Collaborative internet of things (C-IOT) : for future smart connected life and business / / Fawzi Behmann, Kwok Wu
| Collaborative internet of things (C-IOT) : for future smart connected life and business / / Fawzi Behmann, Kwok Wu |
| Autore | Behmann Fawzi |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Chichester, West Sussex, United Kingdom : , : IEEE, Wiley, , 2015 |
| Descrizione fisica | 1 online resource (307 p.) |
| Disciplina | 004.67/8 |
| Altri autori (Persone) | WuKwok |
| Soggetto topico |
Embedded Internet devices
Internet of things |
| ISBN |
1-118-91371-X
1-118-91373-6 |
| Classificazione | TEC061000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Machine generated contents note: Contents Forward Preface 1 -- INTRODUCTIONS AND MOTIVATION 1.1 Introduction 1.2 The book 1.2.1 Objectives 1.2.2 Benefits 1.2.3 Organization 1.2.4 Book Cover 1.2.5 Impact of C-IoT 1.2.6 Summary 1.3 C-IoT Terms of References 1.3.1 Introduction 1.3.2 Need for IoT Framework 1.3.3 C-IoT Domains and Business Apps Model 1.3.4 C-IoT Roadmap 1.3.5 C-IoT Platform and Developer Community 1.3.6 C-IoT Opportunities for Business apps, solutions and systems 1.4 The Future 1.4.1 General Trends 1.4.2 Point Solutions 1.4.3 Collaborative IoT 1.4.4 C-IoT and RFID 1.4.5 C-IoT and Nanotechnology 1.4.6 Cyber-Collaborative IoT (C2-IoT) 1.4.7 C2-IoT and EBOLA Case 1.4.8 Summary 2 -- APPLICATION REQUIREMENTS 2.1 C-IOT Landscape 2.1.1 C-IoT Model and Architecture Layers 2.1.2 C-IoT Model and Enabling Technologies 2.1.3 Definition of key elements 2.1.4 Requirement Considerations 2.1.5 C-IoT System Solution - Requirement Considerations 2.2 Applications Requirement - Use Cases 2.3 Health & Fitness (Lead Example) 2.3.1 Landscape 2.3.2 Health & Fitness - Sensing Requirements 2.3.3 Health & Fitness - Gateway Requirements 2.3.4 Health & Fitness - Service Requirements 2.3.5 Health & Fitness - Solution Considerations 2.3.6 Health & Fitness - System Considerations 2.3.7 Health & Fitness and Hospitals 2.4 Video Surveillance 2.4.1 Landscape 2.4.2 Video Surveillance - Across Home, Industry and Infrastructure 2.4.3 Video Surveillance - Sensing Requirements 2.4.4 Video Surveillance - Gateway Requirements 2.4.5 Video Surveillance - Services 2.4.6 Example: Red Light Camera - Photo Enforcement Camera 2.4.7 Conclusion 2.5 Smart Home & Building 2.5.1 Landscape 2.5.2 Requirement 2.5.3 Home - Sensing Requirements 2.5.4 Home - Gateway Requirements 2.5.5 Home - Services 2.6 Smart Energy 2.6.1 Landscape 2.6.2 Requirements 2.6.3 Smart Energy - Sensing Requirements 2.6.4 Smart Energy - Gateway Requirements 2.6.5 Smart Energy - Services 2.6.6 The Smart Energy App 2.6.7 Smart Energy and Network Security 2.7 Track & Monitor 2.7.1 Landscape 2.7.2 Track & Monitory - Sensing Requirements 2.7.3 Track & Monitor - Services 2.7.4 Track & Monitor - Solution Considerations 2.7.5 Track & Monitor - Examples 2.8 Smart Factory/Manufacturing 2.8.1 Factory Automation - Robot 2.8.2 Caregiver and Robot 2.8.3 Industrial Robot 2.9 Others: Smart Car, Smart Truck and Smart City 2.9.1 Smart Car 2.9.2 Smart Roadside 2.9.3 Drone 2.9.4 Machine Vision 2.9.5 