 55 -- 4.5.10 Credentialing Processes around the World 55 -- 4.6 If You Fall Off the Horse Get Right Back On 55 -- 4.7 Master's in Engineering or Business Administration? 56 -- 4.8 Awards Are Underrated 58 -- 4.9 Take Advantage of Company Benefits 58 -- 4.10 Key Points to Remember 59 -- 5 Find and Become a Mentor 61 -- 5.1 The Many Faces of a Mentor 61 -- 5.2 Finding a Mentoring Program and Selecting the Right Mentor 62 -- 5.2.1 Try to Select Someone from Your Specific Discipline 63 -- 5.2.2 Consider Your Level of Comfort 64 -- 5.2.3 Don't Settle on the First One That Comes Along 64 -- 5.3 The Mentoring Relationship for Protégés 64 -- 5.3.1 Establish Levels of Confidentiality 65 -- 5.3.2 Set Expectations for Mutual Accountability 65 -- 5.4 The Importance of Accountability 66 -- 5.5 Getting the Most from Your Mentor 67 -- 5.6 Become a Mentor 67 -- 5.7 Selecting the Right Protégé 68 -- 5.8 Being the Best Mentor You Can Be 69 -- 5.9 How to Graciously End a Mentoring Relationship 70 -- 5.10 Actions to Avoid for Mentors and Protégés 71 -- 5.11 Key Points to Remember 71 -- 6 Become a Great Communicator 73 -- 6.1 In Today's World Communication Is a Whole Different Ball Game 73 -- 6.2 Project/Team Communication Starts In House 74 -- 6.3 Communicate Early and Often 75 -- 6.4 How to (Almost) Explain Rocket Science to a Nontechnical Person 76.
6.5 Honesty Really Is the Best Policy 77 -- 6.6 How You Say Something Is Just as Important as What You Say 79 -- 6.7 Public Speaking: The Ultimate Differentiator 80 -- 6.8 How to Improve Your Public Speaking Skills 82 -- 6.9 Confidence Encourages Communication 84 -- 6.10 Sometimes Listening Is the Most Powerful Form of Communication 85 -- 6.11 Responsiveness Impacts Reputation 86 -- 6.12 Key Points to Remember 87 -- 7 The Ability to Network 89 -- 7.1 What Is Networking and Why Is It Important? 89 -- 7.2 Secrets to Building Lasting Relationships 90 -- 7.2.1 Their Interests Should Interest You 91 -- 7.2.2 Listen to Others 91 -- 7.2.3 Relationship Value Is a Two-Way Street 92 -- 7.3 Network in Your Industry through Professional Societies and Organizations 92 -- 7.4 Finding and Developing Project Leads Gets You Noticed 94 -- 7.5 Opportunities Have No Limits 96 -- 7.6 You Are Never Too Young (or Old!) to Network 97 -- 7.7 Overcoming Low Confidence and Language Barriers 98 -- 7.8 How to Deal with a Boss or Supervisor Who Is Holding You Back 99 -- 7.9 Interoffice Politics and Workplace Relationships 101 -- 7.10 Monitoring and Controlling Your Professional Image in Social Networking 102 -- 7.10.1 Controlling Your Facebook Twitter and Google+ Messaging 102 -- 7.10.2 Maximizing LinkedIn 103 -- 7.11 Key Points to Remember 104 -- 8 Stay Focused Organized Productive and Stress-Free 107 -- 8.1 The Three Rules to Time Management and Work-Family Balance 107 -- 8.2 Rule #1: Be Organized in All of Your Efforts 108 -- 8.2.1 Deploy a Minimalist Mind-Set 109 -- 8.2.2 Use the Old (and New) Trusty Notepad 110 -- 8.2.3 Manage the Never-Ending Pile of Business Cards 112 -- 8.2.4 Remember That Missed Appointments Equal Missed Opportunities 114 -- 8.2.4.1 Use Your Calendar Religiously 114 -- 8.2.4.2 Fill in All Pertinent Information 114 -- 8.2.4.3 Confirm All Meetings 115 -- 8.2.5 Avoid the “I Am Not Sure What Color My Desk Is” Syndrome 115 -- 8.2.6 Prepare for Your Annual Performance Review 116.
8.3 Rule #2: Stay Focused and Productive 118 -- 8.3.1 Create Consistency through Routines 118 -- 8.3.2 Establish Your Most Important Tasks Early Each Day 119 -- 8.3.3 Complete or Assign Your MITs First Thing Each Day 120 -- 8.3.4 Control Your Own Schedule by Breaking Bad E-Mail Habits 121 -- 8.3.5 Slow Things Down through Meditation 123 -- 8.3.6 Focus Intently on What You Are Doing 123 -- 8.4 Rule #3: Avoid Stress and Worry at All Costs 124 -- 8.4.1 Simplification through Elimination 125 -- 8.4.2 Empty Your E-Mail Inbox Twice per Day 125 -- 8.4.3 A Good To-Do List Can Work Wonders 126 -- 8.4.4 Keep Your Body (and Mind) in Shape 128 -- 8.4.5 Eat and Sleep Well 129 -- 8.5 Work-Family Balance Is Achievable 130 -- 8.5.1 Define Work-Family Balance 130 -- 8.5.2 Build Flexibility into Your Career 131 -- 8.5.3 Be Present in the Moment 132 -- 8.6 Key Points to Remember 133 -- 9 Be a Leader Every Day 135 -- 9.1 You Are a Leader 135 -- 9.2 The Power of Positivity 136 -- 9.3 Great Leaders See Only Opportunity 137 -- 9.4 Understanding Your Role 139 -- 9.5 Delegate Delegate and Then Delegate Some More 140 -- 9.6 Earn the Trust and Respect of Your Team 142 -- 9.7 There Is No “I” in Team 143 -- 9.8 Key Points to Remember 144 -- 10 The Time Is Now: Take Action 147 -- 10.1 The Time Is Now 147 -- 10.2 Do Not Settle for Less 148 -- 10.3 You Must Make Time for Your Own Development 148 -- 10.4 Think Like an Entrepreneur in Your Career 149 -- 10.5 Take Action 150 -- 10.6 Key Points to Remember 150 -- 11 Tools and Templates for Setting and Achieving Your Career Goals 153 -- 11.1 Template for a Winning Résumé 154 -- 11.2 Action Exercise Worksheet-Define Your Values 155 -- 11.3A Action Exercise Worksheet-Define Your End Results in One Year 155 -- 11.3B Action Exercise Worksheet-Define Your End Results in Two Years 156 -- 11.3C Action Exercise Worksheet-Define Your End Results in Five Years 157 -- 11.4 Action Exercise Worksheet-Formulate and Prioritize Goals 158 -- 11.5 Action Exercise Worksheet-SMART Process to Achieve Goal #1 158.
11.5 Action Exercise Worksheet-SMART Process to Achieve Goal #2 159 -- 11.5 Action Exercise Worksheet-SMART Process to Achieve Goal #3 160 -- 11.6 Action Exercise Worksheet 161 -- 11.7 Action Exercise Worksheet 162 -- 11.8 Action Exercise Worksheet 163 -- 12 Engineering Your Own Success Stories from Practicing Engineers 165 -- 12.1 Planning to Be an Extraordinary Engineer 165 -- 12.2 Realizing a Dream of Becoming a Structural Engineer 166 -- 12.3 A Big Step Forward for an Aspiring World-Class Engineer 167 -- 12.4 A Boost of Confidence to Spur Maximum Potential 168 -- 12.5 The Push Needed to Take Action 169 -- 12.6 I Decided to Start Planning for Me in My Career 170 -- 13 The Best of the Blog 171 -- 13.1 What Is Your Ultimate Career Goal? (September 10 2010) 171 -- 13.2 From Design Engineer to Manager in 2012: You Can Do It! (January 4 2012) 172 -- 13.3 Twelve Rules of Zen Monks That May Help You Reduce Stress and Improve Quality in Your Engineering Career (June 5 2012) 174 -- 13.4 It's My Birthday! Who I Am Away from Work and Important Lessons That I Have Learned (August 26 2012) 176 -- 13.5 What to Do in Your Engineering Career When You Don't Know What to Do (May 30 2013) 178 -- 13.6 Preparation Is Key to Engineering Balance in Your Career and Life (July 25 2013) 179 -- 13.7 Six Ways to Reinvigorate Your Engineering Career Development (July 31 2013) 181 -- 13.8 The Only Stability You Have in Your Engineering Career Is You (September 24 2013) 182 -- 13.9 Be Cautious Even When You Find One of the Highest-Paying Engineering Jobs (August 15 2013) 184 -- 13.10 If You Set Lofty Goals You Will Engineer Their Reality (October 22 2013) 185 -- 13.11 Seven Keys to Success for Engineers and Alaskan Sled Dogs (November 14 2013) 187 -- 13.12 Do All Engineers Need to Check Things Off to Feel Productive? (December 11 2013) 188 -- 13.13 How to Not Mess Up Your Annual Review for Engineers (December 24 2013) 189 -- 13.14 Three Steps to Becoming a Partner in an Engineering Firm Directly from an Engineering Partner (February 5 2014) 191.
Appendix: Recommended Reading 193 -- About the Author 199 -- Index 201.
Record Nr. UNINA-9910132330003321
Fasano Anthony  
Piscataway, NJ : , : IEEE Press/Wiley, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Engineer your own success : 7 key elements to creating an extraordinary engineering career / / Anthony Fasano, PE
Engineer your own success : 7 key elements to creating an extraordinary engineering career / / Anthony Fasano, PE
Autore Fasano Anthony
Edizione [[Updated and expanded]]
Pubbl/distr/stampa Piscataway, NJ : , : IEEE Press/Wiley, , [2015]
Descrizione fisica 1 online resource (231 p.)
Disciplina 620.0023
Collana IEEE PCS professional engineering communication series
Soggetto topico Engineering - Vocational guidance
ISBN 1-118-88657-7
1-118-88651-8
1-118-98379-3
Classificazione TEC009000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto A Note From The Series Editor xiii -- Acknowledgments xv -- Foreword xvii -- Preface xix -- Introduction: Use This Book Strategically 1 -- PART I YOUR GUIDE TO ENGINEERING A SUCCESSFUL JOB SEARCH 3 -- 1 Building a Winning Résumé 5 -- 1.1 Building a Winning Résumé (Online and Offline) 5 -- 1.2 There Is One Key Factor to a Great Résumé 6 -- 1.3 The Importance of Customizing Your Résumé 6 -- 1.4 There Is a Formula to Building a Winning Résumé 7 -- 1.5 Determining the Proper Length of a Résumé 8 -- 1.6 Effectively Show Non-engineering Experience on Your Résumé 12 -- 1.7 The Importance of Honesty During the Interview Process 13 -- 1.8 Seven Steps to Creating a LinkedIn Profile That Can Land a Job 14 -- 1.9 Your LinkedIn Profile and Your Résumé Should Be Perfect Professional Snapshots 16 -- 1.10 Key Points to Remember 18 -- 2 Landing and Acing an Engineering Job Interview 19 -- 2.1 Leverage LinkedIn Groups to Land a Job Interview 19 -- 2.2 Understanding Prospective Employers and Their Needs 20 -- 2.3 Interview Research and Preparation 22 -- 2.4 Interview Etiquette and Attire 23 -- 2.5 Performing During the Actual Interview 24 -- 2.6 The Follow-Up to the Interview 25 -- 2.7 Jobs Can Affect Your PE License 26 -- 2.8 Key Points to Remember 26 -- Part II THE 7 KEY ELEMENTS TO AN EXTRAORDINARY ENGINEERING CAREER 29 -- 3 Career Goals Act as Your Destination 31 -- 3.1 Career Goals Act as Your Destination 31 -- 3.2 Start by Defining “Success” 32 -- 3.3 Define Your Values 33 -- 3.4 Ask Yourself Where Why What How and Who 34 -- 3.5 More on Why 35 -- 3.6 Think Big and Then Think BIGGER! 36 -- 3.7 Formulate and Prioritize Your Goals 37 -- 3.8 Be SMART and Use Small Steps for Big Results 37 -- 3.9 Let Your Definition of Success Guide You 40 -- 3.10 Motivate Yourself to Pursue Your Goals 41 -- 3.11 Time to Celebrate! 42 -- 3.12 Key Points to Remember 42 -- 4 Obtain Credentials That Will Help You to Reach Your Goals 45 -- 4.1 Credentials Bring You Credibility 45 -- 4.2 Set Yourself Apart from Others 46.
4.3 Recognizing the Difference between Patience and Procrastination 47 -- 4.4 Exam Preparation: Start With the End in Mind 48 -- 4.5 Tips for Approaching the PE Exam 49 -- 4.5.1 Take the Fundamentals of Engineering Exam as Soon as Possible 49 -- 4.5.2 Start the PE Exam Application Process as Early as Possible 50 -- 4.5.3 Submit the Application as Soon as Possible 51 -- 4.5.4 Don't Take the Exam Just to See What It Contains 51 -- 4.5.5 Take a Review Course Whether You Want to or Not 52 -- 4.5.6 Ask Others What Worked for Them 52 -- 4.5.7 Bring the Right Materials to the Exam 53 -- 4.5.8 The Day of the Exam 54 -- 4.5.9 The Day After the Exam 55 -- 4.5.10 Credentialing Processes around the World 55 -- 4.6 If You Fall Off the Horse Get Right Back On 55 -- 4.7 Master's in Engineering or Business Administration? 56 -- 4.8 Awards Are Underrated 58 -- 4.9 Take Advantage of Company Benefits 58 -- 4.10 Key Points to Remember 59 -- 5 Find and Become a Mentor 61 -- 5.1 The Many Faces of a Mentor 61 -- 5.2 Finding a Mentoring Program and Selecting the Right Mentor 62 -- 5.2.1 Try to Select Someone from Your Specific Discipline 63 -- 5.2.2 Consider Your Level of Comfort 64 -- 5.2.3 Don't Settle on the First One That Comes Along 64 -- 5.3 The Mentoring Relationship for Protégés 64 -- 5.3.1 Establish Levels of Confidentiality 65 -- 5.3.2 Set Expectations for Mutual Accountability 65 -- 5.4 The Importance of Accountability 66 -- 5.5 Getting the Most from Your Mentor 67 -- 5.6 Become a Mentor 67 -- 5.7 Selecting the Right Protégé 68 -- 5.8 Being the Best Mentor You Can Be 69 -- 5.9 How to Graciously End a Mentoring Relationship 70 -- 5.10 Actions to Avoid for Mentors and Protégés 71 -- 5.11 Key Points to Remember 71 -- 6 Become a Great Communicator 73 -- 6.1 In Today's World Communication Is a Whole Different Ball Game 73 -- 6.2 Project/Team Communication Starts In House 74 -- 6.3 Communicate Early and Often 75 -- 6.4 How to (Almost) Explain Rocket Science to a Nontechnical Person 76.
