Aluminum Extrusion Technology
| Aluminum Extrusion Technology |
| Autore | Saha Pradip K |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Materials Park : , : A S M International, , 2025 |
| Descrizione fisica | 1 online resource (414 pages) |
| Disciplina | 673/.72234 |
| ISBN |
1-62708-487-8
1-62708-486-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9911016150203321 |
Saha Pradip K
|
||
| Materials Park : , : A S M International, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Casting Equipment Engineering Guide
| Casting Equipment Engineering Guide |
| Autore | Nath Jagan |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Materials Park : , : A S M International, , 2023 |
| Descrizione fisica | 1 online resource (226 pages) |
| Soggetto topico |
Aluminum castings
Iron founding Metal castings Steel castings |
| ISBN |
9781627084475
1627084479 9781523157884 1523157887 9781627084468 1627084460 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Contents -- Preface -- About the Author -- Casting Manufacturing Layout-Principles and Guidelines -- 1.1 -- 1.1.1 -- 1.1.2 -- 1.1.3 -- 1.1.4 -- 1.1.4.1 -- 1.2 -- 1.2.1 -- 1.2.2 -- 1.2.3 -- 1.3 -- Appendix -- Sand and Metal Charge Storage and Handling -- 2.1 Metallic Charge Materials -- 2.1.1 Large Bulk Amounts -- 2.1.2 Smaller Packages -- 2.2 Raw Material Handling -- 2.2.1 Metallic Charge Materials - Large Bulk Amounts -- 2.2.2 Nonmetallic Materials - Large Amounts of Silica and Olivine Sands -- 2.2.3 Nonmetallic Materials - Coke and Limestone -- 2.2.4 Nonmetallic Materials - Bentonite, Sea Coal, and Dextrin -- 2.2.5 Nonmetallic Materials - Resin Binders, Sodium Silicate, and Mold Coatings -- 2.3 Scrap-Breaking Equipment -- 2.4 Sand Drying, Cooling, and Storage -- 2.4.1 Types of Sand Dryers -- 2.4.1.1 Advantages of Drum or Rotary Dryers -- 2.4.1.2 Advantages of fluidized bed dryers -- 2.4.2 Drum or Rotary Dryers and Coolers -- 2.4.3 Fluidized Bed Dryers and Coolers -- 2.5 Handling and Dosing of Bentonite and Sea Coal -- Sand Conditioning Equipment -- 3.1 Sand Dosing into the Muller -- 3.1.1 Variable Feed Belt Speed -- 3.1.1.1 Calibration -- 3.1.2 Dosing Hopper with Load Cell -- 3.2 Sand Muller Types and Features -- 3.2.1 Vertical Roller-Type Muller -- 3.2.2 Horizontal Roller-Type Muller -- 3.2.3 Duplex Muller -- 3.2.4 DISAMATIC Sand Mixer -- 3.2.5 Continuous Screw-Type Muller -- 3.3 Automated Sand Conditioning Control -- 3.3.1 Time-Controlled and Energy-Controlled Mulling -- 3.4 Core Sand Mixers -- 3.5 Sand Conveyors and Bucket Elevators -- 3.5.1 Sand Conveyors -- 3.5.2 Bucket Elevators -- 3.6 Sand Aerators -- 3.6.1 Types of Aerators -- 3.6.1.1 Belt-Type Aerator -- 3.6.1.2 Pin Bushing-Type Aerator -- 3.7 Mold Conveyors-Types and Lengths for Cooling -- 3.7.1 Mold Conveyors -- 3.7.1.1 Roller Conveyors.
