| Nota di contenuto |
Intro -- Contents -- Foreword to the Eighth Edition -- Preface to the Eighth Edition -- Foreword to the First Edition -- Preface to the First Edition -- Acknowledgments -- 1 Understanding Plastic Materials -- 1.1 Basic Resins -- 1.1.1 Thermoplastics -- 1.1.2 Thermosets -- 1.2 Basic Structures -- 1.2.1 Crystalline -- 1.2.2 Amorphous -- 1.2.3 Liquid Crystal Polymer (LCP) -- 1.2.4 New Polymer Technologies -- 1.2.4.1 Inherently Conductive Polymers (ICP) -- 1.2.4.2 Electro-Optic Polymers (EOP) -- 1.2.4.3 Biopolymers -- 1.3 Homopolymer vs. Copolymer -- 1.4 Reinforcements -- 1.5 Fillers -- 1.5.1 Glass Spheres -- 1.5.1.1 Microsphere Properties -- 1.5.1.2 Compounding -- 1.5.1.3 Injection Molding -- 1.5.1.4 Mechanical Properties in Injection-Molded Thermoplastic Applications -- 1.6 Additives -- 1.7 Physical Properties -- 1.7.1 Density and Specific Gravity -- 1.7.2 Elasticity -- 1.7.2.1 Case History: Elasticity and Denier -- 1.7.3 Plasticity -- 1.7.4 Ductility -- 1.7.5 Toughness -- 1.7.6 Brittleness -- 1.7.7 Notch Sensitivity -- 1.7.8 Isotropy -- 1.7.9 Anisotropy -- 1.7.10 Water Absorption -- 1.7.11 Mold Shrinkage -- 1.8 Mechanical Properties -- 1.8.1 Normal Stress -- 1.8.2 Normal Strain -- 1.8.3 Stress-Strain Curve -- 1.9 Creep -- 1.9.1 Introduction -- 1.9.2 Creep Experiments -- 1.9.3 Creep Curves -- 1.9.4 Stress-Relaxation -- 1.10 Impact Properties -- 1.11 Thermal Properties -- 1.11.1 Melting Point -- 1.11.2 Glass Transition Temperature -- 1.11.3 Heat Deflection Temperature -- 1.11.4 Coefficient of Thermal Expansion -- 1.11.5 Thermal Conductivity -- 1.11.6 Thermal Influence on Mechanical Properties -- 1.11.7 Case History: Planetary Gear Life Durability -- 2 Understanding Safety Factors -- 2.1 What Is a Safety Factor -- 2.2 Using the Safety Factors -- 2.2.1 Design Safety Factors -- 2.2.1.1 Design Static Safety Factor -- 2.2.1.2 Design Dynamic Safety Factor.
2.2.1.3 Design Time-Related Safety Factor -- 2.2.2 Material Properties Safety Factor -- 2.2.3 Processing Safety Factors -- 2.2.4 Operating Condition Safety Factor -- 3 Strength of Material for Plastics -- 3.1 Tensile Strength -- 3.1.1 Proportional Limit -- 3.1.2 Elastic Stress Limit -- 3.1.3 Yield Stress -- 3.1.4 Ultimate Stress -- 3.2 Compressive Stress -- 3.3 Shear Stress -- 3.4 Torsion Stress -- 3.5 Elongations -- 3.5.1 Tensile Strain -- 3.5.2 Compressive Strain -- 3.5.3 Shear Strain -- 3.6 True Stress and Strain vs. Engineering Stress and Strain -- 3.7 Poisson's Ratio -- 3.8 Modulus of Elasticity -- 3.8.1 Young's Modulus -- 3.8.2 Tangent Modulus -- 3.8.3 Secant Modulus -- 3.8.4 Creep (Apparent) Modulus -- 3.8.5 Shear Modulus -- 3.8.6 Flexural Modulus -- 3.8.7 The Use of Various Moduli -- 3.9 Stress Relations -- 3.9.1 Introduction -- 3.9.2 Experiment -- 3.9.3 Equivalent Stress -- 3.9.4 Maximum Normal Stress -- 3.9.5 Maximum Normal Strain -- 3.9.6 Maximum Shear Stress -- 3.9.7 Maximum Deformation Energy -- 3.10 ABCs of Plastic Part Design -- 3.10.1 Constant Wall -- 3.10.2 Fillets -- 3.10.3 Boss Design -- 3.10.4 Rib Design -- 3.10.5 Case History: Ribs -- 3.11 Conclusions -- 4 Nonlinear Considerations -- 4.1 Material Considerations -- 4.1.1 Linear Material -- 4.1.2 Nonlinear Materials -- 4.2 Geometry -- 4.2.1 Linear Geometry -- 4.2.2 Nonlinear Geometry -- 4.3 Finite Element Analysis (FEA) -- 4.3.1 FEA Method Application -- 4.3.2 Using FEA Method -- 4.3.3 Most Common FEA Codes -- 4.4 Conclusions -- 5 Welding Techniques for Plastics -- 5.1 Ultrasonic Welding -- 5.1.1 Ultrasonic Equipment -- 5.1.2 Horn Design -- 5.1.3 Ultrasonic Welding Techniques -- 5.1.4 Control Methods -- 5.1.4.1 Common Issues with Welding -- 5.1.4.2 Joint Design -- 5.1.4.3 Butt Joint Design -- 5.1.4.4 Shear Joint Design -- 5.1.4.5 Torsional Ultrasonic Welding.