6.5 Honesty Really Is the Best Policy 77 -- 6.6 How You Say Something Is Just as Important as What You Say 79 -- 6.7 Public Speaking: The Ultimate Differentiator 80 -- 6.8 How to Improve Your Public Speaking Skills 82 -- 6.9 Confidence Encourages Communication 84 -- 6.10 Sometimes Listening Is the Most Powerful Form of Communication 85 -- 6.11 Responsiveness Impacts Reputation 86 -- 6.12 Key Points to Remember 87 -- 7 The Ability to Network 89 -- 7.1 What Is Networking and Why Is It Important? 89 -- 7.2 Secrets to Building Lasting Relationships 90 -- 7.2.1 Their Interests Should Interest You 91 -- 7.2.2 Listen to Others 91 -- 7.2.3 Relationship Value Is a Two-Way Street 92 -- 7.3 Network in Your Industry through Professional Societies and Organizations 92 -- 7.4 Finding and Developing Project Leads Gets You Noticed 94 -- 7.5 Opportunities Have No Limits 96 -- 7.6 You Are Never Too Young (or Old!) to Network 97 -- 7.7 Overcoming Low Confidence and Language Barriers 98 -- 7.8 How to Deal with a Boss or Supervisor Who Is Holding You Back 99 -- 7.9 Interoffice Politics and Workplace Relationships 101 -- 7.10 Monitoring and Controlling Your Professional Image in Social Networking 102 -- 7.10.1 Controlling Your Facebook Twitter and Google+ Messaging 102 -- 7.10.2 Maximizing LinkedIn 103 -- 7.11 Key Points to Remember 104 -- 8 Stay Focused Organized Productive and Stress-Free 107 -- 8.1 The Three Rules to Time Management and Work-Family Balance 107 -- 8.2 Rule #1: Be Organized in All of Your Efforts 108 -- 8.2.1 Deploy a Minimalist Mind-Set 109 -- 8.2.2 Use the Old (and New) Trusty Notepad 110 -- 8.2.3 Manage the Never-Ending Pile of Business Cards 112 -- 8.2.4 Remember That Missed Appointments Equal Missed Opportunities 114 -- 8.2.4.1 Use Your Calendar Religiously 114 -- 8.2.4.2 Fill in All Pertinent Information 114 -- 8.2.4.3 Confirm All Meetings 115 -- 8.2.5 Avoid the “I Am Not Sure What Color My Desk Is” Syndrome 115 -- 8.2.6 Prepare for Your Annual Performance Review 116.
8.3 Rule #2: Stay Focused and Productive 118 -- 8.3.1 Create Consistency through Routines 118 -- 8.3.2 Establish Your Most Important Tasks Early Each Day 119 -- 8.3.3 Complete or Assign Your MITs First Thing Each Day 120 -- 8.3.4 Control Your Own Schedule by Breaking Bad E-Mail Habits 121 -- 8.3.5 Slow Things Down through Meditation 123 -- 8.3.6 Focus Intently on What You Are Doing 123 -- 8.4 Rule #3: Avoid Stress and Worry at All Costs 124 -- 8.4.1 Simplification through Elimination 125 -- 8.4.2 Empty Your E-Mail Inbox Twice per Day 125 -- 8.4.3 A Good To-Do List Can Work Wonders 126 -- 8.4.4 Keep Your Body (and Mind) in Shape 128 -- 8.4.5 Eat and Sleep Well 129 -- 8.5 Work-Family Balance Is Achievable 130 -- 8.5.1 Define Work-Family Balance 130 -- 8.5.2 Build Flexibility into Your Career 131 -- 8.5.3 Be Present in the Moment 132 -- 8.6 Key Points to Remember 133 -- 9 Be a Leader Every Day 135 -- 9.1 You Are a Leader 135 -- 9.2 The Power of Positivity 136 -- 9.3 Great Leaders See Only Opportunity 137 -- 9.4 Understanding Your Role 139 -- 9.5 Delegate Delegate and Then Delegate Some More 140 -- 9.6 Earn the Trust and Respect of Your Team 142 -- 9.7 There Is No “I” in Team 143 -- 9.8 Key Points to Remember 144 -- 10 The Time Is Now: Take Action 147 -- 10.1 The Time Is Now 147 -- 10.2 Do Not Settle for Less 148 -- 10.3 You Must Make Time for Your Own Development 148 -- 10.4 Think Like an Entrepreneur in Your Career 149 -- 10.5 Take Action 150 -- 10.6 Key Points to Remember 150 -- 11 Tools and Templates for Setting and Achieving Your Career Goals 153 -- 11.1 Template for a Winning Résumé 154 -- 11.2 Action Exercise Worksheet-Define Your Values 155 -- 11.3A Action Exercise Worksheet-Define Your End Results in One Year 155 -- 11.3B Action Exercise Worksheet-Define Your End Results in Two Years 156 -- 11.3C Action Exercise Worksheet-Define Your End Results in Five Years 157 -- 11.4 Action Exercise Worksheet-Formulate and Prioritize Goals 158 -- 11.5 Action Exercise Worksheet-SMART Process to Achieve Goal #1 158.
11.5 Action Exercise Worksheet-SMART Process to Achieve Goal #2 159 -- 11.5 Action Exercise Worksheet-SMART Process to Achieve Goal #3 160 -- 11.6 Action Exercise Worksheet 161 -- 11.7 Action Exercise Worksheet 162 -- 11.8 Action Exercise Worksheet 163 -- 12 Engineering Your Own Success Stories from Practicing Engineers 165 -- 12.1 Planning to Be an Extraordinary Engineer 165 -- 12.2 Realizing a Dream of Becoming a Structural Engineer 166 -- 12.3 A Big Step Forward for an Aspiring World-Class Engineer 167 -- 12.4 A Boost of Confidence to Spur Maximum Potential 168 -- 12.5 The Push Needed to Take Action 169 -- 12.6 I Decided to Start Planning for Me in My Career 170 -- 13 The Best of the Blog 171 -- 13.1 What Is Your Ultimate Career Goal? (September 10 2010) 171 -- 13.2 From Design Engineer to Manager in 2012: You Can Do It! (January 4 2012) 172 -- 13.3 Twelve Rules of Zen Monks That May Help You Reduce Stress and Improve Quality in Your Engineering Career (June 5 2012) 174 -- 13.4 It's My Birthday! Who I Am Away from Work and Important Lessons That I Have Learned (August 26 2012) 176 -- 13.5 What to Do in Your Engineering Career When You Don't Know What to Do (May 30 2013) 178 -- 13.6 Preparation Is Key to Engineering Balance in Your Career and Life (July 25 2013) 179 -- 13.7 Six Ways to Reinvigorate Your Engineering Career Development (July 31 2013) 181 -- 13.8 The Only Stability You Have in Your Engineering Career Is You (September 24 2013) 182 -- 13.9 Be Cautious Even When You Find One of the Highest-Paying Engineering Jobs (August 15 2013) 184 -- 13.10 If You Set Lofty Goals You Will Engineer Their Reality (October 22 2013) 185 -- 13.11 Seven Keys to Success for Engineers and Alaskan Sled Dogs (November 14 2013) 187 -- 13.12 Do All Engineers Need to Check Things Off to Feel Productive? (December 11 2013) 188 -- 13.13 How to Not Mess Up Your Annual Review for Engineers (December 24 2013) 189 -- 13.14 Three Steps to Becoming a Partner in an Engineering Firm Directly from an Engineering Partner (February 5 2014) 191.
Appendix: Recommended Reading 193 -- About the Author 199 -- Index 201.
Record Nr. UNINA-9910830249303321
Fasano Anthony  
Piscataway, NJ : , : IEEE Press/Wiley, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of electric power engineering : engineering: from electromagnetics to power systems / / Massimo Ceraolo, Davide Poli
Fundamentals of electric power engineering : engineering: from electromagnetics to power systems / / Massimo Ceraolo, Davide Poli
Autore Ceraolo Massimo
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press/Wiley, , [2014]
Descrizione fisica 1 online resource (554 p.)
Disciplina 621.31
Altri autori (Persone) PoliDavide
Soggetto topico Electric power systems
ISBN 1-118-86875-7
1-118-92258-1
1-118-86869-2
Classificazione TEC008000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PREFACE xv -- ABOUT THE AUTHORS xix -- PART I PRELIMINARY MATERIAL 1 -- 1 Introduction 3 -- 1.1 The Scope of Electrical Engineering, 3 -- 1.2 This Book's Scope and Organization, 7 -- 1.3 International Standards and Their Usage in This Book, 8 -- 1.3.1 International Standardization Bodies, 8 -- 1.3.2 The International System of Units (SI), 9 -- 1.3.3 Graphic Symbols for Circuit Drawings, 11 -- 1.3.4 Names, Symbols, and Units, 13 -- 1.3.5 Other Conventions, 15 -- 1.4 Specific Conventions and Symbols in This Book, 15 -- 1.4.1 Boxes Around Text, 16 -- 1.4.2 Grayed Boxes, 16 -- 1.4.3 Terminology, 17 -- 1.4.4 Acronyms, 17 -- 1.4.5 Reference Designations, 18 -- 2 The Fundamental Laws of Electromagnetism 19 -- 2.1 Vector Fields, 20 -- 2.2 Definition of E and B; Lorentz's Force Law, 22 -- 2.3 Gauss's Law, 25 -- 2.4 Ampère's Law and Charge Conservation, 26 -- 2.4.1 Magnetic Field and Matter, 31 -- 2.5 Faraday's Law, 32 -- 2.6 Gauss's Law for Magnetism, 35 -- 2.7 Constitutive Equations of Matter, 36 -- 2.7.1 General Considerations, 36 -- 2.7.2 Continuous Charge Flow Across Conductors, 36 -- 2.8 Maxwell's Equations and Electromagnetic Waves, 38 -- 2.9 Historical Notes, 40 -- 2.9.1 Short Biography of Faraday, 40 -- 2.9.2 Short Biography of Gauss, 40 -- 2.9.3 Short Biography of Maxwell, 41 -- 2.9.4 Short Biography of Ampère, 41 -- 2.9.5 Short Biography of Lorentz, 41 -- PART II ELECTRIC CIRCUIT CONCEPT AND ANALYSIS 43 -- 3 Circuits as Modelling Tools 45 -- 3.1 Introduction, 46 -- 3.2 Definitions, 48 -- 3.3 Charge Conservation and Kirchhoff's Current Law, 50 -- 3.3.1 The Charge Conservation Law, 50 -- 3.3.2 Charge Conservation and Circuits, 51 -- 3.3.3 The Electric Current, 53 -- 3.3.4 Formulations of Kirchhoff's Current Law, 55 -- 3.4 Circuit Potentials and Kirchhoff's Voltage Law, 60 -- 3.4.1 The Electric Field Inside Conductors, 60 -- 3.4.2 Formulations of Kirchhoff's Voltage Law, 64 -- 3.5 Solution of a Circuit, 65 -- 3.5.1 Determining Linearly Independent Kirchhoff Equations (Loop-Cuts Method), 66.
3.5.2 Constitutive Equations, 68 -- 3.5.3 Number of Variables and Equations, 70 -- 3.6 The Substitution Principle, 73 -- 3.7 Kirchhoff's Laws in Comparison with Electromagnetism Laws, 75 -- 3.8 Power in Circuits, 76 -- 3.8.1 Tellegen's Theorem and Energy Conservation Law in Circuits, 78 -- 3.9 Historical Notes, 80 -- 3.9.1 Short Biography of Kirchhoff, 80 -- 3.9.2 Short Biography of Tellegen, 80 -- 4 Techniques for Solving DC Circuits 83 -- 4.1 Introduction, 84 -- 4.2 Modelling Circuital Systems with Constant Quantities as Circuits, 84 -- 4.2.1 The Basic Rule, 84 -- 4.2.2 Resistors: Ohm's Law, 87 -- 4.2.3 Ideal and “Real” Voltage and Current Sources, 89 -- 4.3 Solving Techniques, 91 -- 4.3.1 Basic Usage of Combined Kirchhoff-Constitutive Equations, 92 -- 4.3.2 Nodal Analysis, 95 -- 4.3.3 Mesh Analysis, 98 -- 4.3.4 Series and Parallel Resistors; Star/Delta Conversion, 99 -- 4.3.5 Voltage and Current Division, 103 -- 4.3.6 Linearity and Superposition, 105 -- 4.3.7 Thévenin's Theorem, 107 -- 4.4 Power and Energy and Joule's Law, 112 -- 4.5 More Examples, 114 -- 4.6 Resistive Circuits Operating with Variable Quantities, 120 -- 4.7 Historical Notes, 121 -- 4.7.1 Short Biography of Ohm, 121 -- 4.7.2 Short Biography of Thévenin, 121 -- 4.7.3 Short Biography of Joule, 122 -- 4.8 Proposed Exercises, 122 -- 5 Techniques for Solving AC Circuits 131 -- 5.1 Introduction, 132 -- 5.2 Energy Storage Elements, 132 -- 5.2.1 Power in Time-Varying Circuits, 133 -- 5.2.2 The Capacitor, 133 -- 5.2.3 Inductors and Magnetic Circuits, 136 -- 5.3 Modelling Time-Varying Circuital Systems as Circuits, 140 -- 5.3.1 The Basic Rule, 140 -- 5.3.2 Modelling Circuital Systems When Induced EMFs Between Wires Cannot Be Neglected, 145 -- 5.3.3 Mutual Inductors and the Ideal Transformer, 146 -- 5.3.4 Systems Containing Ideal Transformers: Magnetically Coupled Circuits, 150 -- 5.4 Simple R-L and R-C Transients, 152 -- 5.5 AC Circuit Analysis, 155 -- 5.5.1 Sinusoidal Functions, 155 -- 5.5.2 Steady-State Behaviour of Linear Circuits Using Phasors, 156.