3.7.1.2 Guide Rail System for Mold Movement -- 3.7.1.3 Multilevel Mold Conveyors -- 3.7.1.4 Walking Beam Mold Conveyor - Precision Mold Conveyor -- 3.7.1.5 Sliding Mold Conveyor - Automatic Mold Conveyor -- 3.7.1.6 -- 3.7.2 Engineering for Cooling Time -- 3.7.2.1 Example Calculation of Conveyor Length for Gray Iron Foundries -- 3.7.2.2 Conveyor Length for Ductile Iron Castings -- 3.7.2.3 Conveyor Length for Steel Castings -- 3.7.3 Flexibility in Conveyor Design -- 3.7.4 Extended Cooling Times -- 3.8 Shakeout Units and Features -- 3.8.1 Basic Brute and Variable Drives -- 3.8.2 Two-Mass High-Frequency Type (Ref 16, 17) -- 3.8.3 Vibratory Drum-Type -- 3.8.4 Rotary Drum-Type -- 3.8.5 Hydroblasting -- 3.8.6 Summary -- 3.9 Magnetic Separators -- 3.9.1 Magnetic Drum -- 3.9.2 Magnetic Pulley Segment -- 3.9.3 Belt-Type Magnetic Separator -- 3.10 Lump Breakers and Core Crushers -- 3.10.1 Over-Screen-Type Lump Breakers -- 3.10.2 Roller-Type Lump Breakers -- 3.10.3 Rotary-Type Lump Breakers -- 3.10.4 Attrition Mills -- 3.10.5 Hybrid Units -- 3.11 Screens -- 3.11.1 Hexagonal screens -- 3.11.2 Rotary Drums -- 3.11.3 Vibratory screens -- 3.12 Sand Coolers -- 3.12.1 Sand Cooling Processes -- 3.12.2 Sand Cooling Types -- 3.12.3 Stages of Sand Cooling -- 3.12.4 Heat Exchangers for Sand Cooling -- 3.12.5 Sand Cooling in Mullers and Mixers -- 3.13 Sand Reclamation Systems -- 3.13.1 Impact of Reclamation -- 3.13.2 Dry Reclamation -- 3.13.3 Wet Reclamation -- 3.13.4 Thermal reclamation -- 3.14 Prepared Sand Hoppers and Automated Level Control -- 3.14.1 Bin or Hopper Shapes for Reduced Bridging -- 3.14.2 Bin or Hopper Linings or Coatings -- 3.14.3 Design for Vibrators to Remove Jamming -- 3.14.4 Sand Level Measurement in Hoppers -- Molding Flasks and Molding Machines -- 4.1 Molding Flask Designs -- 4.1.1 Materials for Flasks -- 4.1.1.1 Rigidity -- 4.1.1.2 Strength. 4.1.1.3 Accuracy -- Outline placeholder -- 4.1.1.3.1 Alignment Accuracy -- 4.1.1.3.2 Perpendicularity of Guide-Pin Axes and Mating Surfaces -- 4.2 Mold Pallets -- 4.3 Molding Machines -- 4.3.1 Comparison of Tight Flask Molding and Flaskless Molding -- 4.3.2 Pneumatically and Hydraulically Compacted Molding Machines -- 4.3.3 Multistation Machines -- 4.3.4 Molding Machine Features Enhancements -- 4.3.4.1 Hopper Filling Improvements -- Outline placeholder -- 4.3.4.1.1 Gravity Fill -- 4.3.4.1.2 Blow Fill -- 4.3.4.1.3 Aeration Fill -- 4.3.4.1.4 Airflow -- 4.3.4.2 Squeeze Pressure Balance Control -- 4.3.4.3 Mold Height Control - Vertically Parted Molds -- 4.3.4.4 Pattern Plate Heater -- 4.3.4.5 No-spill Sand-Horizontal Parting Plane -- 4.3.4.6 Leveling Frame Pattern Draw -- 4.3.4.7 Multiram Squeeze -- 4.3.4.8 Light Curtain Safety Feature -- 4.3.4.9 Automated Pattern Plate Change -- 4.3.4.10 Molding Machine Controls and Diagnostics -- 4.4 Flaskless Molds -- 4.4.1 Horizontally Parted Flaskless Molding -- 4.4.2 Flask and Flaskless Flexible Molding Machines -- 4.4.3 Vertical Molded and Horizontally Cast Molding Machine -- 4.4.4 Vertically Parted Molding Machines -- 4.4.4.1 Machine Sizes and Outputs -- 4.5 No-Bake Molding Lines -- 4.5.1 Rollover and Draw Machines -- 4.5.2 Mold Manipulators -- 4.5.3 Flow Coating and Drying -- 4.5.4 No-Bake Core-mold Assembly -- 4.5.5 Mold Clamping and Weight Loading -- 4.5.5.1 Mold Lifting Force Computation -- 4.5.5.2 ``C´´ Clamps for Mold Clamping -- 4.5.5.3 Dovetail Clamps for the Flasks -- 4.5.5.4 Automated Mold Weighting Systems -- Outline placeholder -- 4.5.5.4.1 Automated Mold Loading Conveyor -- 4.5.5.4.2 Automated Pick-and-Place Units -- 4.5.6 Automated Core-Setting Systems -- 4.6 Core-Making Equipment -- 4.6.1 Cold Box Core Machines -- 4.6.2 Shell Core Machines -- 4.6.3 3D Printed Cores -- Casting Cleaning Operations. 5.1 Casting Cleaning Operation Sequence -- 5.2 Casting Cleaning Options-Shot Blasting -- 5.2.1 Impeller Heads -- 5.2.2 Shot Blasting Machine Types and Suitability -- 5.2.2.1 Tumble Blasters -- Outline placeholder -- 5.2.2.1.1 Drum-Type Tumble Blasters -- 5.2.2.1.2 Barrel-Type Tumble Blasters -- 5.2.2.1.3 Continuous Barrel-Type Tumble Shot Blaster -- 5.2.2.2 Table Shot Blasters -- Outline placeholder -- 5.2.2.2.1 Swing Table Blasters -- 5.2.2.2.2 Twin Table Blasters -- 5.2.2.3 Cabinet-Type Blasters -- Outline placeholder -- 5.2.2.3.1 Dual Chamber Spinner Blasters -- 5.2.2.3.2 Monorail Conveyor Cabinet Shot Blasters -- 5.2.3 Safety Features in Shot Blasting Machines -- 5.3 