5.1.4.6 Case History: Welding Dissimilar Polymers -- 5.2 Ultrasonic (Heat) Staking -- 5.2.1 Standard Stake Design -- 5.2.2 Flush Stake Design -- 5.2.3 Spherical Stake Design -- 5.2.4 Hollow (Boss) Stake Design -- 5.2.5 Knurled Stake Design -- 5.3 Ultrasonic Spot Welding -- 5.4 Ultrasonic Swaging -- 5.5 Ultrasonic Stud Welding -- 5.6 Spin Welding -- 5.6.1 Process -- 5.6.2 Equipment -- 5.6.3 Welding Parameters -- 5.6.4 Joint Design -- 5.7 Hot Plate Welding -- 5.7.1 Process -- 5.7.2 Joint Design -- 5.8 Vibration Welding -- 5.8.1 Process -- 5.8.2 Equipment -- 5.8.3 Joint Design -- 5.8.4 Common Issues with Vibration Welding -- 5.9 Electromagnetic Welding -- 5.9.1 Equipment -- 5.9.2 Process -- 5.9.3 Joint Design -- 5.10 Radio Frequency (RF) Welding -- 5.10.1 Equipment -- 5.10.2 Process -- 5.11 Laser Welding -- 5.11.1 Equipment -- 5.11.2 Process -- 5.11.3 Noncontact Welding -- 5.11.4 Transmission Welding -- 5.11.5 Intermediate Film & -- ClearWeld™ Welding -- 5.11.6 Polymers -- 5.11.7 Applications -- 5.12 Conclusion -- 6 Press Fitting -- 6.1 Introduction -- 6.2 Definitions and Notations -- 6.3 Geometric Definitions -- 6.4 Safety Factors -- 6.5 Creep -- 6.6 Loads -- 6.7 Press Fit Theory -- 6.8 Design Algorithm -- 6.9 Case History: Plastic Shaft and Plastic Hub -- 6.9.1 Shaft and Hub Made of Different Polymers -- 6.9.2 Safety Factor Selection -- 6.9.3 Material Properties -- 6.9.4 Shaft Material Properties at 23°C -- 6.9.4.1 Shaft Material Properties at 93°C -- 6.9.4.2 Creep Curves at 23°C -- 6.9.4.3 Creep at 93°C -- 6.9.4.4 Pulley at 23°C -- 6.9.4.5 Pulley at 93°C -- 6.9.4.6 Creep, Pulley at 23°C -- 6.9.4.7 Creep, Pulley at 93°C -- 6.10 Solutions: Plastic Shaft, Plastic Hub -- 6.10.1 Case A -- 6.10.2 Case B -- 6.10.3 Case C -- 6.10.4 Case D -- 6.11 Case History: Metal Ball Bearing and Plastic Hub -- 6.11.1 Fusible Core Injection Molding.