5.5.3 AC Circuit Passive Parameters, 163 -- 5.5.4 The Phasor Circuit, 164 -- 5.5.5 Circuits Containing Sources with Different Frequencies, 169 -- 5.6 Power in AC Circuits, 171 -- 5.6.1 Instantaneous, Active, Reactive, and Complex Powers, 171 -- 5.6.2 Circuits Containing Sources Having Different Frequencies, 177 -- 5.6.3 Conservation of Complex, Active, and Reactive Powers, 178 -- 5.6.4 Power Factor Correction, 180 -- 5.7 Historical Notes, 184 -- 5.7.1 Short Biography of Boucherot, 184 -- 5.8 Proposed Exercises, 184 -- 6 Three-Phase Circuits 191 -- 6.1 Introduction, 191 -- 6.2 From Single-Phase to Three-Phase Systems, 192 -- 6.2.1 Modelling Three-Phase Lines When Induced EMFs Between Wires Are Not Negligible, 198 -- 6.3 The Single-Phase Equivalent of the Three-Phase Circuit, 200 -- 6.4 Power in Three-Phase Systems, 202 -- 6.5 Single-Phase Feeding from Three-Phase Systems, 206 -- 6.6 Historical Notes, 209 -- 6.6.1 Short Biography of Tesla, 209 -- 6.7 Proposed Exercises, 209 -- PART III ELECTRIC MACHINES AND STATIC CONVERTERS 213 -- 7 Magnetic Circuits and Transformers 215 -- 7.1 Introduction, 215 -- 7.2 Magnetic Circuits and Single-Phase Transformers, 215 -- 7.3 Three-Phase Transformers, 225 -- 7.4 Magnetic Hysteresis and Core Losses, 227 -- 7.5 Open-Circuit and Short-Circuit Tests, 230 -- 7.6 Permanent Magnets, 233 -- 7.7 Proposed Exercises, 235 -- 8 Fundamentals of Electronic Power Conversion 239 -- 8.1 Introduction, 239 -- 8.2 Power Electronic Devices, 240 -- 8.2.1 Diodes, Thyristors, Controllable Switches, 240 -- 8.2.2 The Branch Approximation of Thyristors and Controllable Switches, 242 -- 8.2.3 Diodes, 243 -- 8.2.4 Thyristors, 246 -- 8.2.5 Insulated-Gate Bipolar Transistors (IGBTs), 248 -- 8.2.6 Summary of Power Electronic Devices, 250 -- 8.3 Power Electronic Converters, 251 -- 8.3.1 Rectifiers, 251 -- 8.3.2 DC-DC Converters, 257 -- 8.3.3 Inverters, 264 -- 8.4 Analysis of Periodic Quantities, 276 -- 8.4.1 Introduction, 276 -- 8.4.2 Periodic Quantities and Fourier's Series, 276.
8.4.3 Properties of Periodic Quantities and Examples, 279 -- 8.4.4 Frequency Spectrum of Periodic Signals, 280 -- 8.5 Filtering Basics, 283 -- 8.5.1 The Basic Principle, 283 -- 8.6 Summary, 289 -- 9 Principles of Electromechanical Conversion 291 -- 9.1 Introduction, 292 -- 9.2 Electromechanical Conversion in a Translating Bar, 292 -- 9.3 Basic Electromechanics in Rotating Machines, 297 -- 9.3.1 Rotating Electrical Machines and Faraday's Law, 297 -- 9.3.2 Generation of Torques in Rotating Machines, 301 -- 9.3.3 Electromotive Force and Torque in Distributed Coils, 302 -- 9.3.4 The Uniform Magnetic Field Equivalent, 304 -- 9.4 Reluctance-Based Electromechanical Conversion, 305 -- 10 DC Machines and Drives and Universal Motors 309 -- 10.1 Introduction, 310 -- 10.2 The Basic Idea and Generation of Quasi-Constant Voltage, 310 -- 10.3 Operation of a DC Generator Under Load, 315 -- 10.4 Different Types of DC Machines, 318 -- 10.4.1 Generators and Motors, 318 -- 10.4.2 Starting a DC Motor with Constant Field Current, 320 -- 10.4.3 Independent, Shunt, PM, and Series Excitation Motors, 326 -- 10.5 Universal Motors, 329 -- 10.6 DC Electric Drives, 331 -- 10.7 Proposed Exercises, 335 -- 11 Synchronous Machines and Drives 337 -- 11.1 The Basic Idea and Generation of EMF, 338 -- 11.2 Operation Under Load, 345 -- 11.2.1 The Rotating Magnetic Field, 345 -- 11.2.2 Stator-Rotor Interaction, 348 -- 11.2.3 The Phasor Diagram and the Single-Phase Equivalent Circuit, 350 -- 11.3 Practical Considerations, 353 -- 11.3.1 Power Exchanges, 353 -- 11.3.2 Generators and Motors, 357 -- 11.4 Permanent-Magnet Synchronous Machines, 359 -- 11.5 Synchronous Electric Drives, 360 -- 11.5.1 Introduction, 360 -- 11.5.2 PM, Inverter-Fed, Synchronous Motor Drives, 361 -- 11.5.3 Control Implementation, 366 -- 11.6 Historical Notes, 370 -- 11.6.1 Short Biography of Ferraris and Behn-Eschemburg, 370 -- 11.7 Proposed Exercises, 371 -- 12 Induction Machines and Drives 373 -- 12.1 Induction Machine Basics, 374.
12.2 Machine Model and Analysis, 378 -- 12.3 No-Load and Blocked-Rotor Tests, 391 -- 12.4 Induction Machine Motor Drives, 394 -- 12.5 Single-Phase Induction Motors, 399 -- 12.5.1 Introduction, 399 -- 12.5.2 Different Motor Types, 402 -- 12.6 Proposed Exercises, 404 -- PART IV POWER SYSTEMS BASICS 409 -- 13 Low-Voltage Electrical Installations 411 -- 13.1 Another Look at the Concept of the Electric Power System, 411 -- 13.2 Electrical Installations: A Basic Introduction, 413 -- 13.3 Loads, 418 -- 13.4 Cables, 422 -- 13.4.1 Maximum Permissible Current and Choice of the Cross-Sectional Area, 422 -- 13.5 Determining Voltage Drop, 427 -- 13.6 Overcurrents and Overcurrent Protection, 429 -- 13.6.1 Overloads, 429 -- 13.6.2 Short Circuits, 430 -- 13.6.3 Breaker Characteristics and Protection Against Overcurrents, 432 -- 13.7 Protection in Installations: A Long List, 437 -- 14 Electric Shock and Protective Measures 439 -- 14.1 Introduction, 439 -- 14.2 Electricity and the Human Body, 440 -- 14.2.1 Effects of Current on Human Beings, 440 -- 14.2.2 The Mechanism of Current Dispersion in the Earth, 443 -- 14.2.3 A Circuital Model for the Human Body, 444 -- 14.2.4 The Human Body in a Live Circuit, 446 -- 14.2.5 System Earthing: TT, TN, and IT, 448 -- 14.3 Protection Against Electric Shock, 450 -- 14.3.1 Direct and Indirect Contacts, 450 -- 14.3.2 Basic Protection (Protection Against Direct Contact), 451 -- 14.3.3 Fault Protection (Protection Against Indirect Contact), 453 -- 14.3.4 SELV Protection System, 458 -- 14.4 The Residual Current Device (RCD) Principle of Operation, 459 -- 14.5 What Else?, 462 -- References, 462 -- 15 Large Power Systems: Structure and Operation 465 -- 15.1 Aggregation of Loads and Installations: The Power System, 465 -- 15.2 Toward AC Three-Phase Systems, 466 -- 15.3 Electricity Distribution Networks, 468 -- 15.4 Transmission and Interconnection Grids, 470 -- 15.5 Modern Structure of Power Systems and Distributed Generation, 473 -- 15.6 Basics of Power System Operation, 475.
15.6.1 Frequency Regulation, 478 -- 15.6.2 Voltage Regulation, 480 -- 15.7 Vertically Integrated Utilities and Deregulated Power Systems, 482 -- 15.8 Recent Challenges and Smart Grids, 484 -- 15.9 Renewable Energy Sources and Energy Storage, 486 -- 15.9.1 Photovoltaic Plants, 486 -- 15.9.2 Wind Power Plants, 490 -- 15.9.3 Energy Storage, 494 -- Appendix: Transmission Line Modelling and Port-Based Circuits 501 -- A.1 Modelling Transmission Lines Through Circuits, 501 -- A.1.1 Issues and Solutions When Displacement Currents are Neglected, 502 -- A.1.2 Steady-State Analysis Considering Displacement Currents, 506 -- A.1.3 Practical Considerations, 509 -- A.2 Modelling Lines as Two-Port Components, 510 -- A.2.1 Port-Based Circuits, 510 -- A.2.2 Port-Based Circuit and Transmission Lines, 511 -- A.2.3 A Sample Application, 512 -- A.3 Final Comments, 513 -- SELECTED REFERENCES 515 -- ANSWERS TO THE PROPOSED EXERCISES 519 -- INDEX 529.
Record Nr. UNINA-9910139133003321
Ceraolo Massimo  
Hoboken, New Jersey : , : IEEE Press/Wiley, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of electric power engineering : engineering: from electromagnetics to power systems / / Massimo Ceraolo, Davide Poli
Fundamentals of electric power engineering : engineering: from electromagnetics to power systems / / Massimo Ceraolo, Davide Poli
Autore Ceraolo Massimo
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press/Wiley, , [2014]
Descrizione fisica 1 online resource (554 p.)
Disciplina 621.31
Altri autori (Persone) PoliDavide
Soggetto topico Electric power systems
ISBN 1-118-86875-7
1-118-92258-1
1-118-86869-2
Classificazione TEC008000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PREFACE xv -- ABOUT THE AUTHORS xix -- PART I PRELIMINARY MATERIAL 1 -- 1 Introduction 3 -- 1.1 The Scope of Electrical Engineering, 3 -- 1.2 This Book's Scope and Organization, 7 -- 1.3 International Standards and Their Usage in This Book, 8 -- 1.3.1 International Standardization Bodies, 8 -- 1.3.2 The International System of Units (SI), 9 -- 1.3.3 Graphic Symbols for Circuit Drawings, 11 -- 1.3.4 Names, Symbols, and Units, 13 -- 1.3.5 Other Conventions, 15 -- 1.4 Specific Conventions and Symbols in This Book, 15 -- 1.4.1 Boxes Around Text, 16 -- 1.4.2 Grayed Boxes, 16 -- 1.4.3 Terminology, 17 -- 1.4.4 Acronyms, 17 -- 1.4.5 Reference Designations, 18 -- 2 The Fundamental Laws of Electromagnetism 19 -- 2.1 Vector Fields, 20 -- 2.2 Definition of E and B; Lorentz's Force Law, 22 -- 2.3 Gauss's Law, 25 -- 2.4 Ampère's Law and Charge Conservation, 26 -- 2.4.1 Magnetic Field and Matter, 31 -- 2.5 Faraday's Law, 32 -- 2.6 Gauss's Law for Magnetism, 35 -- 2.7 Constitutive Equations of Matter, 36 -- 2.7.1 General Considerations, 36 -- 2.7.2 Continuous Charge Flow Across Conductors, 36 -- 2.8 Maxwell's Equations and Electromagnetic Waves, 38 -- 2.9 Historical Notes, 40 -- 2.9.1 Short Biography of Faraday, 40 -- 2.9.2 Short Biography of Gauss, 40 -- 2.9.3 Short Biography of Maxwell, 41 -- 2.9.4 Short Biography of Ampère, 41 -- 2.9.5 Short Biography of Lorentz, 41 -- PART II ELECTRIC CIRCUIT CONCEPT AND ANALYSIS 43 -- 3 Circuits as Modelling Tools 45 -- 3.1 Introduction, 46 -- 3.2 Definitions, 48 -- 3.3 Charge Conservation and Kirchhoff's Current Law, 50 -- 3.3.1 The Charge Conservation Law, 50 -- 3.3.2 Charge Conservation and Circuits, 51 -- 3.3.3 The Electric Current, 53 -- 3.3.4 Formulations of Kirchhoff's Current Law, 55 -- 3.4 Circuit Potentials and Kirchhoff's Voltage Law, 60 -- 3.4.1 The Electric Field Inside Conductors, 60 -- 3.4.2 Formulations of Kirchhoff's Voltage Law, 64 -- 3.5 Solution of a Circuit, 65 -- 3.5.1 Determining Linearly Independent Kirchhoff Equations (Loop-Cuts Method), 66.
3.5.2 Constitutive Equations, 68 -- 3.5.3 Number of Variables and Equations, 70 -- 3.6 The Substitution Principle, 73 -- 3.7 Kirchhoff's Laws in Comparison with Electromagnetism Laws, 75 -- 3.8 Power in Circuits, 76 -- 3.8.1 Tellegen's Theorem and Energy Conservation Law in Circuits, 78 -- 3.9 Historical Notes, 80 -- 3.9.1 Short Biography of Kirchhoff, 80 -- 3.9.2 Short Biography of Tellegen, 80 -- 4 Techniques for Solving DC Circuits 83 -- 4.1 Introduction, 84 -- 4.2 Modelling Circuital Systems with Constant Quantities as Circuits, 84 -- 4.2.1 The Basic Rule, 84 -- 4.2.2 Resistors: Ohm's Law, 87 -- 4.2.3 Ideal and “Real” Voltage and Current Sources, 89 -- 4.3 Solving Techniques, 91 -- 4.3.1 Basic Usage of Combined Kirchhoff-Constitutive Equations, 92 -- 4.3.2 Nodal Analysis, 95 -- 4.3.3 Mesh Analysis, 98 -- 4.3.4 Series and Parallel Resistors; Star/Delta Conversion, 99 -- 4.3.5 Voltage and Current Division, 103 -- 4.3.6 Linearity and Superposition, 105 -- 4.3.7 Thévenin's Theorem, 107 -- 4.4 Power and Energy and Joule's Law, 112 -- 4.5 More Examples, 114 -- 4.6 Resistive Circuits Operating with Variable Quantities, 120 -- 4.7 Historical Notes, 121 -- 4.7.1 Short Biography of Ohm, 121 -- 4.7.2 Short Biography of Thévenin, 121 -- 4.7.3 Short Biography of Joule, 122 -- 4.8 Proposed Exercises, 122 -- 5 Techniques for Solving AC Circuits 131 -- 5.1 Introduction, 132 -- 5.2 Energy Storage Elements, 132 -- 5.2.1 Power in Time-Varying Circuits, 133 -- 5.2.2 The Capacitor, 133 -- 5.2.3 Inductors and Magnetic Circuits, 136 -- 5.3 Modelling Time-Varying Circuital Systems as Circuits, 140 -- 5.3.1 The Basic Rule, 140 -- 5.3.2 Modelling Circuital Systems When Induced EMFs Between Wires Cannot Be Neglected, 145 -- 5.3.3 Mutual Inductors and the Ideal Transformer, 146 -- 5.3.4 Systems Containing Ideal Transformers: Magnetically Coupled Circuits, 150 -- 5.4 Simple R-L and R-C Transients, 152 -- 5.5 AC Circuit Analysis, 155 -- 5.5.1 Sinusoidal Functions, 155 -- 5.5.2 Steady-State Behaviour of Linear Circuits Using Phasors, 156.