Decoring, or Removal of Cores from Castings -- 5.3.1 Decoring Machines -- 5.3.2 Inspection Instrumentation for Core Remnants Checking -- 5.4 Degating, or Removal of Runners, Gates, and Feeders -- 5.4.1 Removal of Runners and Gates from Gray and White Iron Castings -- 5.4.2 Removal of Runners and Feeders from Ductile Iron Castings -- 5.4.3 Removal of Runners and Feeders from Steel Castings -- 5.5 Flash Removal and Automation -- 5.5.1 Grinding Machine Types and Applications -- 5.5.2 Automated Grinders -- 5.5.2.1 Computer Numerically Controlled Machine Grinding -- 5.5.2.2 Robotic Grinding -- 5.5.3 Guidelines for Grinding Wheel Selection -- 5.6 Heat Treatment -- 5.6.1 Stress-Relieving of Cast and Ductile Iron Castings -- 5.6.2 Annealing of Gray Iron Castings -- 5.6.3 Annealing and Normalizing of Ductile Iron Castings -- 5.6.4 Heat Treatment of Steel Castings -- 5.6.4.1 Austenitizing -- 5.6.4.2 Normalizing -- 5.6.4.3 Quench Hardening -- 5.6.4.4 Tempering -- 5.6.4.5 Annealing or Full Annealing -- 5.7 Product Quality Control -- 5.7.1 Gray Iron Castings -- 5.7.2 Ductile Iron Castings -- 5.7.3 Steel Castings -- Iron and Steel Melting Furnaces -- 6.1 Furnace Types and Applications. 6.2 Cupolas-Types, Advantages, and Applications -- 6.2.1 Cold-Blast Cupolas -- 6.2.2 Hot-Blast Cupolas -- 6.2.2.1 Recuperative Hot Blast Units -- 6.2.2.2. Preheated Air Blast Units -- 6.2.3 Cupola Classification According to the Lining -- 6.2.4 Continuous Operation of the Front-Slagging Cupola -- 6.2.5 Cupolas with a Forehearth -- 6.2.6 Cupola with a Holding Furnace or a Holder -- 6.2.7 Special Cupolas -- 6.2.7.1 Divided-Blast Cupolas -- 6.2.7.2 Oxygen-Enriched Cupolas -- 6.2.7.3 Cokeless Gas-fired Cupolas -- 6.2.7.4 Plasma-Fired Cupolas -- 6.2.8 Charging Systems Mechanization -- 6.2.9 Charge Height Monitoring Systems -- 6.2.9.1 Contact Height Monitoring -- 6.2.9.2 Noncontact Height Monitoring -- 6.3 Induction Furnace-Types and Applications -- 6.3.1 Coreless Induction Furnaces -- 6.3.1.1 Impact of Power Supply Frequency -- 6.3.1.2 Frequency and Furnace Size -- 6.3.1.3 Frequency and Melting Time -- 6.3.1.4 Influence of Furnace Size -- 6.3.1.5 Rate of Bath Temperature Rise -- 6.3.1.6 Power and Furnace Size -- 6.3.1.7 Holding Power -- 6.3.2 Channel-Type Holding Furnaces-Cast Irons -- 6.3.2.1 Channel Furnace Operation -- 6.3.3 Additional Furnace Features -- 6.3.3.1 Engineering Induction Furnaces for Emergency -- 6.3.3.2 Relining Time Reduction -- 6.3.3.3 Mechanized Charging Systems -- 6.3.3.4 Furnace Design for Easier Deslagging -- 6.3.3.5 Charge Preheating -- 6.3.3.6 Emission Control -- 6.4 Arc Furnace Features and Applications -- 6.4.1 Construction Features -- 6.4.2 Bath Agitation Improvement -- 6.5 Cost and Other Considerations in Furnace Selection -- 6.5.1 Costs -- 6.5.2 Metallurgical Factors -- 6.5.3 Environmental Factors -- 6.5.4 Power Requirements and Grid Power Fluctuations -- 6.5.5 Size Factor -- 6.5.6 Operator Skill Level -- 6.5.7 Alternative Furnace Options -- 6.6 Automatic Pouring Units -- 6.6.1 Pouring Units for Cast Irons. 6.6.2 Low-Pressure Pouring Units for Steel. |
| Record Nr. | UNINA-9911007163803321 |
Nath Jagan
|
||
| Materials Park : , : A S M International, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Gearbox Vibrations
| Gearbox Vibrations |
| Autore | Rakhit A. K |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Materials Park : , : A S M International, , 2024 |
| Descrizione fisica | 1 online resource (168 pages) |
| Soggetto topico | Gearing - Vibration |
| ISBN |
9781523163496
1523163496 9781627084352 1627084355 9781627084345 1627084347 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9911007169503321 |
Rakhit A. K
|
||
| Materials Park : , : A S M International, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Powder Metallurgy and Additive Manufacturing : Fundamentals and Advancements
| Powder Metallurgy and Additive Manufacturing : Fundamentals and Advancements |
| Autore | and Shashanka Rajendrachari |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Materials Park : , : A S M International, , 2024 |
| Descrizione fisica | 1 online resource (428 pages) |
| ISBN |
9781523163724