Smart City 3 -- C-IOT APPLICATIONS AND SERVICES 3.1 Smart IoT Application Use Cases 3.1.1 Health monitoring - Individual level (Fitness/Health Tracking wearables) 3.1.2 Health Monitoring at Business level (used in clinic) 3.1.3 Home and Building Automation - Individual level (Smart Home) 3.1.3.1 Smart Thermostat (Smart Energy Management) 3.1.3.2 Smart Smoke Alarm (Safety) 3.1.3.3 Smart IP Camera for Video Surveillance (Security) 3.1.3.4 Smart Service Robots at Consumer level - Roombas iRobot 3.1.3.5 Smart Home Gateway (Scalable for Smart Building Automation) 3.1.3.6 Smart Building Automation 3.1.4 Smart Energy and Smart Grid 3.1.5 Smart Energy Gateways 3.1.6 Industrial and Factory Automation 3.1.7 Smart Transportation & Fleet Logistics (Connected Cars - V2X: V2V, V2I) 3.1.8 Smart City 3.2 Smart IoT Platform 3.2.2 Smart IoT Software Gateway Platform 3.2.3 Smart Sensor Fusion Platform 3.3 Secured C-IoT Software Platform 3.3.1 C-IoT Security - Example on Smart Energy 3.3.2 Securing NAN (Metrology-to-Concentrator) 3.3.3 Securing Home Area Network (HAN) 3.3.4 Securing WAN (Concentrator-to-Sub Station/Utility Servers) 3.3.5 Platform Solution for Concentrator 3.3.6 Platform Solution for Sub Station/Utility Servers 3.3.7 Network Topology and IP Addressing: WAN 3.3.8 Security on the Concentrator and Utility Servers 3.3.9 Summary on C-IoT Security 4 -- IOT REFERENCE DESIGN KIT 5 -- C-IOT CLOUD-BASED SERVICES AND END DEVICE DIVERSIITY 5.1 C-IoT Cloud Based Services 5.1.1 Introduction and Drivers to C-IoT Service Platform 5.1.2 Classes of C-IoT Cloud Computing 5.1.3 C-IoT Innovative and Collaborative Services 5.1.4 The Emerging Data Centre LAN 5.2 C-IoT User Device Diversity 5.2.1 Introduction 5.2.2 C-IoT Developers/Platform 5.2.3 Wearable Devices - Individual 5.2.4 Harvesting (Self-powered nodes) - Infrastructure Applications 5.2.5 Embedded Devices and Servers 5.2.6 Performing Sentiment Analysis Using Big Data 5.2.7 Far-Reaching Consequence 5.2.8 Collaboration 6 -- IMPACT OF C-IOT AND TIPS 6.1 Impact on Business Process Productivity and Smart of Digital Life 6.1.1 Individual 6.1.2 Industry 6.1.3 Infrastructure 6.2 Considerations of developing Differentiated C-IoT Solutions 6.2.1 Software Processes and Platform 6.2.3 Standardization 6.2.4 Advertising Ecosystem Value Exchange 6.2.5 Opportunity with Industry Supply Chain for Material Handling 6.3 Practical Tips in maintaining Digital Life Style 6.3.1 Mobile and Wearable Computing 6.3.2 Robotics and Automation 6.3.3 Sensors and C-IoT 6.3.4 BIG Data and Predictive Analysis 6.3.5 The Changing Workforce 6.3.6 Sustainability 7 -- CONCLUSION 7.1 Simple C-IoT Domains and Model 7.2 Disruptive Business Applications of C-IoT 7.3 A New LifeStyle 7.4 Development Platform 7.5 C-IoT emerging Standards, Consortiums and other Initiatives 7.5.1 C-IoT Emerging Standards 7.5.2 C-IoT Emerging Consortiums 7.5.3 Forums, Workshops, and other Initiatives 7.5.4 C-IoT and Radio Communications 7.5.5 C-IoT and Nanotechnology 7.5.6 C-IoT and Security 7.6 Final Note References About the Authors Index . |
| Record Nr. | UNINA-9910140625703321 |
Behmann Fawzi
|
||