5.5.3 AC Circuit Passive Parameters, 163 -- 5.5.4 The Phasor Circuit, 164 -- 5.5.5 Circuits Containing Sources with Different Frequencies, 169 -- 5.6 Power in AC Circuits, 171 -- 5.6.1 Instantaneous, Active, Reactive, and Complex Powers, 171 -- 5.6.2 Circuits Containing Sources Having Different Frequencies, 177 -- 5.6.3 Conservation of Complex, Active, and Reactive Powers, 178 -- 5.6.4 Power Factor Correction, 180 -- 5.7 Historical Notes, 184 -- 5.7.1 Short Biography of Boucherot, 184 -- 5.8 Proposed Exercises, 184 -- 6 Three-Phase Circuits 191 -- 6.1 Introduction, 191 -- 6.2 From Single-Phase to Three-Phase Systems, 192 -- 6.2.1 Modelling Three-Phase Lines When Induced EMFs Between Wires Are Not Negligible, 198 -- 6.3 The Single-Phase Equivalent of the Three-Phase Circuit, 200 -- 6.4 Power in Three-Phase Systems, 202 -- 6.5 Single-Phase Feeding from Three-Phase Systems, 206 -- 6.6 Historical Notes, 209 -- 6.6.1 Short Biography of Tesla, 209 -- 6.7 Proposed Exercises, 209 -- PART III ELECTRIC MACHINES AND STATIC CONVERTERS 213 -- 7 Magnetic Circuits and Transformers 215 -- 7.1 Introduction, 215 -- 7.2 Magnetic Circuits and Single-Phase Transformers, 215 -- 7.3 Three-Phase Transformers, 225 -- 7.4 Magnetic Hysteresis and Core Losses, 227 -- 7.5 Open-Circuit and Short-Circuit Tests, 230 -- 7.6 Permanent Magnets, 233 -- 7.7 Proposed Exercises, 235 -- 8 Fundamentals of Electronic Power Conversion 239 -- 8.1 Introduction, 239 -- 8.2 Power Electronic Devices, 240 -- 8.2.1 Diodes, Thyristors, Controllable Switches, 240 -- 8.2.2 The Branch Approximation of Thyristors and Controllable Switches, 242 -- 8.2.3 Diodes, 243 -- 8.2.4 Thyristors, 246 -- 8.2.5 Insulated-Gate Bipolar Transistors (IGBTs), 248 -- 8.2.6 Summary of Power Electronic Devices, 250 -- 8.3 Power Electronic Converters, 251 -- 8.3.1 Rectifiers, 251 -- 8.3.2 DC-DC Converters, 257 -- 8.3.3 Inverters, 264 -- 8.4 Analysis of Periodic Quantities, 276 -- 8.4.1 Introduction, 276 -- 8.4.2 Periodic Quantities and Fourier's Series, 276.
8.4.3 Properties of Periodic Quantities and Examples, 279 -- 8.4.4 Frequency Spectrum of Periodic Signals, 280 -- 8.5 Filtering Basics, 283 -- 8.5.1 The Basic Principle, 283 -- 8.6 Summary, 289 -- 9 Principles of Electromechanical Conversion 291 -- 9.1 Introduction, 292 -- 9.2 Electromechanical Conversion in a Translating Bar, 292 -- 9.3 Basic Electromechanics in Rotating Machines, 297 -- 9.3.1 Rotating Electrical Machines and Faraday's Law, 297 -- 9.3.2 Generation of Torques in Rotating Machines, 301 -- 9.3.3 Electromotive Force and Torque in Distributed Coils, 302 -- 9.3.4 The Uniform Magnetic Field Equivalent, 304 -- 9.4 Reluctance-Based Electromechanical Conversion, 305 -- 10 DC Machines and Drives and Universal Motors 309 -- 10.1 Introduction, 310 -- 10.2 The Basic Idea and Generation of Quasi-Constant Voltage, 310 -- 10.3 Operation of a DC Generator Under Load, 315 -- 10.4 Different Types of DC Machines, 318 -- 10.4.1 Generators and Motors, 318 -- 10.4.2 Starting a DC Motor with Constant Field Current, 320 -- 10.4.3 Independent, Shunt, PM, and Series Excitation Motors, 326 -- 10.5 Universal Motors, 329 -- 10.6 DC Electric Drives, 331 -- 10.7 Proposed Exercises, 335 -- 11 Synchronous Machines and Drives 337 -- 11.1 The Basic Idea and Generation of EMF, 338 -- 11.2 Operation Under Load, 345 -- 11.2.1 The Rotating Magnetic Field, 345 -- 11.2.2 Stator-Rotor Interaction, 348 -- 11.2.3 The Phasor Diagram and the Single-Phase Equivalent Circuit, 350 -- 11.3 Practical Considerations, 353 -- 11.3.1 Power Exchanges, 353 -- 11.3.2 Generators and Motors, 357 -- 11.4 Permanent-Magnet Synchronous Machines, 359 -- 11.5 Synchronous Electric Drives, 360 -- 11.5.1 Introduction, 360 -- 11.5.2 PM, Inverter-Fed, Synchronous Motor Drives, 361 -- 11.5.3 Control Implementation, 366 -- 11.6 Historical Notes, 370 -- 11.6.1 Short Biography of Ferraris and Behn-Eschemburg, 370 -- 11.7 Proposed Exercises, 371 -- 12 Induction Machines and Drives 373 -- 12.1 Induction Machine Basics, 374.
12.2 Machine Model and Analysis, 378 -- 12.3 No-Load and Blocked-Rotor Tests, 391 -- 12.4 Induction Machine Motor Drives, 394 -- 12.5 Single-Phase Induction Motors, 399 -- 12.5.1 Introduction, 399 -- 12.5.2 Different Motor Types, 402 -- 12.6 Proposed Exercises, 404 -- PART IV POWER SYSTEMS BASICS 409 -- 13 Low-Voltage Electrical Installations 411 -- 13.1 Another Look at the Concept of the Electric Power System, 411 -- 13.2 Electrical Installations: A Basic Introduction, 413 -- 13.3 Loads, 418 -- 13.4 Cables, 422 -- 13.4.1 Maximum Permissible Current and Choice of the Cross-Sectional Area, 422 -- 13.5 Determining Voltage Drop, 427 -- 13.6 Overcurrents and Overcurrent Protection, 429 -- 13.6.1 Overloads, 429 -- 13.6.2 Short Circuits, 430 -- 13.6.3 Breaker Characteristics and Protection Against Overcurrents, 432 -- 13.7 Protection in Installations: A Long List, 437 -- 14 Electric Shock and Protective Measures 439 -- 14.1 Introduction, 439 -- 14.2 Electricity and the Human Body, 440 -- 14.2.1 Effects of Current on Human Beings, 440 -- 14.2.2 The Mechanism of Current Dispersion in the Earth, 443 -- 14.2.3 A Circuital Model for the Human Body, 444 -- 14.2.4 The Human Body in a Live Circuit, 446 -- 14.2.5 System Earthing: TT, TN, and IT, 448 -- 14.3 Protection Against Electric Shock, 450 -- 14.3.1 Direct and Indirect Contacts, 450 -- 14.3.2 Basic Protection (Protection Against Direct Contact), 451 -- 14.3.3 Fault Protection (Protection Against Indirect Contact), 453 -- 14.3.4 SELV Protection System, 458 -- 14.4 The Residual Current Device (RCD) Principle of Operation, 459 -- 14.5 What Else?, 462 -- References, 462 -- 15 Large Power Systems: Structure and Operation 465 -- 15.1 Aggregation of Loads and Installations: The Power System, 465 -- 15.2 Toward AC Three-Phase Systems, 466 -- 15.3 Electricity Distribution Networks, 468 -- 15.4 Transmission and Interconnection Grids, 470 -- 15.5 Modern Structure of Power Systems and Distributed Generation, 473 -- 15.6 Basics of Power System Operation, 475.
15.6.1 Frequency Regulation, 478 -- 15.6.2 Voltage Regulation, 480 -- 15.7 Vertically Integrated Utilities and Deregulated Power Systems, 482 -- 15.8 Recent Challenges and Smart Grids, 484 -- 15.9 Renewable Energy Sources and Energy Storage, 486 -- 15.9.1 Photovoltaic Plants, 486 -- 15.9.2 Wind Power Plants, 490 -- 15.9.3 Energy Storage, 494 -- Appendix: Transmission Line Modelling and Port-Based Circuits 501 -- A.1 Modelling Transmission Lines Through Circuits, 501 -- A.1.1 Issues and Solutions When Displacement Currents are Neglected, 502 -- A.1.2 Steady-State Analysis Considering Displacement Currents, 506 -- A.1.3 Practical Considerations, 509 -- A.2 Modelling Lines as Two-Port Components, 510 -- A.2.1 Port-Based Circuits, 510 -- A.2.2 Port-Based Circuit and Transmission Lines, 511 -- A.2.3 A Sample Application, 512 -- A.3 Final Comments, 513 -- SELECTED REFERENCES 515 -- ANSWERS TO THE PROPOSED EXERCISES 519 -- INDEX 529.
Record Nr. UNINA-9910828430603321
Ceraolo Massimo  
Hoboken, New Jersey : , : IEEE Press/Wiley, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Implosion : lessons from national security, high reliability spacecraft, electronics, and the forces which changed them / / L. Parker Temple
Implosion : lessons from national security, high reliability spacecraft, electronics, and the forces which changed them / / L. Parker Temple
Autore Temple L. Parker
Pubbl/distr/stampa Hoboken, N.J., : IEEE Press/Wiley, 2013
Descrizione fisica 1 online resource (370 p.)
Disciplina 621.38109
Altri autori (Persone) DelaneyPatrick R
Soggetto topico Astronautics and state - United States
National security - United States - History - 21st century
ISBN 1-283-86940-3
1-118-48707-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Figures vii -- List of Tables ix -- Preface xi -- Acknowledgments xv -- Acronyms, Abbreviations, and Program Names xvii -- Part I Activation Energy (1931-1968) -- 1. Washington . . . We Have a Problem . . . 3 -- 2. The Quantum Leap 6 -- 3. Preparation 21 -- 4. The Final Frontiers 29 -- 5. Minuteman Means Reliability 58 -- 6. Skinning Cats 68 -- Part II Startup Transient (1969-1980) -- 7. Changing the Sea State 87 -- 8. Space Parts: From A to S 93 -- 9. There's S, and Then There's S 122 -- 10. A Little Revolution Now and Then Is Good 140 -- 11. Quality on the Horizon 144 -- Part III Switching Transient (1980-1989) -- 12. Crossing the Operational Divide 153 -- 13. Stocking the Shelves 168 -- 14. Hammered 184 -- 15. Battlegrounds: Reorganization and Reform 187 -- 16. Implementing Change in a Changing World 207 -- Part IV Shorting To Ground (1989-2002) -- 17. Leap First, Look Later 231 -- 18. Hardly Standing PAT 248 -- Part V Resetting the Circuit Breakers -- 19. Brewing the Perfect Storm 277 -- 20. Summing the Parts 301 -- Epilogue: Can One Ever Truly Go Home Again? 309 -- Index 322
Record Nr. UNINA-9910877407703321
Temple L. Parker  
Hoboken, N.J., : IEEE Press/Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modern machine learning techniques and their applications in cartoon animation research / / Jun Yu, Dacheng Tao
Modern machine learning techniques and their applications in cartoon animation research / / Jun Yu, Dacheng Tao
Autore Yu Jun
Edizione [1st ed.]
Pubbl/distr/stampa Piscataway, N.J., : IEEE Press/Wiley, 2013
Descrizione fisica 1 online resource (210 p.)
Disciplina 006.6/96
Altri autori (Persone) TaoDacheng <1978->
Collana IEEE Press series on systems science and engineering
Soggetto topico Machine learning
Computer animation
ISBN 1-299-44909-3
1-118-55998-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xi -- 1 Introduction 1 -- 1.1 Perception 2 -- 1.2 Overview of Machine Learning Techniques 2 -- 1.2.1 Manifold Learning 3 -- 1.2.2 Semi-supervised Learning 5 -- 1.2.3 Multiview Learning 8 -- 1.2.4 Learning-based Optimization 9 -- 1.3 Recent Developments in Computer Animation 11 -- 1.3.1 Example-Based Motion Reuse 11 -- 1.3.2 Physically Based Computer Animation 26 -- 1.3.3 Computer-Assisted Cartoon Animation 33 -- 1.3.4 Crowd Animation 42 -- 1.3.5 Facial Animation 51 -- 1.4 Chapter Summary 60 -- 2 Modern Machine Learning Techniques 63 -- 2.1 A Unified Framework for Manifold Learning 65 -- 2.1.1 Framework Introduction 65 -- 2.1.2 Various Manifold Learning Algorithm Unifying 67 -- 2.1.3 Discriminative Locality Alignment 69 -- 2.1.4 Discussions 71 -- 2.2 Spectral Clustering and Graph Cut 71 -- 2.2.1 Spectral Clustering 72 -- 2.2.2 Graph Cut Approximation 76 -- 2.3 Ensemble Manifold Learning 81 -- 2.3.1 Motivation for EMR 81 -- 2.3.2 Overview of EMR 81 -- 2.3.3 Applications of EMR 84 -- 2.4 Multiple Kernel Learning 86 -- 2.4.1 A Unified Mulitple Kernel Learning Framework 87 -- 2.4.2 SVM with Multiple Unweighted-Sum Kernels 89 -- 2.4.3 QCQP Multiple Kernel Learning 89 -- 2.5 Multiview Subspace Learning 90 -- 2.5.1 Approach Overview 90 -- 2.5.2 Techinique Details 90 -- 2.5.3 Alternative Optimization Used in PA-MSL 93 -- 2.6 Multiview Distance Metric Learning 94 -- 2.6.1 Motivation for MDML 94 -- 2.6.2 Graph-Based Semi-supervised Learning 95 -- 2.6.3 Overview of MDML 95 -- 2.7 Multi-task Learning 98 -- 2.7.1 Introduction of Structural Learning 99 -- 2.7.2 Hypothesis Space Selection 100 -- 2.7.3 Algorithm for Multi-task Learning 101 -- 2.7.4 Solution by Alternative Optimization 102 -- 2.8 Chapter Summary 103 -- 3 Animation Research: A Brief Introduction 105 -- 3.1 Traditional Animation Production 107 -- 3.1.1 History of Traditional Animation Production 107 -- 3.1.2 Procedures of Animation Production 108 -- 3.1.3 Relationship Between Traditional Animation and Computer Animation 109.