1523163720 9781627084789 1627084789 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Contents -- Preface -- About the Editors -- Dr. Debasis Chaira -- Evolution of Powder Metallurgy -- Press-and-Sinter Powder Metallurgy Gains Acceptance -- Powder Injection Molding Processes Offer Complex-Shaped Parts -- Metal Additive Manufacturing Provides Freedom of Design -- Examples of Powder Metallurgy Applications -- Powder Production Methods -- Mechanical Fabrication Techniques -- Machining -- Milling and Mechanical Alloying -- Electrolytic Fabrication Technique -- Chemical Methods of Fabrication of Powder -- Reduction of Metal Oxide by Reducing Gas -- Thermal Decomposition of Metal Carbonyls -- Hydrometallurgical Method -- Solid-State Reactive Synthesis -- Atomization Techniques -- Gas Atomization -- Water Atomization Technique -- Centrifugal Atomization Technique -- Summary -- Powder Characterization Methods -- Characterization of Powder -- Investigation by X-Ray Diffraction -- Analysis by Differential Scanning Calorimetry -- Microstructure Study -- Study of Nanopowder Stability -- Flowability Study -- Surface Area Study -- Summary -- Fabrication of Bulk Components from Mechanically Alloyed Powders -- Nanopowder Densification -- Mechanical Milling/Alloying of Powder Materials -- Process Variables of Mechanical Milling and Their Effects -- Sintering Mechanisms -- Consolidation of Mechanically Milled or Alloyed Powder Materials -- Conventional Methods Based on Pressureless Sintering -- Laser-Assisted Sintering -- Pressure-Assisted Consolidation Methods -- Hot Pressing -- Hot Isostatic Pressing -- High-Pressure Torsion -- Microwave Sintering -- Spark Plasma Sintering -- Pulse Plasma Sintering -- Summary -- Various Conventional and Advanced Sintering Methods to Consolidate Powders -- Sintering Techniques -- Conventional Sintering -- Advantages of Conventional Sintering -- Disadvantages of Conventional Sintering.
Advanced Sintering Techniques -- Microwave Sintering -- Advantages of Microwave Sintering -- Disadvantages of Microwave Sintering -- Pressure-Assisted Sintering Techniques -- Plastic Flow -- Creep Flow -- Viscous Flow -- Hot Pressing -- Advantages of Hot Pressing -- Disadvantages of Uniaxial Hot Pressing -- Hot Isostatic Pressing -- Advantages of Hot Isostatic Pressing -- Disadvantages of Hot Isostatic Pressing -- Spark Plasma Sintering -- Advantages of Spark Plasma Sintering -- Disadvantages of Spark Plasma Sintering -- Laser Sintering -- Machine-Based Process Parameters -- Laser-Based Process Parameters -- Advantages of Laser Sintering -- Disadvantages of Laser Sintering -- Effect of Consolidation Techniques on Selected Materials Systems -- Tungsten Heavy Alloys -- Ti-6Al-4V Alloy -- Steel -- Nd-Fe-B/Sm-Co Magnetic Materials -- Summary -- Sintering Concepts Relevant to Greater Density and Improved Properties -- Basics -- Atomic Motion -- Control Parameters -- Microstructure Trajectory -- Effects of Key Parameters -- Prealloyed 17-4 PH Powders -- Sintered Density versus Temperature -- Graphite Vacuum Furnaces -- Dimensional Uniformity -- Summary -- Comparing the Microstructure of Components Prepared by Various Powder Metallurgy and Casting Methods -- Casting -- Microstructures of Casted Materials -- Powder Metallurgy -- Summary -- Relationship of Structure-Properties on the Powder Metal Materials -- Outline placeholder -- Advantages of Powder Metallurgy -- Disadvantages of Powder Metallurgy -- Uses of Powder Metallurgy -- Coatability of Powder Metal Parts -- Galvanized Coating -- Amount of Coating -- Joinability of Powder Metal Parts -- Sinter Bonding -- Microstructures -- Element Diffusion during Sinter Bonding -- Resistance Spot Welding of Powder Metal Parts -- Joinability of Brass Alloys by Furnace and Microwave Brazing. Weldability of Powder Metal Parts by Fusion Welding Technique -- Weld Metal and Transition Zone -- Effect of Porosity on Thermal Conductivity of Powder Metal Materials -- Wear Properties of Powder Metal Materials -- How Does Powder Metallurgy Facilitate the Preparation of Intermetallics and High-Entropy Alloys? -- Powder Metallurgy of Intermetallics -- Mechanical Alloying -- Field-Assisted Sintering Techniques -- Shock Consolidation -- Powder Metallurgy of High-Entropy Alloys -- Summary -- Additive Manufacturing-History, Recent Developments, and Advancement -- Vat Photopolymerization -- Material Extrusion -- Material Jetting -- Binder Jetting -- Sheet Lamination -- Directed-Energy Deposition -- Powder-Bed Fusion -- Selective Laser Sintering -- Selective Laser Melting -- Electron Beam Melting -- High-Speed Sintering -- 3D and 4D Printing -- 3D Printing -- 4D Printing -- Conclusion -- Comparison of Additive