| Chichester, West Sussex, United Kingdom : , : IEEE, Wiley, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Collaborative internet of things (C-IOT) : for future smart connected life and business / / Fawzi Behmann, Kwok Wu
| Collaborative internet of things (C-IOT) : for future smart connected life and business / / Fawzi Behmann, Kwok Wu |
| Autore | Behmann Fawzi |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Chichester, West Sussex, United Kingdom : , : IEEE, Wiley, , 2015 |
| Descrizione fisica | 1 online resource (307 p.) |
| Disciplina | 004.67/8 |
| Altri autori (Persone) | WuKwok |
| Soggetto topico |
Embedded Internet devices
Internet of things |
| ISBN |
1-118-91371-X
1-118-91373-6 |
| Classificazione | TEC061000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Machine generated contents note: Contents Forward Preface 1 -- INTRODUCTIONS AND MOTIVATION 1.1 Introduction 1.2 The book 1.2.1 Objectives 1.2.2 Benefits 1.2.3 Organization 1.2.4 Book Cover 1.2.5 Impact of C-IoT 1.2.6 Summary 1.3 C-IoT Terms of References 1.3.1 Introduction 1.3.2 Need for IoT Framework 1.3.3 C-IoT Domains and Business Apps Model 1.3.4 C-IoT Roadmap 1.3.5 C-IoT Platform and Developer Community 1.3.6 C-IoT Opportunities for Business apps, solutions and systems 1.4 The Future 1.4.1 General Trends 1.4.2 Point Solutions 1.4.3 Collaborative IoT 1.4.4 C-IoT and RFID 1.4.5 C-IoT and Nanotechnology 1.4.6 Cyber-Collaborative IoT (C2-IoT) 1.4.7 C2-IoT and EBOLA Case 1.4.8 Summary 2 -- APPLICATION REQUIREMENTS 2.1 C-IOT Landscape 2.1.1 C-IoT Model and Architecture Layers 2.1.2 C-IoT Model and Enabling Technologies 2.1.3 Definition of key elements 2.1.4 Requirement Considerations 2.1.5 C-IoT System Solution - Requirement Considerations 2.2 Applications Requirement - Use Cases 2.3 Health & Fitness (Lead Example) 2.3.1 Landscape 2.3.2 Health & Fitness - Sensing Requirements 2.3.3 Health & Fitness - Gateway Requirements 2.3.4 Health & Fitness - Service Requirements 2.3.5 Health & Fitness - Solution Considerations 2.3.6 Health & Fitness - System Considerations 2.3.7 Health & Fitness and Hospitals 2.4 Video Surveillance 2.4.1 Landscape 2.4.2 Video Surveillance - Across Home, Industry and Infrastructure 2.4.3 Video Surveillance - Sensing Requirements 2.4.4 Video Surveillance - Gateway Requirements 2.4.5 Video Surveillance - Services 2.4.6 Example: Red Light Camera - Photo Enforcement Camera 2.4.7 Conclusion 2.5 Smart Home & Building 2.5.1 Landscape 2.5.2 Requirement 2.5.3 Home - Sensing Requirements 2.5.4 Home - Gateway Requirements 2.5.5 Home - Services 2.6 Smart Energy 2.6.1 Landscape 2.6.2 Requirements 2.6.3 Smart Energy - Sensing Requirements 2.6.4 Smart Energy - Gateway Requirements 2.6.5 Smart Energy - Services 2.6.6 The Smart Energy App 2.6.7 Smart Energy and Network Security 2.7 Track & Monitor 2.7.1 Landscape 2.7.2 Track & Monitory - Sensing Requirements 2.7.3 Track & Monitor - Services 2.7.4 Track & Monitor - Solution Considerations 2.7.5 Track & Monitor - Examples 2.8 Smart Factory/Manufacturing 2.8.1 Factory Automation - Robot 2.8.2 Caregiver and Robot 2.8.3 Industrial Robot 2.9 Others: Smart Car, Smart