3.2 Computer-Assisted Systems 110 -- 3.2.1 Computer Animation Techniques 111 -- 3.3 Cartoon Reuse Systems for Animation Synthesis 117 -- 3.3.1 Cartoon Texture for Animation Synthesis 118 -- 3.3.2 Cartoon Motion Reuse 120 -- 3.3.3 Motion Capture Data Reuse in Cartoon Characters 122 -- 3.4 Graphical Materials Reuse: More Examples 124 -- 3.4.1 Video Clips Reuse 124 -- 3.4.2 Motion Captured Data Reuse by Motion Texture 126 -- 3.4.3 Motion Capture Data Reuse by Motion Graph 127 -- 3.5 Chapter Summary 129 -- 4 Animation Research: Modern Techniques 131 -- 4.1 Automatic Cartoon Generation with Correspondence Construction 131 -- 4.1.1 Related Work in Correspondence Construction 132 -- 4.1.2 Introduction of the Semi-supervised Correspondence Construction 133 -- 4.1.3 Stroke Correspondence Construction via Stroke Reconstruction Algorithm 138 -- 4.1.4 Simulation Results 141 -- 4.2 Cartoon Characters Represented by Multiple Features 146 -- 4.2.1 Cartoon Character Extraction 147 -- 4.2.2 Color Histogram 148 -- 4.2.3 Hausdorff Edge Feature 148 -- 4.2.4 Motion Feature 150 -- 4.2.5 Skeleton Feature 151 -- 4.2.6 Complementary Characteristics of Multiview Features 153 -- 4.3 Graph-based Cartoon Clips Synthesis 154 -- 4.3.1 Graph Model Construction 155 -- 4.3.2 Distance Calculation 155 -- 4.3.3 Simulation Results 156 -- 4.4 Retrieval-based Cartoon Clips Synthesis 161 -- 4.4.1 Constrained Spreading Activation Network 162 -- 4.4.2 Semi-supervised Multiview Subspace Learning 165 -- 4.4.3 Simulation Results 168 -- 4.5 Chapter Summary 173 -- References 174 -- Index 195.
Record Nr. UNINA-9910877474703321
Yu Jun  
Piscataway, N.J., : IEEE Press/Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiforms, dyadics, and electromagnetic media / / Ismo V. Lindell
Multiforms, dyadics, and electromagnetic media / / Ismo V. Lindell
Autore Lindell Ismo V.
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press/Wiley, [2015]
Descrizione fisica 1 online resource (416 p.)
Disciplina 537.01/515
Collana IEEE Press series on electromagnetic wave theory
Soggetto topico Electromagnetism - Mathematics
Electromagnetism - Mathematical models
ISBN 1-119-05239-4
1-119-05238-6
1-119-05240-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xi -- 1 Multivectors and Multiforms 1 -- 1.1 Vectors and One-Forms, 1 -- 1.1.1 Bar Product | 1 -- 1.1.2 Basis Expansions 2 -- 1.2 Bivectors and Two-Forms, 3 -- 1.2.1 Wedge Product ∧ 3 -- 1.2.2 Basis Expansions 4 -- 1.2.3 Bar Product 5 -- 1.2.4 Contraction Products ⌋ and ⌊ 6 -- 1.2.5 Decomposition of Vectors and One-Forms 8 -- 1.3 Multivectors and Multiforms, 8 -- 1.3.1 Basis of Multivectors 9 -- 1.3.2 Bar Product of Multivectors and Multiforms 10 -- 1.3.3 Contraction of Trivectors and Three-Forms 11 -- 1.3.4 Contraction of Quadrivectors and Four-Forms 12 -- 1.3.5 Construction of Reciprocal Basis 13 -- 1.3.6 Contraction of Quintivector 14 -- 1.3.7 Generalized Bac-Cab Rules 14 -- 1.4 Some Properties of Bivectors and Two-Forms, 16 -- 1.4.1 Bivector Invariant 16 -- 1.4.2 Natural Dot Product 17 -- 1.4.3 Bivector as Mapping 17 -- Problems, 18 -- 2 Dyadics 21 -- 2.1 Mapping Vectors and One-Forms, 21 -- 2.1.1 Dyadics 21 -- 2.1.2 Double-Bar Product || 23 -- 2.1.3 Metric Dyadics 24 -- 2.2 Mapping Multivectors and Multiforms, 25 -- 2.2.1 Bidyadics 25 -- 2.2.2 Double-Wedge Product ∧∧ -- 2.2.3 Double-Wedge Powers 28 -- 2.2.4 Double Contractions ⌊⌊ and ⌋⌋ 30 -- 2.2.5 Natural Dot Product for Bidyadics 31 -- 2.3 Dyadic Identities, 32 -- 2.3.1 Contraction Identities 32 -- 2.3.2 Special Cases 33 -- 2.3.3 More General Rules 35 -- 2.3.4 Cayley / Hamilton Equation 36 -- 2.3.5 Inverse Dyadics 36 -- 2.4 Rank of Dyadics, 39 -- 2.5 Eigenproblems, 41 -- 2.5.1 Eigenvectors and Eigen One-Forms 41 -- 2.5.2 Reduced Cayley / Hamilton Equations 42 -- 2.5.3 Construction of Eigenvectors 43 -- 2.6 Metric Dyadics, 45 -- 2.6.1 Symmetric Dyadics 46 -- 2.6.2 Antisymmetric Dyadics 47 -- 2.6.3 Inverse Rules for Metric Dyadics 48 -- Problems, 49 -- 3 Bidyadics 53 -- 3.1 Cayley / Hamilton Equation, 54 -- 3.1.1 Coefficient Functions 55 -- 3.1.2 Determinant of a Bidyadic 57 -- 3.1.3 Antisymmetric Bidyadic 57 -- 3.2 Bidyadic Eigenproblem, 58 -- 3.2.1 Eigenbidyadic C- 60 -- 3.2.2 Eigenbidyadic C+ 60 -- 3.3 Hehl / Obukhov Decomposition, 61.
3.4 Example: Simple Antisymmetric Bidyadic, 64 -- 3.5 Inverse Rules for Bidyadics, 66 -- 3.5.1 Skewon Bidyadic 67 -- 3.5.2 Extended Bidyadics 70 -- 3.5.3 3D Expansions 73 -- Problems, 74 -- 4 Special Dyadics and Bidyadics 79 -- 4.1 Orthogonality Conditions, 79 -- 4.1.1 Orthogonality of Dyadics 79 -- 4.1.2 Orthogonality of Bidyadics 81 -- 4.2 Nilpotent Dyadics and Bidyadics, 81 -- 4.3 Projection Dyadics and Bidyadics, 83 -- 4.4 Unipotent Dyadics and Bidyadics, 85 -- 4.5 Almost-Complex Dyadics, 87 -- 4.5.1 Two-Dimensional AC Dyadics 89 -- 4.5.2 Four-Dimensional AC Dyadics 89 -- 4.6 Almost-Complex Bidyadics, 91 -- 4.7 Modified Closure Relation, 93 -- 4.7.1 Equivalent Conditions 94 -- 4.7.2 Solutions 94 -- 4.7.3 Testing the Two Solutions 96 -- Problems, 98 -- 5 Electromagnetic Fields 101 -- 5.1 Field Equations, 101 -- 5.1.1 Differentiation Operator 101 -- 5.1.2 Maxwell Equations 103 -- 5.1.3 Potential One-Form 105 -- 5.2 Medium Equations, 106 -- 5.2.1 Medium Bidyadics 106 -- 5.2.2 Potential Equation 107 -- 5.2.3 Expansions of Medium Bidyadics 107 -- 5.2.4 Gibbsian Representation 109 -- 5.3 Basic Classes of Media, 110 -- 5.3.1 Hehl / Obukhov Decomposition 110 -- 5.3.2 3D Expansions 112 -- 5.3.3 Simple Principal Medium 114 -- 5.4 Interfaces and Boundaries, 117 -- 5.4.1 Interface Conditions 117 -- 5.4.2 Boundary Conditions 119 -- 5.5 Power and Energy, 123 -- 5.5.1 Bilinear Invariants 123 -- 5.5.2 The Stress / Energy Dyadic 125 -- 5.5.3 Differentiation Rule 127 -- 5.6 Plane Waves, 128 -- 5.6.1 Basic Equations 128 -- 5.6.2 Dispersion Equation 130 -- 5.6.3 Special Cases 132 -- 5.6.4 Plane-Wave Fields 132 -- 5.6.5 Simple Principal Medium 134 -- 5.6.6 Handedness of Plane Wave 135 -- Problems, 136 -- 6 Transformation of Fields and Media 141 -- 6.1 Affine Transformation, 141 -- 6.1.1 Transformation of Fields 141 -- 6.1.2 Transformation of Media 142 -- 6.1.3 Dispersion Equation 144 -- 6.1.4 Simple Principal Medium 145 -- 6.2 Duality Transformation, 145 -- 6.2.1 Transformation of Fields 146.
6.2.2 Involutionary Duality Transformation 147 -- 6.2.3 Transformation of Media 149 -- 6.3 Transformation of Boundary Conditions, 150 -- 6.3.1 Simple Principal Medium 152 -- 6.3.2 Plane Wave 152 -- 6.4 Reciprocity Transformation, 153 -- 6.4.1 Medium Transformation 153 -- 6.4.2 Reciprocity Conditions 155 -- 6.4.3 Field Relations 157 -- 6.4.4 Time-Harmonic Fields 158 -- 6.5 Conformal Transformation, 159 -- 6.5.1 Properties of the Conformal Transformation 160 -- 6.5.2 Field Transformation 164 -- 6.5.3 Medium Transformation 165 -- Problems, 166 -- 7 Basic Classes of Electromagnetic Media 169 -- 7.1 Gibbsian Isotropy, 169 -- 7.1.1 Gibbsian Isotropic Medium 169 -- 7.1.2 Gibbsian Bi-isotropic Medium 170 -- 7.1.3 Decomposition of GBI Medium 171 -- 7.1.4 Affine Transformation 173 -- 7.1.5 Eigenfields in GBI Medium 174 -- 7.1.6 Plane Wave in GBI Medium 176 -- 7.2 The Axion Medium, 178 -- 7.2.1 Perfect Electromagnetic Conductor 179 -- 7.2.2 PEMC as Limiting Case of GBI Medium 180 -- 7.2.3 PEMC Boundary Problems 181 -- 7.3 Skewon / Axion Media, 182 -- 7.3.1 Plane Wave in Skewon / Axion Medium 184 -- 7.3.2 Gibbsian Representation 185 -- 7.3.3 Boundary Conditions 187 -- 7.4 Extended Skewon / Axion Media, 192 -- Problems, 194 -- 8 Quadratic Media 197 -- 8.1 P Media and Q Media, 197 -- 8.2 Transformations, 200 -- 8.3 Spatial Expansions, 201 -- 8.3.1 Spatial Expansion of Q Media 201 -- 8.3.2 Spatial Expansion of P Media 203 -- 8.3.3 Relation Between P Media and Q Media 204 -- 8.4 Plane Waves, 205 -- 8.4.1 Plane Waves in Q Media 205 -- 8.4.2 Plane Waves in P Media 207 -- 8.4.3 P Medium as Boundary Material 208 -- 8.5 P-Axion and Q-Axion Media, 209 -- 8.6 Extended Q Media, 211 -- 8.6.1 Gibbsian Representation 211 -- 8.6.2 Field Decomposition 214 -- 8.6.3 Transformations 215 -- 8.6.4 Plane Waves in Extended Q Media 215 -- 8.7 Extended P Media, 218 -- 8.7.1 Medium Conditions 218 -- 8.7.2 Plane Waves in Extended P Media 219 -- 8.7.3 Field Conditions 220 -- Problems, 221 -- 9 Media Defined by Bidyadic Equations 225.
9.1 Quadratic Equation, 226 -- 9.1.1 SD Media 227 -- 9.1.2 Eigenexpansions 228 -- 9.1.3 Duality Transformation 229 -- 9.1.4 3D Representations 231 -- 9.1.5 SDN Media 234 -- 9.2 Cubic Equation, 235 -- 9.2.1 CU Media 235 -- 9.2.2 Eigenexpansions 236 -- 9.2.3 Examples of CU Media 238 -- 9.3 Bi-Quadratic Equation, 240 -- 9.3.1 BQ Media 241 -- 9.3.2 Eigenexpansions 242 -- 9.3.3 3D Representation 244 -- 9.3.4 Special Case 245 -- Problems, 246 -- 10 Media Defined by Plane-Wave Properties 249 -- 10.1 Media with No Dispersion Equation (NDE Media), 249 -- 10.1.1 Two Cases of Solutions 250 -- 10.1.2 Plane-Wave Fields in NDE Media 255 -- 10.1.3 Other Possible NDE Media 257 -- 10.2 Decomposable Media, 259 -- 10.2.1 Special Cases 259 -- 10.2.2 DC-Medium Subclasses 263 -- 10.2.3 Plane-Wave Properties 267 -- Problems, 269 -- Appendix A Solutions to Problems 273 -- Appendix B Transformation to Gibbsian Formalism 369 -- Appendix C Multivector and Dyadic Identities 375 -- References 389 -- Index 395.
Record Nr. UNINA-9910132448803321
Lindell Ismo V.  
Hoboken, New Jersey : , : IEEE Press/Wiley, [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiforms, dyadics, and electromagnetic media / / Ismo V. Lindell
Multiforms, dyadics, and electromagnetic media / / Ismo V. Lindell
Autore Lindell Ismo V.