Manufacturing and Powder Metallurgy Methods and Their Components -- Process Details -- Classification -- Powder-Bed Fusion -- Directed-Energy Deposition -- Solid-State Additive Manufacturing -- Ultrasonic Additive Manufacturing -- Binder Jetting -- Friction Additive Manufacturing -- Additive Friction Stir Deposition or Friction Surface Additive Manufacturing -- Conventional (Press-and-Sinter) Powder Metallurgy Route -- Full-Density Powder Metallurgy Route -- Powder Forging -- Metal Injection Molding -- Hot Isostatic Pressing -- Other Powder Metallurgy Variants -- Contrasts and Postprocessing -- Material/Alloy Systems -- Microstructural Evolution -- Related Metallurgical Phenomena -- Microstructure in Alloys -- Properties of Components Processed by Additive Manufacturing/Powder Metallurgy -- Common Defects in Additive Manufacturing/Powder Metallurgy Parts -- Residual Stresses in Additive Manufacturing/Powder Metallurgy Parts -- Conclusions. Nanomaterials-Based Additive Manufacturing for the Production of 3D-Printed Batteries and Supercapacitors -- Advancements in Additive Manufacturing for Energy Storage Devices -- Innovative Fabrication Techniques and Materials for Next-Generation Batteries and Supercapacitors -- Printing Systems -- Case Study -- Methods of Testing and Characterization -- Galvanostatics Charge/Discharge Test -- Conclusion -- Additive Manufacturing in the Automotive, Medical, and Construction Industries -- Methods of Additive Manufacturing -- Fused Deposition Modeling -- Stereolithography -- Selective Laser Sintering -- Inkjet Printing -- Electron Beam Melting -- Recent Trends in the Market -- Metal 3D Printing -- Global Impact -- Research and Development -- Additive Manufacturing in the Automotive Sector -- Additive Manufacturing in the Medical Sector -- Medical Models -- Implants -- Tools, Instruments, and Parts for Medical Devices -- Medical Aids, Supportive Guides, Splints, and Prostheses -- Biomanufacturing -- Additive Manufacturing in the Construction Industry -- Multiple Materials -- In Situ Resources -- Hybrid Techniques -- Off-Site/On-Site Fabrication -- The Future of Additive Manufacturing -- Conclusion -- Role of Powder Metallurgy Industries in Various SectorsPart 1 -- History of Powder Metallurgy -- Advantages and Disadvantages of Powder Metallurgy -- Advantages of Powder Metallurgy -- Disadvantages of Powder Metallurgy -- The Process of Powder Metallurgy -- Preparation of Metal Powder -- Blending or Mixing -- Compaction or Briquetting -- Sintering -- Hot Pressing -- Secondary Operations -- Sizing -- Coining -- Infiltration -- Impregnation -- Heat Treatment -- Applications of Powder Metallurgy -- Automotive Industry -- Civilian Nuclear Industry -- Wind Power Industry -- Biomedical Industry -- Flying Car Industry -- Aerospace Industry -- Conclusions. Role of Powder Metallurgy Industries in Various SectorsPart 2 -- Overview of Powder Metallurgy -- Industry 4.0 -- Types of Materials Used in the Powder Metallurgy Process -- Industries That Use Powder Metallurgy -- Powder Metallurgy Manufacturing Methods in the Automotive Industry -- Metal Injection Molding -- Additive Manufacturing -- Metal Foaming -- Powder Forging -- Hot Isostatic Pressing -- Electric-Current-Assisted Sintering Technologies -- Development and Applications of Powder Metallurgy in the Automotive Industry -- Permanent Magnets -- Hyperloop -- Noise Mitigation -- Conclusion -- The Economic Contribution of Powder Metallurgy Industries, Associations, and Employment Opportunities -- Economic Importance and Industrial Applications of Various Powder Metallurgy Industries -- Traditional Powder Metallurgy Process -- Powder Injection Molding and Metal Injection Molding Processes -- Hot Isostatic Pressing Process -- Additive Manufacturing Process -- Scope and Opportunities of Various Powder Metallurgy Associations and Companies -- Asian Region -- North America Region -- European Region -- European Powder Metallurgy Association´s Seminars and Programs -- European Powder Metallurgy Association Publications -- Employment Opportunities and Organizations in the Powder Metallurgy Industry -- Conclusions -- Chap -- Index. |
| Record Nr. | UNINA-9911006741203321 |
and Shashanka Rajendrachari
|
||
| Materials Park : , : A S M International, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Practical Heat Treating
| Practical Heat Treating |