Truck and Smart City 2.9.1 Smart Car 2.9.2 Smart Roadside 2.9.3 Drone 2.9.4 Machine Vision 2.9.5 Smart City 3 -- C-IOT APPLICATIONS AND SERVICES 3.1 Smart IoT Application Use Cases 3.1.1 Health monitoring - Individual level (Fitness/Health Tracking wearables) 3.1.2 Health Monitoring at Business level (used in clinic) 3.1.3 Home and Building Automation - Individual level (Smart Home) 3.1.3.1 Smart Thermostat (Smart Energy Management) 3.1.3.2 Smart Smoke Alarm (Safety) 3.1.3.3 Smart IP Camera for Video Surveillance (Security) 3.1.3.4 Smart Service Robots at Consumer level - Roombas iRobot 3.1.3.5 Smart Home Gateway (Scalable for Smart Building Automation) 3.1.3.6 Smart Building Automation 3.1.4 Smart Energy and Smart Grid 3.1.5 Smart Energy Gateways 3.1.6 Industrial and Factory Automation 3.1.7 Smart Transportation & Fleet Logistics (Connected Cars - V2X: V2V, V2I) 3.1.8 Smart City 3.2 Smart IoT Platform 3.2.2 Smart IoT Software Gateway Platform 3.2.3 Smart Sensor Fusion Platform 3.3 Secured C-IoT Software Platform 3.3.1 C-IoT Security - Example on Smart Energy 3.3.2 Securing NAN (Metrology-to-Concentrator) 3.3.3 Securing Home Area Network (HAN) 3.3.4 Securing WAN (Concentrator-to-Sub Station/Utility Servers) 3.3.5 Platform Solution for Concentrator 3.3.6 Platform Solution for Sub Station/Utility Servers 3.3.7 Network Topology and IP Addressing: WAN 3.3.8 Security on the Concentrator and Utility Servers 3.3.9 Summary on C-IoT Security 4 -- IOT REFERENCE DESIGN KIT 5 -- C-IOT CLOUD-BASED SERVICES AND END DEVICE DIVERSIITY 5.1 C-IoT Cloud Based Services 5.1.1 Introduction and Drivers to C-IoT Service Platform 5.1.2 Classes of C-IoT Cloud Computing 5.1.3 C-IoT Innovative and Collaborative Services 5.1.4 The Emerging Data Centre LAN 5.2 C-IoT User Device Diversity 5.2.1 Introduction 5.2.2 C-IoT Developers/Platform 5.2.3 Wearable Devices - Individual 5.2.4 Harvesting (Self-powered nodes) - Infrastructure Applications 5.2.5 Embedded Devices and Servers 5.2.6 Performing Sentiment Analysis Using Big Data 5.2.7 Far-Reaching Consequence 5.2.8 Collaboration 6 -- IMPACT OF C-IOT AND TIPS 6.1 Impact on Business Process Productivity and Smart of Digital Life 6.1.1 Individual 6.1.2 Industry 6.1.3 Infrastructure 6.2 Considerations of developing Differentiated C-IoT Solutions 6.2.1 Software Processes and Platform 6.2.3 Standardization 6.2.4 Advertising Ecosystem Value Exchange 6.2.5 Opportunity with Industry Supply Chain for Material Handling 6.3 Practical Tips in maintaining Digital Life Style 6.3.1 Mobile and Wearable Computing 6.3.2 Robotics and Automation 6.3.3 Sensors and C-IoT 6.3.4 BIG Data and Predictive Analysis 6.3.5 The Changing Workforce 6.3.6 Sustainability 7 -- CONCLUSION 7.1 Simple C-IoT Domains and Model 7.2 Disruptive Business Applications of C-IoT 7.3 A New LifeStyle 7.4 Development Platform 7.5 C-IoT emerging Standards, Consortiums and other Initiatives 7.5.1 C-IoT Emerging Standards 7.5.2 C-IoT Emerging Consortiums 7.5.3 Forums, Workshops, and other Initiatives 7.5.4 C-IoT and Radio Communications 7.5.5 C-IoT and Nanotechnology 7.5.6 C-IoT and Security 7.6 Final Note References About the Authors Index . |