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press/Wiley, [2015]
Descrizione fisica 1 online resource (416 p.)
Disciplina 537.01/515
Collana IEEE Press series on electromagnetic wave theory
Soggetto topico Electromagnetism - Mathematics
Electromagnetism - Mathematical models
ISBN 1-119-05239-4
1-119-05238-6
1-119-05240-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xi -- 1 Multivectors and Multiforms 1 -- 1.1 Vectors and One-Forms, 1 -- 1.1.1 Bar Product | 1 -- 1.1.2 Basis Expansions 2 -- 1.2 Bivectors and Two-Forms, 3 -- 1.2.1 Wedge Product ∧ 3 -- 1.2.2 Basis Expansions 4 -- 1.2.3 Bar Product 5 -- 1.2.4 Contraction Products ⌋ and ⌊ 6 -- 1.2.5 Decomposition of Vectors and One-Forms 8 -- 1.3 Multivectors and Multiforms, 8 -- 1.3.1 Basis of Multivectors 9 -- 1.3.2 Bar Product of Multivectors and Multiforms 10 -- 1.3.3 Contraction of Trivectors and Three-Forms 11 -- 1.3.4 Contraction of Quadrivectors and Four-Forms 12 -- 1.3.5 Construction of Reciprocal Basis 13 -- 1.3.6 Contraction of Quintivector 14 -- 1.3.7 Generalized Bac-Cab Rules 14 -- 1.4 Some Properties of Bivectors and Two-Forms, 16 -- 1.4.1 Bivector Invariant 16 -- 1.4.2 Natural Dot Product 17 -- 1.4.3 Bivector as Mapping 17 -- Problems, 18 -- 2 Dyadics 21 -- 2.1 Mapping Vectors and One-Forms, 21 -- 2.1.1 Dyadics 21 -- 2.1.2 Double-Bar Product || 23 -- 2.1.3 Metric Dyadics 24 -- 2.2 Mapping Multivectors and Multiforms, 25 -- 2.2.1 Bidyadics 25 -- 2.2.2 Double-Wedge Product ∧∧ -- 2.2.3 Double-Wedge Powers 28 -- 2.2.4 Double Contractions ⌊⌊ and ⌋⌋ 30 -- 2.2.5 Natural Dot Product for Bidyadics 31 -- 2.3 Dyadic Identities, 32 -- 2.3.1 Contraction Identities 32 -- 2.3.2 Special Cases 33 -- 2.3.3 More General Rules 35 -- 2.3.4 Cayley / Hamilton Equation 36 -- 2.3.5 Inverse Dyadics 36 -- 2.4 Rank of Dyadics, 39 -- 2.5 Eigenproblems, 41 -- 2.5.1 Eigenvectors and Eigen One-Forms 41 -- 2.5.2 Reduced Cayley / Hamilton Equations 42 -- 2.5.3 Construction of Eigenvectors 43 -- 2.6 Metric Dyadics, 45 -- 2.6.1 Symmetric Dyadics 46 -- 2.6.2 Antisymmetric Dyadics 47 -- 2.6.3 Inverse Rules for Metric Dyadics 48 -- Problems, 49 -- 3 Bidyadics 53 -- 3.1 Cayley / Hamilton Equation, 54 -- 3.1.1 Coefficient Functions 55 -- 3.1.2 Determinant of a Bidyadic 57 -- 3.1.3 Antisymmetric Bidyadic 57 -- 3.2 Bidyadic Eigenproblem, 58 -- 3.2.1 Eigenbidyadic C- 60 -- 3.2.2 Eigenbidyadic C+ 60 -- 3.3 Hehl / Obukhov Decomposition, 61.
3.4 Example: Simple Antisymmetric Bidyadic, 64 -- 3.5 Inverse Rules for Bidyadics, 66 -- 3.5.1 Skewon Bidyadic 67 -- 3.5.2 Extended Bidyadics 70 -- 3.5.3 3D Expansions 73 -- Problems, 74 -- 4 Special Dyadics and Bidyadics 79 -- 4.1 Orthogonality Conditions, 79 -- 4.1.1 Orthogonality of Dyadics 79 -- 4.1.2 Orthogonality of Bidyadics 81 -- 4.2 Nilpotent Dyadics and Bidyadics, 81 -- 4.3 Projection Dyadics and Bidyadics, 83 -- 4.4 Unipotent Dyadics and Bidyadics, 85 -- 4.5 Almost-Complex Dyadics, 87 -- 4.5.1 Two-Dimensional AC Dyadics 89 -- 4.5.2 Four-Dimensional AC Dyadics 89 -- 4.6 Almost-Complex Bidyadics, 91 -- 4.7 Modified Closure Relation, 93 -- 4.7.1 Equivalent Conditions 94 -- 4.7.2 Solutions 94 -- 4.7.3 Testing the Two Solutions 96 -- Problems, 98 -- 5 Electromagnetic Fields 101 -- 5.1 Field Equations, 101 -- 5.1.1 Differentiation Operator 101 -- 5.1.2 Maxwell Equations 103 -- 5.1.3 Potential One-Form 105 -- 5.2 Medium Equations, 106 -- 5.2.1 Medium Bidyadics 106 -- 5.2.2 Potential Equation 107 -- 5.2.3 Expansions of Medium Bidyadics 107 -- 5.2.4 Gibbsian Representation 109 -- 5.3 Basic Classes of Media, 110 -- 5.3.1 Hehl / Obukhov Decomposition 110 -- 5.3.2 3D Expansions 112 -- 5.3.3 Simple Principal Medium 114 -- 5.4 Interfaces and Boundaries, 117 -- 5.4.1 Interface Conditions 117 -- 5.4.2 Boundary Conditions 119 -- 5.5 Power and Energy, 123 -- 5.5.1 Bilinear Invariants 123 -- 5.5.2 The Stress / Energy Dyadic 125 -- 5.5.3 Differentiation Rule 127 -- 5.6 Plane Waves, 128 -- 5.6.1 Basic Equations 128 -- 5.6.2 Dispersion Equation 130 -- 5.6.3 Special Cases 132 -- 5.6.4 Plane-Wave Fields 132 -- 5.6.5 Simple Principal Medium 134 -- 5.6.6 Handedness of Plane Wave 135 -- Problems, 136 -- 6 Transformation of Fields and Media 141 -- 6.1 Affine Transformation, 141 -- 6.1.1 Transformation of Fields 141 -- 6.1.2 Transformation of Media 142 -- 6.1.3 Dispersion Equation 144 -- 6.1.4 Simple Principal Medium 145 -- 6.2 Duality Transformation, 145 -- 6.2.1 Transformation of Fields 146.
6.2.2 Involutionary Duality Transformation 147 -- 6.2.3 Transformation of Media 149 -- 6.3 Transformation of Boundary Conditions, 150 -- 6.3.1 Simple Principal Medium 152 -- 6.3.2 Plane Wave 152 -- 6.4 Reciprocity Transformation, 153 -- 6.4.1 Medium Transformation 153 -- 6.4.2 Reciprocity Conditions 155 -- 6.4.3 Field Relations 157 -- 6.4.4 Time-Harmonic Fields 158 -- 6.5 Conformal Transformation, 159 -- 6.5.1 Properties of the Conformal Transformation 160 -- 6.5.2 Field Transformation 164 -- 6.5.3 Medium Transformation 165 -- Problems, 166 -- 7 Basic Classes of Electromagnetic Media 169 -- 7.1 Gibbsian Isotropy, 169 -- 7.1.1 Gibbsian Isotropic Medium 169 -- 7.1.2 Gibbsian Bi-isotropic Medium 170 -- 7.1.3 Decomposition of GBI Medium 171 -- 7.1.4 Affine Transformation 173 -- 7.1.5 Eigenfields in GBI Medium 174 -- 7.1.6 Plane Wave in GBI Medium 176 -- 7.2 The Axion Medium, 178 -- 7.2.1 Perfect Electromagnetic Conductor 179 -- 7.2.2 PEMC as Limiting Case of GBI Medium 180 -- 7.2.3 PEMC Boundary Problems 181 -- 7.3 Skewon / Axion Media, 182 -- 7.3.1 Plane Wave in Skewon / Axion Medium 184 -- 7.3.2 Gibbsian Representation 185 -- 7.3.3 Boundary Conditions 187 -- 7.4 Extended Skewon / Axion Media, 192 -- Problems, 194 -- 8 Quadratic Media 197 -- 8.1 P Media and Q Media, 197 -- 8.2 Transformations, 200 -- 8.3 Spatial Expansions, 201 -- 8.3.1 Spatial Expansion of Q Media 201 -- 8.3.2 Spatial Expansion of P Media 203 -- 8.3.3 Relation Between P Media and Q Media 204 -- 8.4 Plane Waves, 205 -- 8.4.1 Plane Waves in Q Media 205 -- 8.4.2 Plane Waves in P Media 207 -- 8.4.3 P Medium as Boundary Material 208 -- 8.5 P-Axion and Q-Axion Media, 209 -- 8.6 Extended Q Media, 211 -- 8.6.1 Gibbsian Representation 211 -- 8.6.2 Field Decomposition 214 -- 8.6.3 Transformations 215 -- 8.6.4 Plane Waves in Extended Q Media 215 -- 8.7 Extended P Media, 218 -- 8.7.1 Medium Conditions 218 -- 8.7.2 Plane Waves in Extended P Media 219 -- 8.7.3 Field Conditions 220 -- Problems, 221 -- 9 Media Defined by Bidyadic Equations 225.
9.1 Quadratic Equation, 226 -- 9.1.1 SD Media 227 -- 9.1.2 Eigenexpansions 228 -- 9.1.3 Duality Transformation 229 -- 9.1.4 3D Representations 231 -- 9.1.5 SDN Media 234 -- 9.2 Cubic Equation, 235 -- 9.2.1 CU Media 235 -- 9.2.2 Eigenexpansions 236 -- 9.2.3 Examples of CU Media 238 -- 9.3 Bi-Quadratic Equation, 240 -- 9.3.1 BQ Media 241 -- 9.3.2 Eigenexpansions 242 -- 9.3.3 3D Representation 244 -- 9.3.4 Special Case 245 -- Problems, 246 -- 10 Media Defined by Plane-Wave Properties 249 -- 10.1 Media with No Dispersion Equation (NDE Media), 249 -- 10.1.1 Two Cases of Solutions 250 -- 10.1.2 Plane-Wave Fields in NDE Media 255 -- 10.1.3 Other Possible NDE Media 257 -- 10.2 Decomposable Media, 259 -- 10.2.1 Special Cases 259 -- 10.2.2 DC-Medium Subclasses 263 -- 10.2.3 Plane-Wave Properties 267 -- Problems, 269 -- Appendix A Solutions to Problems 273 -- Appendix B Transformation to Gibbsian Formalism 369 -- Appendix C Multivector and Dyadic Identities 375 -- References 389 -- Index 395.
Record Nr. UNINA-9910813439503321
Lindell Ismo V.  
Hoboken, New Jersey : , : IEEE Press/Wiley, [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear distortion in wireless systems : modeling and simulation with MATLAB / / Khaled M. Gharaibeh
Nonlinear distortion in wireless systems : modeling and simulation with MATLAB / / Khaled M. Gharaibeh
Autore Gharaibeh Khaled M.
Edizione [2nd ed.]
Pubbl/distr/stampa Chichester, West Sussex, U.K. : , : IEEE Press/Wiley, , 2012
Descrizione fisica 1 online resource (387 p.)
Disciplina 621.382/2028553
Collana Wiley - IEEE
Soggetto topico Signal processing - Computer simulation
Electric distortion - Computer simulation
Nonlinear systems - Computer simulation
Wireless communication systems - Computer simulation
ISBN 1-119-96411-3
1-299-18959-8
1-119-96173-4
1-119-96172-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xv -- List of Abbreviations xvii -- List of Figures xix -- List of Tables xxvii -- Acknowledgements xxix -- 1 Introduction 1 -- 1.1 Nonlinearity in Wireless Communication Systems 1 -- 1.1.1 Power Amplifiers 2 -- 1.1.2 Low-Noise Amplifiers (LNAs) 4 -- 1.1.3 Mixers 6 -- 1.2 Nonlinear Distortion in Wireless Systems 6 -- 1.2.1 Adjacent-Channel Interference 8 -- 1.2.2 Modulation Quality and Degradation of System Performance 9 -- 1.2.3 Receiver Desensitization and Cross-Modulation 11 -- 1.3 Modeling and Simulation of Nonlinear Systems 12 -- 1.3.1 Modeling and Simulation in Engineering 12 -- 1.3.2 Modeling and Simulation for Communication System Design 14 -- 1.3.3 Behavioral Modeling of Nonlinear Systems 15 -- 1.3.4 Simulation of Nonlinear Circuits 16 -- 1.4 Organization of the Book 19 -- 1.5 Summary 20 -- 2 Wireless Communication Systems, Standards and Signal Models 21 -- 2.1 Wireless System Architecture 21 -- 2.1.1 RF Transmitter Architectures 23 -- 2.1.2 Receiver Architecture 26 -- 2.2 Digital Signal Processing in Wireless Systems 30 -- 2.2.1 Digital Modulation 31 -- 2.2.2 Pulse Shaping 37 -- 2.2.3 Orthogonal Frequency Division Multiplexing (OFDM) 39 -- 2.2.4 Spread Spectrum Modulation 41 -- 2.3 Mobile System Standards 45 -- 2.3.1 Second-Generation Mobile Systems 46 -- 2.3.2 Third-Generation Mobile Systems 48 -- 2.3.3 Fourth-Generation Mobile Systems 51 -- 2.3.4 Summary 51 -- 2.4 Wireless Network Standards 52 -- 2.4.1 First-Generation Wireless LANs 52 -- 2.4.2 Second-Generation Wireless LANs 52 -- 2.4.3 Third-Generation Wireless Networks (WMANs) 53 -- 2.5 Nonlinear Distortion in Different Wireless Standards 55 -- 2.6 Summary 56 -- 3 Modeling of Nonlinear Systems 59 -- 3.1 Analytical Nonlinear Models 60 -- 3.1.1 General Volterra Series Model 60 -- 3.1.2 Wiener Model 62 -- 3.1.3 Single-Frequency Volterra Models 63 -- 3.1.4 The Parallel Cascade Model 65 -- 3.1.5 Wiener-Hammerstein Models 66 -- 3.1.6 Multi-Input Single-Output (MISO) Volterra Model 67 -- 3.1.7 The Polyspectral Model 67.