| Autore | Dossett Jon L |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Materials Park : , : A S M International, , 2024 |
| Descrizione fisica | 1 online resource (282 pages) |
| Soggetto topico |
Surface hardening
Furnaces |
| ISBN |
9781523161478
1523161477 9781627084550 162708455X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Control of Heat-Treating Processes -- Temperature Control -- Temperature Measurement -- Types of Thermocouples -- Calibration of Thermocouples -- Pyrometers -- Temperature Controllers -- Assuring Temperature Control Accuracy and Uniformity -- Temperature-Uniformity Survey -- Development of Temperature-Uniformity Survey Procedures -- Governing Specifications for Temperature-Uniformity Surveys -- Test Thermocouples for Temperature-Uniformity Surveys -- Other Process Variables for Consideration -- Programmed Temperature Cycle Control -- Quenching System Parameters Control -- Quench Media Monitoring -- Quench Bath Temperature Control -- Quench Flow and Agitation Monitoring -- Overall Quench System Monitoring -- Atmosphere Composition -- Atmosphere Circulation Fans -- Endothermic Generator Control -- Atmosphere Carbon Control -- Atmosphere Furnace Pressure Measurement -- Vacuum Furnace Pressure (Vacuum) Monitor and Control -- Hydrostatic Measuring Devices -- Devices for Measuring Thermal and Electrical Conductivity -- Integrated Process Controllers -- Types of Heat Treating Furnaces -- Energy Sources -- Modes of Heat Transmission -- Conduction -- Convection -- Radiation -- Methods of Gas Firing -- Direct -- Indirect -- General Furnace Construction -- Furnace Shells -- Insulation -- Ceramic Fiber Felts and Blankets -- Furnace Classification -- Batch Furnaces -- Continuous Furnaces -- Furnace Types -- Batch Furnaces -- Box Furnace -- Integral-Quench Batch Furnace -- Furnaces for Heat Treating with Fluidized Beds -- External-Resistance-Heated Fluidized Beds -- External-Combustion-Heated Fluidized Beds -- Salt-Bath Heat Treating Furnaces -- Surface Protection -- Distortion Control -- Selecting a Salt for a Given Application -- Externally Heated Salt Bath Furnaces -- Advantages and Disadvantages of Externally Heated Salt-Bath Furnaces.
Immersed-Electrode Salt-Bath Furnace -- Advantages and Disadvantages of the Immersed-Electrode Salt-Bath Furnace -- Submerged-Electrode Furnace -- Advantages and Disadvantages of the Submerged-Electrode Furnace -- Other Types of Batch Furnaces -- Car-Bottom Furnace -- Bell Furnace -- Gantry Furnace -- Continuous Furnaces -- Rotary Hearth Furnace -- Shaker-Hearth Furnace -- Roller-Hearth Furnace -- Rotary-Retort Furnace -- Straight Chamber Continuous Furnace -- Pusher Furnace -- Walking-Beam Furnace -- Continuous-Belt Furnace -- Furnace Atmospheres -- Protect Work -- Transfer Heat -- Conduction -- Convection -- Radiation -- Supply Alloying Elements -- Classifications of Prepared Atmospheres -- Basic Types of Furnace Atmospheres -- Combustion Products Atmospheres -- Applications -- Reactions -- Air Atmospheres -- Applications -- Reactions -- Oxygen -- Nitrogen -- Carbon Dioxide and Carbon Monoxide -- Hydrogen -- Hydrocarbons -- Inert Gases -- Exothermic Atmospheres -- Rich Exothermic Gas -- Lean Exothermic Atmospheres -- Salt Atmospheres -- Temperature -- Low-Temperature Salt Baths -- Medium-Temperature Salt Baths -- High-Temperature Salt Baths -- Specialty Salt Baths -- Control -- Nitrogen Atmospheres -- Control -- Endothermic Atmospheres -- Applications -- Reactions and Control -- Ammonia Atmospheres -- Straight Ammonia Atmospheres -- Dissociated-Ammonia Atmospheres -- Hydrogen Atmospheres -- Inert Gas Atmospheres -- Vacuum Atmospheres -- Plasma Atmospheres -- Ion Nitriding -- Plasma Carburizing -- Other Atmospheres and Processes in Heat Treating -- Steam Atmospheres -- Charcoal Atmospheres -- Exothermic-Endothermic Atmospheres -- Pack Carburizing -- Foil Wrap -- Furnace Atmosphere Hazards -- Fire -- Explosion -- Toxicity -- Vacuum Furnace Processes -- Pressure Levels in Vacuum Furnaces -- Comparison of Vacuum and Atmosphere Furnace Processing. Design of Vacuum Furnaces -- Hot-Wall Vacuum Furnaces -- Cold-Wall Vacuum Furnaces -- Vertical Bottom-Loading Furnaces -- Vertical Top-Loading Furnaces -- Horizontal-Loading Furnaces -- Heating Elements in Vacuum Furnaces -- Electrical Power Sources -- Heat Insulation in Vacuum Furnaces -- Metallic Shielding -- Insulated Designs -- Workload Support in Vacuum Furnaces -- Adverse Eutectic Reactions -- Pumping Systems