6.11.2 Upper Intake Manifold Background -- 6.11.3 Design Algorithm -- 6.11.4 Material Properties -- 6.11.4.1 CAMPUS -- 6.11.5 Solution -- 6.11.5.1 Necessary IF at Ambient Temperature -- 6.11.5.2 IF Available at 118°C -- 6.11.5.3 IF Verification at -40°C -- 6.11.5.4 Verification of Stress Level at -40°C, Time = 0 -- 6.11.5.5 Stress Level at -40°C, Time = 5,000 h -- 6.11.5.6 Stress Level at 23°C, Time = 5,000 h -- 6.11.5.7 Stress Level at 118°C, Time = 5,000 h -- 6.12 Successful Press Fits -- 6.13 Conclusion -- 7 Living Hinges -- 7.1 Introduction -- 7.2 Classic Design for PP and PE -- 7.3 Common Living Hinge Design -- 7.4 Basic Design for Engineering Plastics -- 7.5 Living Hinge Design Analysis -- 7.5.1 Elastic Strain Due to Bending -- 7.5.1.1 Assumptions -- 7.5.1.2 Geometric Conditions -- 7.5.1.3 Strain Due to Bending -- 7.5.1.4 Stress Due to Bending -- 7.5.1.5 Closing Angle of the Hinge -- 7.5.1.6 Bending Radius of the Hinge -- 7.5.2 Plastic Strain Due to Pure Bending -- 7.5.2.1 Assumptions -- 7.5.2.2 Strain Due to Bending -- 7.5.3 Plastic Strain Due to a Mixture of Bending and Tension -- 7.5.3.1 Tension Strain -- 7.5.3.2 Bending Strain -- 7.5.3.3 Neutral Axis Position -- 7.5.3.4 Hinge Length -- 7.5.3.5 Elastic Portion of the Hinge Thickness -- 7.6 Computer Flow Chart -- 7.6.1 Computer Notations -- 7.7 Computer Flow Chart Equations -- 7.8 Example: Case History -- 7.8.1 World-Class Connector -- 7.8.1.1 Calculations for the "Right Way" Assembly -- 7.8.1.2 Calculations for the "Wrong Way" Assembly -- 7.8.2 Comparison Material -- 7.8.2.1 "Right Way" Assembly -- 7.8.2.2 "Wrong Way" Assembly -- 7.8.3 Ignition Cable Bracket -- 7.8.3.1 Initial Design -- 7.8.3.2 Improved Design -- 7.9 Processing Errors for Living Hinges -- 7.10 Coined Hinges -- 7.11 Oil-Can Designs -- 7.12 Conclusion -- 7.13 Exercise -- 8 Snap Fitting -- 8.1 Introduction.
8.2 Material Considerations -- 8.3 Design Considerations -- 8.3.1 Safety Factors -- 8.4 Snap Fit Theory -- 8.4.1 Notations -- 8.4.2 Geometric Conditions -- 8.4.3 Stress/Strain Curve and Formulae -- 8.4.4 Instantaneous Moment of Inertia -- 8.4.5 Angle of Deflection -- 8.4.6 Integral Solution -- 8.4.7 Equation of Deflection -- 8.4.8 Integral Solution -- 8.4.9 Maximum Deflection -- 8.4.10 Self-Locking Angle -- 8.5 Case History: One-Way Continuous Beam with Rectangular Cross Section -- 8.5.1 Geometrical Model -- 8.6 Annular Snap Fits -- 8.6.1 Case History: Annular Snap Fit, Rigid Beam with Soft Mating Part -- 8.6.2 Notations -- 8.6.3 Geometric Definitions -- 8.6.4 Material Selections and Properties -- 8.6.5 Basic Formulas -- 8.6.6 Angle of Assembly -- 8.6.7 Case History: Digital Wristwatch -- 8.7 Torsional Snap Fits -- 8.7.1 Notations -- 8.7.2 Basic Formulae -- 8.7.3 Material Properties -- 8.7.4 Solution -- 8.8 Case History: Injection Blow Molded Bottle Assembly -- 8.9 Tooling -- 8.10 Case History: Snap Fits That Kill -- 8.11 Assembly Procedures -- 8.12 Issues with Snap Fitting -- 8.13 Serviceability -- 8.14 Exercise -- 8.14.1 Solution -- 8.15 Conclusions -- 9 Bonding -- 9.1 Failure Theories -- 9.2 Surface Energy -- 9.3 Surface Treatment -- 9.4 Types of Adhesives -- 9.5 Advantages and Limitations of Adhesives -- 9.6 Stress Cracking in Bonded Joints of Adhesives -- 9.7 Joint Design -- 9.8 Conclusion -- 10 In-Mold Assembly -- 10.1 Overmolding -- 10.2 In-Mold Assembly -- 10.3 Joint Design -- 10.4 Tool Design -- 10.5 Case Histories: Automotive IMA -- 10.6 Conclusion -- 11 Fasteners -- 11.1 Thread Forming -- 11.2 Case History: Automotive Undercarriage Splash Shield -- 11.3 Thread Cutting -- 11.4 Conclusion -- Appendix A: Enforced Displacement -- Appendix B: Point Force -- Appendix C: Molding Process Data Record -- Appendix D: Tool Repair &.
Inspection Record.
|