3.1.8 Generalized Power Series 68 -- 3.1.9 Memory Polynomials 69 -- 3.1.10 Memoryless Models 70 -- 3.1.11 Power-Series Model 70 -- 3.1.12 The Limiter Family of Models 72 -- 3.2 Empirical Nonlinear Models 74 -- 3.2.1 The Three-Box Model 74 -- 3.2.2 The Abuelma'ati Model 75 -- 3.2.3 Saleh Model 76 -- 3.2.4 Rapp Model 76 -- 3.3 Parameter Extraction of Nonlinear Models from Measured Data 76 -- 3.3.1 Polynomial Models 77 -- 3.3.2 Three-Box Model 79 -- 3.3.3 Volterra Series 80 -- 3.4 Summary 80 -- 4 Nonlinear Transformation of Deterministic Signals 83 -- 4.1 Complex Baseband Analysis and Simulations 84 -- 4.1.1 Complex Envelope of Modulated Signals 85 -- 4.1.2 Baseband Equivalent of Linear System Impulse Response 89 -- 4.2 Complex Baseband Analysis of Memoryless Nonlinear Systems 90 -- 4.2.1 Power-Series Model 92 -- 4.2.2 Limiter Model 92 -- 4.3 Complex Baseband Analysis of Nonlinear Systems with Memory 94 -- 4.3.1 Volterra Series 94 -- 4.3.2 Single-Frequency Volterra Models 95 -- 4.3.3 Wiener-Hammerstein Model 96 -- 4.4 Complex Envelope Analysis with Multiple Bandpass Signals 97 -- 4.4.1 Volterra Series 97 -- 4.4.2 Single-Frequency Volterra Models 99 -- 4.4.3 Wiener-Hammerstein Model 100 -- 4.4.4 Multi-Input Single-Output Nonlinear Model 103 -- 4.4.5 Memoryless Nonlinearity-Power-Series Model 104 -- 4.5 Examples-Response of Power-Series Model to Multiple Signals 106 -- 4.5.1 Single Tone 107 -- 4.5.2 Two-Tone Signal 107 -- 4.5.3 Single-Bandpass Signal 108 -- 4.5.4 Two-Bandpass Signals 108 -- 4.5.5 Single Tone and a Bandpass Signal 109 -- 4.5.6 Multisines 110 -- 4.5.7 Multisine Analysis Using the Generalized Power-Series Model 111 -- 4.6 Summary 111 -- 5 Nonlinear Transformation of Random Signals 113 -- 5.1 Preliminaries 114 -- 5.2 Linear Systems with Stochastic Inputs 114 -- 5.2.1 White Noise 115 -- 5.2.2 Gaussian Processes 116 -- 5.3 Response of a Nonlinear System to a Random Input Signal 116 -- 5.3.1 Power-Series Model 116 -- 5.3.2 Wiener-Hammerstein Models 118 -- 5.4 Response of Nonlinear Systems to Gaussian Inputs 119.
5.4.1 Limiter Model 120 -- 5.4.2 Memoryless Power-Series Model 123 -- 5.5 Response of Nonlinear Systems to Multiple Random Signals 123 -- 5.5.1 Power-Series Model 124 -- 5.5.2 Wiener-Hammerstein Model 126 -- 5.6 Response of Nonlinear Systems to a Random Signal and a Sinusoid 128 -- 5.7 Summary 129 -- 6 Nonlinear Distortion 131 -- 6.1 Identification of Nonlinear Distortion in Digital Wireless Systems 132 -- 6.2 Orthogonalization of the Behavioral Model 134 -- 6.2.1 Orthogonalization of the Volterra Series Model 136 -- 6.2.2 Orthogonalization of Wiener Model 137 -- 6.2.3 Orthogonalization of the Power-Series Model 139 -- 6.3 Autocorrelation Function and Spectral Analysis of the Orthogonalized Model 140 -- 6.3.1 Output Autocorrelation Function 142 -- 6.3.2 Power Spectral Density 142 -- 6.4 Relationship Between System Performance and Uncorrelated Distortion 144 -- 6.5 Examples 146 -- 6.5.1 Narrowband Gaussian Noise 146 -- 6.5.2 Multisines with Deterministic Phases 148 -- 6.5.3 Multisines with Random Phases 152 -- 6.6 Measurement of Uncorrelated Distortion 154 -- 6.7 Summary 155 -- 7 Nonlinear System Figures of Merit 157 -- 7.1 Analogue System Nonlinear Figures of Merit 158 -- 7.1.1 Intermodulation Ratio 158 -- 7.1.2 Intercept Points 159 -- 7.1.3 1-dB Compression Point 160 -- 7.2 Adjacent-Channel Power Ratio (ACPR) 161 -- 7.3 Signal-to-Noise Ratio (SNR) 161 -- 7.4 CDMA Waveform Quality Factor (ρ) 163 -- 7.5 Error Vector Magnitude (EVM) 163 -- 7.6 Co-Channel Power Ratio (CCPR) 164 -- 7.7 Noise-to-Power Ratio (NPR) 164 -- 7.7.1 NPR of Communication Signals 165 -- 7.7.2 NBGN Model for Input Signal 166 -- 7.8 Noise Figure in Nonlinear Systems 167 -- 7.8.1 Nonlinear Noise Figure 169 -- 7.8.2 NBGN Model for Input Signal and Noise 171 -- 7.9 Summary 173 -- 8 Communication System Models and Simulation in MATLABª 175 -- 8.1 Simulation of Communication Systems 176 -- 8.1.1 Random Signal Generation 176 -- 8.1.2 System Models 176 -- 8.1.3 Baseband versus Passband Simulations 177 -- 8.2 Choosing the Sampling Rate in MATLABª Simulations 178.
8.3 Random Signal Generation in MATLABª 178 -- 8.3.1 White Gaussian Noise Generator 178 -- 8.3.2 Random Matrices 179 -- 8.3.3 Random Integer Matrices 179 -- 8.4 Pulse-Shaping Filters 180 -- 8.4.1 Raised Cosine Filters 180 -- 8.4.2 Gaussian Filters 182 -- 8.5 Error Detection and Correction 183 -- 8.6 Digital Modulation in MATLABª 184 -- 8.6.1 Linear Modulation 184 -- 8.6.2 Nonlinear Modulation 186 -- 8.7 Channel Models in MATLABª 188 -- 8.8 Simulation of System Performance in MATLABª 188 -- 8.8.1 BER 190 -- 8.8.2 Scatter Plots 195 -- 8.8.3 Eye Diagrams 196 -- 8.9 Generation of Communications Signals in MATLABª 198 -- 8.9.1 Narrowband Gaussian Noise 198 -- 8.9.2 OFDM Signals 199 -- 8.9.3 DS-SS Signals 203 -- 8.9.4 Multisine Signals 206 -- 8.10 Example 210 -- 8.11 Random Signal Generation in Simulinkª 211 -- 8.11.1 Random Data Sources 211 -- 8.11.2 Random Noise Generators 212 -- 8.11.3 Sequence Generators 213 -- 8.12 Digital Modulation in Simulinkª 214 -- 8.13 Simulation of System Performance in Simulinkª 214 -- 8.13.1 Example 1: Random Sources and Modulation 216 -- 8.13.2 Example 2: CDMA Transmitter 217 -- 8.13.3 Simulation of Wireless Standards in Simulinkª 220 -- 8.14 Summary 220 -- 9 Simulation of Nonlinear Systems in MATLABª 221 -- 9.1 Generation of Nonlinearity in MATLABª 221 -- 9.1.1 Memoryless Nonlinearity 221 -- 9.1.2 Nonlinearity with Memory 222 -- 9.2 Fitting a Nonlinear Model to Measured Data 224 -- 9.2.1 Fitting a Memoryless Polynomial Model to Measured Data 224 -- 9.2.2 Fitting a Three-Box Model to Measured Data 228 -- 9.2.3 Fitting a Memory Polynomial Model to a Simulated Nonlinearity 234 -- 9.3 Autocorrelation and Spectrum Estimation 235 -- 9.3.1 Estimation of the Autocorrelation Function 235 -- 9.3.2 Plotting the Signal Spectrum 237 -- 9.3.3 Power Measurements from a PSD 239 -- 9.4 Spectrum of the Output of a Memoryless Nonlinearity 240 -- 9.4.1 Single Channel 240 -- 9.4.2 Two Channels 243 -- 9.5 Spectrum of the Output of a Nonlinearity with Memory 246.
9.5.1 Three-Box Model 246 -- 9.5.2 Memory Polynomial Model 249 -- 9.6 Spectrum of Orthogonalized Nonlinear Model 251 -- 9.7 Estimation of System Metrics from Simulated Spectra 256 -- 9.7.1 Signal-to-Noise and Distortion Ratio (SNDR) 257 -- 9.7.2 EVM 260 -- 9.7.3 ACPR 262 -- 9.8 Simulation of Probability of Error 263 -- 9.9 Simulation of Noise-to-Power Ratio 268 -- 9.10 Simulation of Nonlinear Noise Figure 271 -- 9.11 Summary 278 -- 10 Simulation of Nonlinear Systems in Simulinkª 279 -- 10.1 RF Impairments in Simulinkª 280 -- 10.1.1 Communications Blockset 280 -- 10.1.2 The RF Blockset 280 -- 10.2 Nonlinear Amplifier Mathematical Models in Simulinkª 283 -- 10.2.1 The “Memoryless Nonlinearity” Block-Communications Blockset 283 -- 10.2.2 Cubic Polynomial Model 284 -- 10.2.3 Hyperbolic Tangent Model 284 -- 10.2.4 Saleh Model 285 -- 10.2.5 Ghorbani Model 285 -- 10.2.6 Rapp Model 285 -- 10.2.7 Example 286 -- 10.2.8 The “Amplifier” Block-The RF Blockset 286 -- 10.3 Nonlinear Amplifier Physical Models in Simulinkª 289 -- 10.3.1 “General Amplifier” Block 290 -- 10.3.2 “S-Parameter Amplifier” Block 296 -- 10.4 Measurements of Distortion and System Metrics 297 -- 10.4.1 Adjacent-Channel Distortion 297 -- 10.4.2 In-Band Distortion 297 -- 10.4.3 Signal-to-Noise and Distortion Ratio 300 -- 10.4.4 Error Vector Magnitude 300 -- 10.5 Example: Performance of Digital Modulation with Nonlinearity 301 -- 10.6 Simulation of Noise-to-Power Ratio 302 -- 10.7 Simulation of Noise Figure in Nonlinear Systems 304 -- 10.8 Summary 306 -- Appendix A Basics of Signal and System Analysis 307 -- A.1 Signals 308 -- A.2 Systems 308 -- Appendix B Random Signal Analysis 311 -- B.1 Random Variables 312 -- B.1.1 Examples of Random Variables 312 -- B.1.2 Functions of Random Variables 312 -- B.1.3 Expectation 313 -- B.1.4 Moments 314 -- B.2 Two Random Variables 314 -- B.2.1 Independence 315 -- B.2.2 Joint Statistics 315 -- B.3 Multiple Random Variables 316 -- B.4 Complex Random Variables 317 -- B.5 Gaussian Random Variables 318.
B.5.1 Single Gaussian Random Variable 318 -- B.5.2 Moments of Single Gaussian Random Variable 319 -- B.5.3 Jointly Gaussian Random Variables 319 -- B.5.4 Price's Theorem 320 -- B.5.5 Multiple Gaussian Random Variable 320 -- B.5.6 Central Limit Theorem 321 -- B.6 Random Processes 321 -- B.6.1 Stationarity 322 -- B.6.2 Ergodicity 323 -- B.6.3 White Processes 323 -- B.6.4 Gaussian Processes 324 -- B.7 The Power Spectrum 324 -- B.7.1 White Noise Processes 325 -- B.7.2 Narrowband Processes 326 -- Appendix C Introduction to MATLABª 329 -- C.1 MATLABª Scripts 329 -- C.2 MATLABª Structures 330 -- C.3 MATLABª Graphics 330 -- C.4 Random Number Generators 330 -- C.5 Moments and Correlation Functions of Random Sequences 332 -- C.6 Fourier Transformation 332 -- C.7 MATLABª Toolboxes 333 -- C.7.1 The Communication Toolbox 334 -- C.7.2 The RF Toolbox 334 -- C.8 Simulinkª 335 -- C.8.1 The Communication Blockset 339 -- C.8.2 The RF Blockset 339 -- References 341 -- Index 347.
Record Nr. UNINA-9910141173203321
Gharaibeh Khaled M.  
Chichester, West Sussex, U.K. : , : IEEE Press/Wiley, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear distortion in wireless systems : modeling and simulation with MATLAB / / Khaled M. Gharaibeh
Nonlinear distortion in wireless systems : modeling and simulation with MATLAB / / Khaled M. Gharaibeh
Autore Gharaibeh Khaled M.
Edizione [2nd ed.]
Pubbl/distr/stampa Chichester, West Sussex, U.K. : , : IEEE Press/Wiley, , 2012
Descrizione fisica 1 online resource (387 p.)