in Vacuum Furnaces -- Mechanical Pumps -- Vapor Diffusion Pumps -- Mechanical and Vapor Diffusion Pumps Can Work Together -- Temperature Control Systems in Vacuum Furnaces -- Pressure Control Systems in Vacuum Furnaces -- Vacuum Leak Rate -- Vapor Pressures in Vacuum Furnaces -- Quenching Systems in Vacuum Furnaces -- Gas Quenching -- Liquid Quenching -- Typical Gases Used for Backfilling -- Specific Applications of Vacuum Heat Treating -- Vacuum Nitriding -- Ion Nitriding -- Vacuum Gas Nitriding -- Vacuum Carburizing -- Vacuum Carburizing Process -- Furnaces for Vacuum Carburizing -- Outlook for Vacuum Carburizing -- Vacuum Carbonitriding -- Heat Treating of Tool Steels -- Hot-Wall Furnaces -- Cold-Wall Furnaces -- Single-Chamber Vacuum Furnaces -- Multiple-Chamber Vacuum Furnaces -- Furnace Quenching Kinetics -- Heat Treating of Stainless Steels -- Precipitation Hardening of Stainless Steels -- Heat Treating of Inconel 718 -- Heat Treating Titanium and Its Alloys -- Heat Treating of Additive-Manufactured Components -- Outlook for Vacuum Processes -- Surface Hardening of Steel -- Classifications of Processes -- Composition Not Altered -- Composition Altered -- Case Depth (Hardened Depth) -- Total Case Depth -- Effective Case Depth -- Surface Hardening Steels of Unaltered Composition -- Low-Hardenability Steels -- Rapid Heating at the Surface -- Flame Hardening -- Flame Hardening Methods -- Laser Heat Treatment -- Electron Beam Hardening. Induction Hardening -- Fundamentals of Induction Processes -- Resistance -- Alternating Current and Electromagnetism -- Hysteresis -- Skin Effect and Reference Depth -- Current Cancellation -- Quenching Methods -- Quenchant Selection -- Water -- Brine -- Oil -- Polymers -- Heating Coil Design -- Induction Equipment Considerations -- Water Cooling -- Power Supply -- Heat Station -- Material Handling Fixtures -- Quench System -- Types of Power Supplies -- Solid-State Power Supplies -- Oscillator Tube Power Supplies -- Additional Considerations -- Line-Utility Requirements -- Cooling Water Requirements -- Heat-Station Requirements -- Equipment Selection for Hardening Applications -- Workpiece Material -- Starting Material Microstructure -- Induction Heat Treatment Applications -- Crankshafts -- Axle Shafts -- Gears -- Other Applications -- Carburizing Treatments -- History of Carburizing -- Pack Carburizing -- Salt-Bath Processes -- Carburizing Process -- Carbon Gradient -- Martensite Start Temperature -- Characteristics of a Carburized Case -- Total Case Versus Effective Case Depth -- Gas Carburizing Process -- Atmospheres -- Sources of Carbon -- Control of Atmosphere Carbon -- Effect of Process Variables -- Effect of Temperature -- Effect of Time -- Effect of Carburizing Potential -- Boost-Diffuse Carburizing Cycles -- Furnaces for Gas Carburizing -- Advantages of Gas Carburizing -- Hardening of Carburized Parts -- Direct Quenching -- Reheating Practice -- Tempering Carburized Parts -- Potential Microstructure Problems -- Steels for Carburizing -- Applications -- Carbonitriding -- Case Composition -- Case Depth -- Effect of Time and Temperature -- Case Hardenability -- Hardness Gradients -- Void Formation -- Applications -- Furnaces -- Influence of Furnace Type -- Atmosphere Constituents -- Control of Atmospheres -- Ammonia Content -- Contaminants. Batch Furnace Atmospheres -- Composition Control -- Example: Composition Control of 8620H Steel Gears -- Continuous Furnace Atmospheres -- Safety -- Temperature Selection -- Steel Composition -- Dimensional Control -- Example: 1010 Steel Rack -- Example: 1010 Steel Sheet Production Parts -- Control of Retained Austenite -- Quenching Media and Practices -- Water Quenching -- Gas Quenching -- Tempering -- Hardness Testing -- Nitriding and Ferritic Nitrocarburizing -- Steels for Gas Nitriding -- Conventional Gas Nitriding -- Single- and Double-Stage Processes -- Equipment -- Processing Procedures -- Case Depth Control and Hardness Gradients -- Plasma (Ion) Nitriding -- Ferritic Nitrocarburizing Processes -- Applications for Ferritic Nitrocarburizing -- Gaseous Ferritic Nitrocarburizing -- Plasma Nitrocarburizing -- Salt-Bath Ferritic Nitrocarburizing Processes -- Commercial Salt Baths -- Proprietary Processes -- Process Verification and Quality Assurance -- Hardness Tests -- Types of Hardness Tests -- Brinell Hardness Test -- Rockwell Hardness Test -- Microhardness Tests -- Scleroscope Test -- Equotip Test -- Summary -- Tensile Testing -- Elasticity -- Plasticity -- Ductility -- Reduction of Area -- Yield Strength -- Summary -- Toughness Testing -- Optical Metallography -- Nondestructive Testing -- Magnetic Particle Inspection -- Dye Penetrant Inspection -- Eddy Current Inspection -- Radiography -- Ultrasonics (Pulse Echo) -- In-Process Inspection -- Final Inspection -- Statistical Process Control -- Quality Specifications and Systems Management -- ISO Registration and Certification -- Work Instructions for Selected Processing Equipment -- ISO Work Instruction E-16 -- Operation of 1.5 by 2.4 m (5 by 8 ft) Temper Furnace -- 1.0Purpose -- 2.0Scope -- 3.0Authority and Responsibility -- 4.0Instructions -- ISO Work Instruction E-3A. Start-Up and Shutdown of Lindberg GVRT Batch Furnace. |
| Record Nr. | UNINA-9911006689603321 |
Dossett Jon L
|
||
| Materials Park : , : A S M International, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Thermal Spray 2003 [[electronic resource] ] : Advancing the Science and Applying the Technology
| Thermal Spray 2003 [[electronic resource] ] : Advancing the Science and Applying the Technology |
| Autore | Moreau C |
| Pubbl/distr/stampa | Materials Park, : A S M International, 2003 |
| Descrizione fisica | 1 online resource (1668 p.) |
| Disciplina | 671.7/34 |
| Altri autori (Persone) | MarpleB |
| Soggetto topico |
Electronic books. -- local
Metal spraying -- Congresses Plasma spraying -- Congresses Metal spraying Plasma spraying Mechanical Engineering Engineering & Applied Sciences Industrial & Management Engineering |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-61503-258-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | ""Preface""; ""Editorial Committee (Reviewers) for ITSC 2003 Proceedings""; ""ITSC 2003 Organizing Committee""; ""Contents""; ""Volume 1 ""; ""Cold Spray""; ""Applications""; ""Corrosion & Wear Protective Coatings""; ""Equipment and Processes""; ""Feedstocks and Novel Materials""; ""HVOF""; ""Volume 2 ""; ""Science and Applications of Thermal Spray""; ""Sensors & Controls""; ""Testing and Characterization""; ""Thermal & Environmental Barrier Coatings""; ""Thermal Spraying of Polymers""; ""Title Index""; ""Author Index""; ""Company Index""; ""Key Word Index"" |
| Record Nr. | UNINA-9910458563903321 |
Moreau C
|
||
| Materials Park, : A S M International, 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Thermal Spray 2003 [[electronic resource] ] : Advancing the Science and Applying the Technology
| Thermal Spray 2003 [[electronic resource] ] : Advancing the Science and Applying the Technology |
| Autore | Moreau C |
| Pubbl/distr/stampa | Materials Park, : A S M International, 2003 |
| Descrizione fisica | 1 online resource (1668 p.) |
| Disciplina | 671.7/34 |
| Altri autori (Persone) | MarpleB |
| Soggetto topico |
Electronic books. -- local
Metal spraying -- Congresses Plasma spraying -- Congresses Metal spraying Plasma spraying Mechanical Engineering Engineering & Applied Sciences Industrial & Management Engineering |
| ISBN | 1-61503-258-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | ""Preface""; ""Editorial Committee (Reviewers) for ITSC 2003 Proceedings""; ""ITSC 2003 Organizing Committee""; ""Contents""; ""Volume 1 ""; ""Cold Spray""; ""Applications""; ""Corrosion & Wear Protective Coatings""; ""Equipment and Processes""; ""Feedstocks and Novel Materials""; ""HVOF""; ""Volume 2 ""; ""Science and Applications of Thermal Spray""; ""Sensors & Controls""; ""Testing and Characterization""; ""Thermal & Environmental Barrier Coatings""; ""Thermal Spraying of Polymers""; ""Title Index""; ""Author Index""; ""Company Index""; ""Key Word Index"" |
| Record Nr. | UNINA-9910791414503321 |
Moreau C
|
||
| Materials Park, : A S M International, 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Weld Integrity and Performance
| Weld Integrity and Performance |
| Pubbl/distr/stampa | [Place of publication not identified], : A S M International, 1997 |
| Descrizione fisica | 1 online resource (528 p.) |
| Disciplina | 671.5/2/0685 |
| Soggetto topico |
Mechanical Engineering
Engineering & Applied Sciences Industrial & Management Engineering |
| ISBN |
1-62708-359-6
1-61344-118-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9911006581803321 |
| [Place of publication not identified], : A S M International, 1997 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||