| Record Nr. | UNINA-9910827584403321 |
Behmann Fawzi
|
||
| Chichester, West Sussex, United Kingdom : , : IEEE, Wiley, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Doppler radar physiological sensing / / edited by Olga Boric-Lubecke, Victor M. Lubecke, Amy D. Droitcour, Byung-Kwon Park, Aditya Singh
| Doppler radar physiological sensing / / edited by Olga Boric-Lubecke, Victor M. Lubecke, Amy D. Droitcour, Byung-Kwon Park, Aditya Singh |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : IEEE, Wiley, , [2016] |
| Descrizione fisica | 1 online resource (303 p.) |
| Disciplina | 362.11068 |
| Collana | Wiley series in biomedical engineering and multi-disciplinary integrated systems |
| Soggetto topico |
Patient monitoring - Equipment and supplies
Doppler radar Heart beat |
| ISBN |
1-119-07843-1
1-119-07842-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
List of Contributors xi -- 1 Introduction 1 /Amy D. Droitcour, Olga Boric-Lubecke, Shuhei Yamada, and Victor M. Lubecke -- 1.1 Current Methods of Physiological Monitoring, 2 -- 1.2 Need for Noncontact Physiological Monitoring, 3 -- 1.2.1 Patients with Compromised Skin, 3 -- 1.2.2 Sleep Monitoring, 4 -- 1.2.3 Elderly Monitoring, 5 -- 1.3 Doppler Radar Potential for Physiological Monitoring, 5 -- 1.3.1 Principle of Operation and Power Budget, 6 -- 1.3.2 History of Doppler Radar in Physiological Monitoring, 8 -- References, 16 -- 2 Radar Principles 21 /Ehsan Yavari, Olga Boric-Lubecke, and Shuhei Yamada -- 2.1 Brief History of Radar, 21 -- 2.2 Radar Principle of Operation, 22 -- 2.2.1 Electromagnetic Wave Propagation and Reflection, 23 -- 2.2.2 Radar Cross Section, 24 -- 2.2.3 Radar Equation, 25 -- 2.3 Doppler Radar, 28 -- 2.3.1 Doppler Effect, 28 -- 2.3.2 Doppler Radar Waveforms: CW, FMCW, Pulsed, 29 -- 2.4 Monostatic and Bistatic Radar, 32 -- 2.5 Radar Applications, 35 -- References, 36 -- 3 Physiological Motion and Measurement 39 /Amy D. Droitcour and Olga Boric-Lubecke -- 3.1 Respiratory System Motion, 39 -- 3.1.1 Introduction to the Respiratory System, 39 -- 3.1.2 Respiratory Motion, 40 -- 3.1.3 Chest Wall Motion Associated with Breathing, 43 -- 3.1.4 Breathing Patterns in Disease and Disorder, 43 -- 3.2 Heart System Motion, 44 -- 3.2.1 Location and Gross Anatomy of the Heart, 45 -- 3.2.2 Electrical and Mechanical Events of the Heart, 46 -- 3.2.3 Chest Surface Motion Due to Heart Function, 48 -- 3.2.4 Quantitative Measurement of Chest Wall Motion Due to Heartbeat, 50 -- 3.3 Circulatory System Motion, 53 -- 3.3.1 Location and Structure of the Major Arteries and Veins, 54 -- 3.3.2 Blood Flow Through Arteries and Veins, 55 -- 3.3.3 Surface Motion from Blood Flow, 56 -- 3.3.4 Circulatory System Motion: Variation with Age, 57 -- 3.4 Interaction of Respiratory, Heart, and Circulatory Motion at the Skin Surface, 58 -- 3.5 Measurement of Heart and Respiratory Surface Motion, 58.
3.5.1 Radar Measurement of Physiological Motion, 59 -- 3.5.2 Surface Motion Measurement of Respiration Rate, 59 -- 3.5.3 Surface Motion Measurement of Heart/Pulse Rate, 61 -- References, 63 -- 4 Physiological Doppler Radar Overview 69 /Aditya Singh, Byung-Kwon Park, Olga Boric-Lubecke, Isar Mostafanezhad, and Victor M. Lubecke -- 4.1 RF Front End, 70 -- 4.1.1 Quadrature Receiver, 73 -- 4.1.2 Phase Coherence and Range Correlation, 77 -- 4.1.3 Frequency Choice, 79 -- 4.1.4 Antenna Considerations, 80 -- 4.1.5 Power Budget, 80 -- 4.2 Baseband Module, 83 -- 4.2.1 Analog Signal Conditioning and Coupling Methods, 83 -- 4.2.2 Data Acquisition, 85 -- 4.3 Signal Processing, 86 -- 4.3.1 Phase Demodulation, 86 -- 4.3.2 Demodulated Phase Processing, 87 -- 4.4 Noise Sources, 90 -- 4.4.1 Electrical Noise, 90 -- 4.4.2 Mechanical Noise, 92 -- 4.5 Conclusions, 92 -- References, 93 -- 5 CW Homodyne Transceiver Challenges 95 /Aditya Singh, Alex Vergara, Amy D. Droitcour, Byung-Kwon Park, Olga Boric-Lubecke, Shuhei Yamada, and Victor M. Lubecke -- 5.1 RF Front End, 95 -- 5.1.1 Single-Channel Limitations, 96 -- 5.1.2 LO Leakage Cancellation, 103 -- 5.1.3 IQ Imbalance Assessment, 109 -- 5.2 Baseband Module, 113 -- 5.2.1 AC and DC Coupling, 113 -- 5.2.2 DC Canceller, 114 -- 5.3 Signal Demodulation, 118 -- 5.3.1 DC Offset and DC Information, 118 -- 5.3.2 Center Tracking, 125 -- 5.3.3 DC Cancellation Results, 130 -- References, 134 -- 6 Sources of Noise and Signal-to-Noise Ratio 137 /Amy D. Droitcour, Olga Boric-Lubecke, and Shuhei Yamada -- 6.1 Signal Power, Radar Equation, and Radar Cross Section, 138 -- 6.1.1 Radar Equation, 138 -- 6.1.2 Radar Cross Section, 140 -- 6.1.3 Reflection and Absorption, 141 -- 6.1.4 Phase-to-Amplitude Conversion, 141 -- 6.2 Oscillator Phase Noise, Range Correlation and Residual Phase Noise, 143 -- 6.2.1 Oscillator Phase Noise, 143 -- 6.2.2 Range Correlation and Residual Phase Noise, 147 -- 6.3 Contributions of Various Noise Sources, 151 -- 6.3.1 Phase Noise, 151. 6.3.2 Baseband 1/f Noise, 154 -- 6.3.3 RF Additive White Gaussian Noise, 154 -- 6.4 Signal-to-Noise Ratio, 155 -- 6.5 Validation of Range Correlation, 157 -- 6.6 Human Testing Validation, 158 -- References, 168 -- 7 Doppler Radar Physiological Assessments 171 /John Kiriazi, Olga Boric-Lubecke, Shuhei Yamada, Victor M. Lubecke, and Wansuree Massagram -- 7.1 Actigraphy, 172 -- 7.2 Respiratory Rate, 176 -- 7.3 Tidal Volume, 179 -- 7.4 Heart Rates, 184 -- 7.5 Heart Rate Variability, 185 -- 7.6 Respiratory Sinus Arrhythmia, 190 -- 7.7 RCs and Subject Orientation, 196 -- References, 204 -- 8 Advanced Performance Architectures 207 /Aditya Singh, Aly Fathy, Isar Mostafanezhad, Jenshan Lin, Olga Boric-Lubecke, Shuhei Yamada, Victor M. Lubecke, and Yazhou Wang -- 8.1 DC Offset and Spectrum Folding, 208 -- 8.1.1 Single-Channel Homodyne System with Phase Tuning, 208 -- 8.1.2 Heterodyne System with Frequency Tuning, 213 -- 8.1.3 Low-IF Architecture, 220 -- 8.2 Motion Interference Suppression, 224 -- 8.2.1 Interference Cancellation, 226 -- 8.2.2 Bistatic Radar: Sensor Nodes, 231 -- 8.2.3 Passive RF Tags, 240 -- 8.3 Range Detection, 250 -- 8.3.1 Physiological Monitoring with FMCW Radar, 250 -- 8.3.2 Physiological Monitoring with UWB Radar, 251 -- References, 266 -- 9 Applications and Future Research 269 /Aditya Singh and Victor M. Lubecke -- 9.1 Commercial Development, 269 -- 9.1.1 Healthcare, 269 -- 9.1.2 Defense, 272 -- 9.2 Recent Research Areas, 272 -- 9.2.1 Sleep Study, 272 -- 9.2.2 Range, 275 -- 9.2.3 Multiple Subject Detection, 276 -- 9.2.4 Animal Monitoring, 279 -- 9.3 Conclusion, 282 -- References, 282 -- Index 285. |
| Record Nr. | UNINA-9910137425903321 |
| Hoboken, New Jersey : , : IEEE, Wiley, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Doppler radar physiological sensing / / edited by Olga Boric-Lubecke, Victor M. Lubecke, Amy D. Droitcour, Byung-Kwon Park, Aditya Singh
| Doppler radar physiological sensing / / edited by Olga Boric-Lubecke, Victor M. Lubecke, Amy D. Droitcour, Byung-Kwon Park, Aditya Singh |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : IEEE, Wiley, , [2016] |
| Descrizione fisica | 1 online resource (303 p.) |
| Disciplina | 362.11068 |
| Collana | Wiley series in biomedical engineering and multi-disciplinary integrated systems |
| Soggetto topico |
Patient monitoring - Equipment and supplies
Doppler radar Heart beat |
| ISBN |
1-119-07843-1
1-119-07842-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
List of Contributors xi -- 1 Introduction 1 /Amy D. Droitcour, Olga Boric-Lubecke, Shuhei Yamada, and Victor M. Lubecke -- 1.1 Current Methods of Physiological Monitoring, 2 -- 1.2 Need for Noncontact Physiological Monitoring, 3 -- 1.2.1 Patients with Compromised Skin, 3 -- 1.2.2 Sleep Monitoring, 4 -- 1.2.3 Elderly Monitoring, 5 -- 1.3 Doppler Radar Potential for Physiological Monitoring, 5 -- 1.3.1 Principle of Operation and Power Budget, 6 -- 1.3.2 History of Doppler Radar in Physiological Monitoring, 8 -- References, 16 -- 2 Radar Principles 21 /Ehsan Yavari, Olga Boric-Lubecke, and Shuhei Yamada -- 2.1 Brief History of Radar, 21 -- 2.2 Radar Principle of Operation, 22 -- 2.2.1 Electromagnetic Wave Propagation and Reflection, 23 -- 2.2.2 Radar Cross Section, 24 -- 2.2.3 Radar Equation, 25 -- 2.3 Doppler Radar, 28 -- 2.3.1 Doppler Effect, 28 -- 2.3.2 Doppler Radar Waveforms: CW, FMCW, Pulsed, 29 -- 2.4 Monostatic and Bistatic Radar, 32 -- 2.5 Radar Applications, 35 -- References, 36 -- 3 Physiological Motion and Measurement 39 /Amy D. Droitcour and Olga Boric-Lubecke -- 3.1 Respiratory System Motion, 39 -- 3.1.1 Introduction to the Respiratory System, 39 -- 3.1.2 Respiratory Motion, 40 -- 3.1.3 Chest Wall Motion Associated with Breathing, 43 -- 3.1.4 Breathing Patterns in Disease and Disorder, 43 -- 3.2 Heart System Motion, 44 -- 3.2.1 Location and Gross Anatomy of the Heart, 45 -- 3.2.2 Electrical and Mechanical Events of the Heart, 46 -- 3.2.3 Chest Surface Motion Due to Heart Function, 48 -- 3.2.4 Quantitative Measurement of Chest Wall Motion Due to Heartbeat, 50 -- 3.3 Circulatory System Motion, 53 -- 3.3.1 Location and Structure of the Major Arteries and Veins, 54 -- 3.3.2 Blood Flow Through Arteries and Veins, 55 -- 3.3.3 Surface Motion from Blood Flow, 56 -- 3.3.4 Circulatory System Motion: Variation with Age, 57 -- 3.4 Interaction of Respiratory, Heart, and Circulatory Motion at the Skin Surface, 58 -- 3.5 Measurement of Heart and Respiratory Surface Motion, 58.
3.5.1 Radar Measurement of Physiological Motion, 59 -- 3.5.2 Surface Motion Measurement of Respiration Rate, 59 -- 3.5.3 Surface Motion Measurement of Heart/Pulse Rate, 61 -- References, 63 -- 4 Physiological Doppler Radar Overview 69 /Aditya Singh, Byung-Kwon Park, Olga Boric-Lubecke, Isar Mostafanezhad, and Victor M. Lubecke -- 4.1 RF Front End, 70 -- 4.1.1 Quadrature Receiver, 73 -- 4.1.2 Phase Coherence and Range Correlation, 77 -- 4.1.3 Frequency Choice, 79 -- 4.1.4 Antenna Considerations, 80 -- 4.1.5 Power Budget, 80 -- 4.2 Baseband Module, 83 -- 4.2.1 Analog Signal Conditioning and Coupling Methods, 83 -- 4.2.2 Data Acquisition, 85 -- 4.3 Signal Processing, 86 -- 4.3.1 Phase Demodulation, 86 -- 4.3.2 Demodulated Phase Processing, 87 -- 4.4 Noise Sources, 90 -- 4.4.1 Electrical Noise, 90 -- 4.4.2 Mechanical Noise, 92 -- 4.5 Conclusions, 92 -- References, 93 -- 5 CW Homodyne Transceiver Challenges 95 /Aditya Singh, Alex Vergara, Amy D. Droitcour, Byung-Kwon Park, Olga Boric-Lubecke, Shuhei Yamada, and Victor M. Lubecke -- 5.1 RF Front End, 95 -- 5.1.1 Single-Channel Limitations, 96 -- 5.1.2 LO Leakage Cancellation, 103 -- 5.1.3 IQ Imbalance Assessment, 109 -- 5.2 Baseband Module, 113 -- 5.2.1 AC and DC Coupling, 113 -- 5.2.2 DC Canceller, 114 -- 5.3 Signal Demodulation, 118 -- 5.3.1 DC Offset and DC Information, 118 -- 5.3.2 Center Tracking, 125 -- 5.3.3 DC Cancellation Results, 130 -- References, 134 -- 6 Sources of Noise and Signal-to-Noise Ratio 137 /Amy D. Droitcour, Olga Boric-Lubecke, and Shuhei Yamada -- 6.1 Signal Power, Radar Equation, and Radar Cross Section, 138 -- 6.1.1 Radar Equation, 138 -- 6.1.2 Radar Cross Section, 140 -- 6.1.3 Reflection and Absorption, 141 -- 6.1.4 Phase-to-Amplitude Conversion, 141 -- 6.2 Oscillator Phase Noise, Range Correlation and Residual Phase Noise, 143 -- 6.2.1 Oscillator Phase Noise, 143 -- 6.2.2 Range Correlation and Residual Phase Noise, 147 -- 6.3 Contributions of Various Noise Sources, 151 -- 6.3.1 Phase Noise, 151. 6.3.2 Baseband 1/f Noise, 154 -- 6.3.3 RF Additive White Gaussian Noise, 154 -- 6.4 Signal-to-Noise Ratio, 155 -- 6.5 Validation of Range Correlation, 157 -- 6.6 Human Testing Validation, 158 -- References, 168 -- 7 Doppler Radar Physiological Assessments 171 /John Kiriazi, Olga Boric-Lubecke, Shuhei Yamada, Victor M. Lubecke, and Wansuree Massagram -- 7.1 Actigraphy, 172 -- 7.2 Respiratory Rate, 176 -- 7.3 Tidal Volume, 179 -- 7.4 Heart Rates, 184 -- 7.5 Heart Rate Variability, 185 -- 7.6 Respiratory Sinus Arrhythmia, 190 -- 7.7 RCs and Subject Orientation, 196 -- References, 204 -- 8 Advanced Performance Architectures 207 /Aditya Singh, Aly Fathy, Isar Mostafanezhad, Jenshan Lin, Olga Boric-Lubecke, Shuhei Yamada, Victor M. Lubecke, and Yazhou Wang -- 8.1 DC Offset and Spectrum Folding, 208 -- 8.1.1 Single-Channel Homodyne System with Phase Tuning, 208 -- 8.1.2 Heterodyne System with Frequency Tuning, 213 -- 8.1.3 Low-IF Architecture, 220 -- 8.2 Motion Interference Suppression, 224 -- 8.2.1 Interference Cancellation, 226 -- 8.2.2 Bistatic Radar: Sensor Nodes, 231 -- 8.2.3 Passive RF Tags, 240 -- 8.3 Range Detection, 250 -- 8.3.1 Physiological Monitoring with FMCW Radar, 250 -- 8.3.2 Physiological Monitoring with UWB Radar, 251 -- References, 266 -- 9 Applications and Future Research 269 /Aditya Singh and Victor M. Lubecke -- 9.1 Commercial Development, 269 -- 9.1.1 Healthcare, 269 -- 9.1.2 Defense, 272 -- 9.2 Recent Research Areas, 272 -- 9.2.1 Sleep Study, 272 -- 9.2.2 Range, 275 -- 9.2.3 Multiple Subject Detection, 276 -- 9.2.4 Animal Monitoring, 279 -- 9.3 Conclusion, 282 -- References, 282 -- Index 285. |
| Record Nr. | UNINA-9910815316203321 |
| Hoboken, New Jersey : , : IEEE, Wiley, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||