Disciplina 621.382/2028553
Collana Wiley - IEEE
Soggetto topico Signal processing - Computer simulation
Electric distortion - Computer simulation
Nonlinear systems - Computer simulation
Wireless communication systems - Computer simulation
ISBN 1-119-96411-3
1-299-18959-8
1-119-96173-4
1-119-96172-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xv -- List of Abbreviations xvii -- List of Figures xix -- List of Tables xxvii -- Acknowledgements xxix -- 1 Introduction 1 -- 1.1 Nonlinearity in Wireless Communication Systems 1 -- 1.1.1 Power Amplifiers 2 -- 1.1.2 Low-Noise Amplifiers (LNAs) 4 -- 1.1.3 Mixers 6 -- 1.2 Nonlinear Distortion in Wireless Systems 6 -- 1.2.1 Adjacent-Channel Interference 8 -- 1.2.2 Modulation Quality and Degradation of System Performance 9 -- 1.2.3 Receiver Desensitization and Cross-Modulation 11 -- 1.3 Modeling and Simulation of Nonlinear Systems 12 -- 1.3.1 Modeling and Simulation in Engineering 12 -- 1.3.2 Modeling and Simulation for Communication System Design 14 -- 1.3.3 Behavioral Modeling of Nonlinear Systems 15 -- 1.3.4 Simulation of Nonlinear Circuits 16 -- 1.4 Organization of the Book 19 -- 1.5 Summary 20 -- 2 Wireless Communication Systems, Standards and Signal Models 21 -- 2.1 Wireless System Architecture 21 -- 2.1.1 RF Transmitter Architectures 23 -- 2.1.2 Receiver Architecture 26 -- 2.2 Digital Signal Processing in Wireless Systems 30 -- 2.2.1 Digital Modulation 31 -- 2.2.2 Pulse Shaping 37 -- 2.2.3 Orthogonal Frequency Division Multiplexing (OFDM) 39 -- 2.2.4 Spread Spectrum Modulation 41 -- 2.3 Mobile System Standards 45 -- 2.3.1 Second-Generation Mobile Systems 46 -- 2.3.2 Third-Generation Mobile Systems 48 -- 2.3.3 Fourth-Generation Mobile Systems 51 -- 2.3.4 Summary 51 -- 2.4 Wireless Network Standards 52 -- 2.4.1 First-Generation Wireless LANs 52 -- 2.4.2 Second-Generation Wireless LANs 52 -- 2.4.3 Third-Generation Wireless Networks (WMANs) 53 -- 2.5 Nonlinear Distortion in Different Wireless Standards 55 -- 2.6 Summary 56 -- 3 Modeling of Nonlinear Systems 59 -- 3.1 Analytical Nonlinear Models 60 -- 3.1.1 General Volterra Series Model 60 -- 3.1.2 Wiener Model 62 -- 3.1.3 Single-Frequency Volterra Models 63 -- 3.1.4 The Parallel Cascade Model 65 -- 3.1.5 Wiener-Hammerstein Models 66 -- 3.1.6 Multi-Input Single-Output (MISO) Volterra Model 67 -- 3.1.7 The Polyspectral Model 67.
3.1.8 Generalized Power Series 68 -- 3.1.9 Memory Polynomials 69 -- 3.1.10 Memoryless Models 70 -- 3.1.11 Power-Series Model 70 -- 3.1.12 The Limiter Family of Models 72 -- 3.2 Empirical Nonlinear Models 74 -- 3.2.1 The Three-Box Model 74 -- 3.2.2 The Abuelma'ati Model 75 -- 3.2.3 Saleh Model 76 -- 3.2.4 Rapp Model 76 -- 3.3 Parameter Extraction of Nonlinear Models from Measured Data 76 -- 3.3.1 Polynomial Models 77 -- 3.3.2 Three-Box Model 79 -- 3.3.3 Volterra Series 80 -- 3.4 Summary 80 -- 4 Nonlinear Transformation of Deterministic Signals 83 -- 4.1 Complex Baseband Analysis and Simulations 84 -- 4.1.1 Complex Envelope of Modulated Signals 85 -- 4.1.2 Baseband Equivalent of Linear System Impulse Response 89 -- 4.2 Complex Baseband Analysis of Memoryless Nonlinear Systems 90 -- 4.2.1 Power-Series Model 92 -- 4.2.2 Limiter Model 92 -- 4.3 Complex Baseband Analysis of Nonlinear Systems with Memory 94 -- 4.3.1 Volterra Series 94 -- 4.3.2 Single-Frequency Volterra Models 95 -- 4.3.3 Wiener-Hammerstein Model 96 -- 4.4 Complex Envelope Analysis with Multiple Bandpass Signals 97 -- 4.4.1 Volterra Series 97 -- 4.4.2 Single-Frequency Volterra Models 99 -- 4.4.3 Wiener-Hammerstein Model 100 -- 4.4.4 Multi-Input Single-Output Nonlinear Model 103 -- 4.4.5 Memoryless Nonlinearity-Power-Series Model 104 -- 4.5 Examples-Response of Power-Series Model to Multiple Signals 106 -- 4.5.1 Single Tone 107 -- 4.5.2 Two-Tone Signal 107 -- 4.5.3 Single-Bandpass Signal 108 -- 4.5.4 Two-Bandpass Signals 108 -- 4.5.5 Single Tone and a Bandpass Signal 109 -- 4.5.6 Multisines 110 -- 4.5.7 Multisine Analysis Using the Generalized Power-Series Model 111 -- 4.6 Summary 111 -- 5 Nonlinear Transformation of Random Signals 113 -- 5.1 Preliminaries 114 -- 5.2 Linear Systems with Stochastic Inputs 114 -- 5.2.1 White Noise 115 -- 5.2.2 Gaussian Processes 116 -- 5.3 Response of a Nonlinear System to a Random Input Signal 116 -- 5.3.1 Power-Series Model 116 -- 5.3.2 Wiener-Hammerstein Models 118 -- 5.4 Response of Nonlinear Systems to Gaussian Inputs 119.
5.4.1 Limiter Model 120 -- 5.4.2 Memoryless Power-Series Model 123 -- 5.5 Response of Nonlinear Systems to Multiple Random Signals 123 -- 5.5.1 Power-Series Model 124 -- 5.5.2 Wiener-Hammerstein Model 126 -- 5.6 Response of Nonlinear Systems to a Random Signal and a Sinusoid 128 -- 5.7 Summary 129 -- 6 Nonlinear Distortion 131 -- 6.1 Identification of Nonlinear Distortion in Digital Wireless Systems 132 -- 6.2 Orthogonalization of the Behavioral Model 134 -- 6.2.1 Orthogonalization of the Volterra Series Model 136 -- 6.2.2 Orthogonalization of Wiener Model 137 -- 6.2.3 Orthogonalization of the Power-Series Model 139 -- 6.3 Autocorrelation Function and Spectral Analysis of the Orthogonalized Model 140 -- 6.3.1 Output Autocorrelation Function 142 -- 6.3.2 Power Spectral Density 142 -- 6.4 Relationship Between System Performance and Uncorrelated Distortion 144 -- 6.5 Examples 146 -- 6.5.1 Narrowband Gaussian Noise 146 -- 6.5.2 Multisines with Deterministic Phases 148 -- 6.5.3 Multisines with Random Phases 152 -- 6.6 Measurement of Uncorrelated Distortion 154 -- 6.7 Summary 155 -- 7 Nonlinear System Figures of Merit 157 -- 7.1 Analogue System Nonlinear Figures of Merit 158 -- 7.1.1 Intermodulation Ratio 158 -- 7.1.2 Intercept Points 159 -- 7.1.3 1-dB Compression Point 160 -- 7.2 Adjacent-Channel Power Ratio (ACPR) 161 -- 7.3 Signal-to-Noise Ratio (SNR) 161 -- 7.4 CDMA Waveform Quality Factor (ρ) 163 -- 7.5 Error Vector Magnitude (EVM) 163 -- 7.6 Co-Channel Power Ratio (CCPR) 164 -- 7.7 Noise-to-Power Ratio (NPR) 164 -- 7.7.1 NPR of Communication Signals 165 -- 7.7.2 NBGN Model for Input Signal 166 -- 7.8 Noise Figure in Nonlinear Systems 167 -- 7.8.1 Nonlinear Noise Figure 169 -- 7.8.2 NBGN Model for Input Signal and Noise 171 -- 7.9 Summary 173 -- 8 Communication System Models and Simulation in MATLABª 175 -- 8.1 Simulation of Communication Systems 176 -- 8.1.1 Random Signal Generation 176 -- 8.1.2 System Models 176 -- 8.1.3 Baseband versus Passband Simulations 177 -- 8.2 Choosing the Sampling Rate in MATLABª Simulations 178.
8.3 Random Signal Generation in MATLABª 178 -- 8.3.1 White Gaussian Noise Generator 178 -- 8.3.2 Random Matrices 179 -- 8.3.3 Random Integer Matrices 179 -- 8.4 Pulse-Shaping Filters 180 -- 8.4.1 Raised Cosine Filters 180 -- 8.4.2 Gaussian Filters 182 -- 8.5 Error Detection and Correction 183 -- 8.6 Digital Modulation in MATLABª 184 -- 8.6.1 Linear Modulation 184 -- 8.6.2 Nonlinear Modulation 186 -- 8.7 Channel Models in MATLABª 188 -- 8.8 Simulation of System Performance in MATLABª 188 -- 8.8.1 BER 190 -- 8.8.2 Scatter Plots 195 -- 8.8.3 Eye Diagrams 196 -- 8.9 Generation of Communications Signals in MATLABª 198 -- 8.9.1 Narrowband Gaussian Noise 198 -- 8.9.2 OFDM Signals 199 -- 8.9.3 DS-SS Signals 203 -- 8.9.4 Multisine Signals 206 -- 8.10 Example 210 -- 8.11 Random Signal Generation in Simulinkª 211 -- 8.11.1 Random Data Sources 211 -- 8.11.2 Random Noise Generators 212 -- 8.11.3 Sequence Generators 213 -- 8.12 Digital Modulation in Simulinkª 214 -- 8.13 Simulation of System Performance in Simulinkª 214 -- 8.13.1 Example 1: Random Sources and Modulation 216 -- 8.13.2 Example 2: CDMA Transmitter 217 -- 8.13.3 Simulation of Wireless Standards in Simulinkª 220 -- 8.14 Summary 220 -- 9 Simulation of Nonlinear Systems in MATLABª 221 -- 9.1 Generation of Nonlinearity in MATLABª 221 -- 9.1.1 Memoryless Nonlinearity 221 -- 9.1.2 Nonlinearity with Memory 222 -- 9.2 Fitting a Nonlinear Model to Measured Data 224 -- 9.2.1 Fitting a Memoryless Polynomial Model to Measured Data 224 -- 9.2.2 Fitting a Three-Box Model to Measured Data 228 -- 9.2.3 Fitting a Memory Polynomial Model to a Simulated Nonlinearity 234 -- 9.3 Autocorrelation and Spectrum Estimation 235 -- 9.3.1 Estimation of the Autocorrelation Function 235 -- 9.3.2 Plotting the Signal Spectrum 237 -- 9.3.3 Power Measurements from a PSD 239 -- 9.4 Spectrum of the Output of a Memoryless Nonlinearity 240 -- 9.4.1 Single Channel 240 -- 9.4.2 Two Channels 243 -- 9.5 Spectrum of the Output of a Nonlinearity with Memory 246.
9.5.1 Three-Box Model 246 -- 9.5.2 Memory Polynomial Model 249 -- 9.6 Spectrum of Orthogonalized Nonlinear Model 251 -- 9.7 Estimation of System Metrics from Simulated Spectra 256 -- 9.7.1 Signal-to-Noise and Distortion Ratio (SNDR) 257 -- 9.7.2 EVM 260 -- 9.7.3 ACPR 262 -- 9.8 Simulation of Probability of Error 263 -- 9.9 Simulation of Noise-to-Power Ratio 268 -- 9.10 Simulation of Nonlinear Noise Figure 271 -- 9.11 Summary 278 -- 10 Simulation of Nonlinear Systems in Simulinkª 279 -- 10.1 RF Impairments in Simulinkª 280 -- 10.1.1 Communications Blockset 280 -- 10.1.2 The RF Blockset 280 -- 10.2 Nonlinear Amplifier Mathematical Models in Simulinkª 283 -- 10.2.1 The “Memoryless Nonlinearity” Block-Communications Blockset 283 -- 10.2.2 Cubic Polynomial Model 284 -- 10.2.3 Hyperbolic Tangent Model 284 -- 10.2.4 Saleh Model 285 -- 10.2.5 Ghorbani Model 285 -- 10.2.6 Rapp Model 285 -- 10.2.7 Example 286 -- 10.2.8 The “Amplifier” Block-The RF Blockset 286 -- 10.3 Nonlinear Amplifier Physical Models in Simulinkª 289 -- 10.3.1 “General Amplifier” Block 290 -- 10.3.2 “S-Parameter Amplifier” Block 296 -- 10.4 Measurements of Distortion and System Metrics 297 -- 10.4.1 Adjacent-Channel Distortion 297 -- 10.4.2 In-Band Distortion 297 -- 10.4.3 Signal-to-Noise and Distortion Ratio 300 -- 10.4.4 Error Vector Magnitude 300 -- 10.5 Example: Performance of Digital Modulation with Nonlinearity 301 -- 10.6 Simulation of Noise-to-Power Ratio 302 -- 10.7 Simulation of Noise Figure in Nonlinear Systems 304 -- 10.8 Summary 306 -- Appendix A Basics of Signal and System Analysis 307 -- A.1 Signals 308 -- A.2 Systems 308 -- Appendix B Random Signal Analysis 311 -- B.1 Random Variables 312 -- B.1.1 Examples of Random Variables 312 -- B.1.2 Functions of Random Variables 312 -- B.1.3 Expectation 313 -- B.1.4 Moments 314 -- B.2 Two Random Variables 314 -- B.2.1 Independence 315 -- B.2.2 Joint Statistics 315 -- B.3 Multiple Random Variables 316 -- B.4 Complex Random Variables 317 -- B.5 Gaussian Random Variables 318.
B.5.1 Single Gaussian Random Variable 318 -- B.5.2 Moments of Single Gaussian Random Variable 319 -- B.5.3 Jointly Gaussian Random Variables 319 -- B.5.4 Price's Theorem 320 -- B.5.5 Multiple Gaussian Random Variable 320 -- B.5.6 Central Limit Theorem 321 -- B.6 Random Processes 321 -- B.6.1 Stationarity 322 -- B.6.2 Ergodicity 323 -- B.6.3 White Processes 323 -- B.6.4 Gaussian Processes 324 -- B.7 The Power Spectrum 324 -- B.7.1 White Noise Processes 325 -- B.7.2 Narrowband Processes 326 -- Appendix C Introduction to MATLABª 329 -- C.1 MATLABª Scripts 329 -- C.2 MATLABª Structures 330 -- C.3 MATLABª Graphics 330 -- C.4 Random Number Generators 330 -- C.5 Moments and Correlation Functions of Random Sequences 332 -- C.6 Fourier Transformation 332 -- C.7 MATLABª Toolboxes 333 -- C.7.1 The Communication Toolbox 334 -- C.7.2 The RF Toolbox 334 -- C.8 Simulinkª 335 -- C.8.1 The Communication Blockset 339 -- C.8.2 The RF Blockset 339 -- References 341 -- Index 347.
Record Nr. UNINA-9910828595403321
Gharaibeh Khaled M.  
Chichester, West Sussex, U.K. : , : IEEE Press/Wiley, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui