top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Predictive control in process engineering [[electronic resource] ] : from the basics to the applications / / Robert Haber, Ruth Bars, and Ulrich Schmitz
Predictive control in process engineering [[electronic resource] ] : from the basics to the applications / / Robert Haber, Ruth Bars, and Ulrich Schmitz
Autore Haber Robert <1948->
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (632 p.)
Disciplina 629.8
Altri autori (Persone) BarsR
SchmitzUlrich, Dipl.-Ing.
Soggetto topico Predictive control
Production engineering
ISBN 1-5231-1556-4
3-527-63625-0
1-283-64418-5
3-527-63626-9
3-527-63624-2
Classificazione ZQ 9910
660
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Predictive Control in Process Engineering; Contents; Preface; References; Notation and Abbreviations; 1 Introduction to Predictive Control; 1.1 Preview of Predictive Control; 1.1.1 Prediction of the Reference Value; 1.1.2 Prediction of the Disturbance; 1.2 Manipulated, Reference, and Controlled Signals; 1.3 Cost Function of Predictive Control; 1.4 Reference Signal and Disturbance Preview, Receding Horizon, One-Step-Ahead, and Long-Range Optimal Control; 1.5 Free and Forced Responses of the Predicted Controlled Variable; 1.6 Minimization of the Cost Function
1.6.1 Minimization Algorithms for Nonlinear Processes with or without Constraints 1.6.2 Minimization of the Quadratic Cost Function for Linear Processes without Constraints; 1.7 Simple Tuning Rules of Predictive Control; 1.8 Control of Different Linear SISO Processes; 1.9 Control of Different Linear MIMO Processes; 1.10 Control of Nonlinear Processes; 1.11 Control under Constraints; 1.12 Robustness; 1.13 Summary; References; 2 Linear SISO Model Descriptions; 2.1 Nonparametric System Description; 2.1.1 FIR Model; 2.1.2 FSR Model; 2.1.3 Relationship between the FIRs and the FSRs
2.1.4 Disturbance Model 2.2 Pulse-Transfer Function Model; 2.2.1 Pulse-Transfer Function and Difference Equation; 2.2.2 Relationship between the Pulse-Transfer Function, the Weighting Function, and the Step Response Models; 2.2.3 Disturbance Model; 2.3 Discrete-Time State Space Model; 2.3.1 Minimal-Order State Space Representation; 2.3.2 Non-Minimal-Order State Space Representations; 2.4 Summary; References; 3 Predictive Equations of Linear SISO Models; 3.1 Predictive Equations Based on Nonparametric Models; 3.1.1 Predictive Equations of the Impulse Response Model
3.1.2 Predictive Equations of the Step Response Model 3.2 Predictive Equations Based on the Pulse-Transfer Function; 3.2.1 Repeated Substitution of the Process Model Equation; 3.2.2 Prediction by Solving the Diophantine Equation; 3.2.3 Prediction if the Additive Noise Is Autoregressive; 3.2.4 Prediction in the Presence of a Measurable Disturbance; 3.2.5 Prediction if the Additive Noise Is Nonautoregressive; 3.2.6 Matrix Calculation Method; 3.3 Predictive Equations of the State Space Model; 3.4 Summary; References; 4 Predictive On-Off Control
4.1 Classical On-Off Control by Means of Relay Characteristics 4.2 Predictive Set Point Control; 4.2.1 Cost Function Minimization by a Selection Strategy; 4.2.2 Cost Function Minimization by a Genetic Algorithm; 4.2.3 Simulation and Comparison of the Predictive Set Point Control Algorithms; 4.3 Predictive Start-Up Control at a Reference Signal Change; 4.4 Predictive Gap Control; 4.4.1 Quadratic Cost Function Minimization by the Selection Strategy or the Genetic Algorithm; 4.4.2 Quasi Continuous-Time Optimization; 4.4.3 Minimizing a Limit-Violation-Time-Point-Dependent Cost Function
4.4.4 Online Start-Up Strategy
Record Nr. UNINA-9910137968803321
Haber Robert <1948->  
Weinheim, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Predictive control in process engineering : from the basics to the applications / / Robert Haber, Ruth Bars, and Ulrich Schmitz
Predictive control in process engineering : from the basics to the applications / / Robert Haber, Ruth Bars, and Ulrich Schmitz
Autore Haber Robert <1948->
Edizione [1st ed.]
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (632 p.)
Disciplina 629.8
Altri autori (Persone) BarsR
SchmitzUlrich, Dipl.-Ing.
Soggetto topico Predictive control
Production engineering
ISBN 1-5231-1556-4
3-527-63625-0
1-283-64418-5
3-527-63626-9
3-527-63624-2
Classificazione ZQ 9910
660
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Predictive Control in Process Engineering; Contents; Preface; References; Notation and Abbreviations; 1 Introduction to Predictive Control; 1.1 Preview of Predictive Control; 1.1.1 Prediction of the Reference Value; 1.1.2 Prediction of the Disturbance; 1.2 Manipulated, Reference, and Controlled Signals; 1.3 Cost Function of Predictive Control; 1.4 Reference Signal and Disturbance Preview, Receding Horizon, One-Step-Ahead, and Long-Range Optimal Control; 1.5 Free and Forced Responses of the Predicted Controlled Variable; 1.6 Minimization of the Cost Function
1.6.1 Minimization Algorithms for Nonlinear Processes with or without Constraints 1.6.2 Minimization of the Quadratic Cost Function for Linear Processes without Constraints; 1.7 Simple Tuning Rules of Predictive Control; 1.8 Control of Different Linear SISO Processes; 1.9 Control of Different Linear MIMO Processes; 1.10 Control of Nonlinear Processes; 1.11 Control under Constraints; 1.12 Robustness; 1.13 Summary; References; 2 Linear SISO Model Descriptions; 2.1 Nonparametric System Description; 2.1.1 FIR Model; 2.1.2 FSR Model; 2.1.3 Relationship between the FIRs and the FSRs
2.1.4 Disturbance Model 2.2 Pulse-Transfer Function Model; 2.2.1 Pulse-Transfer Function and Difference Equation; 2.2.2 Relationship between the Pulse-Transfer Function, the Weighting Function, and the Step Response Models; 2.2.3 Disturbance Model; 2.3 Discrete-Time State Space Model; 2.3.1 Minimal-Order State Space Representation; 2.3.2 Non-Minimal-Order State Space Representations; 2.4 Summary; References; 3 Predictive Equations of Linear SISO Models; 3.1 Predictive Equations Based on Nonparametric Models; 3.1.1 Predictive Equations of the Impulse Response Model
3.1.2 Predictive Equations of the Step Response Model 3.2 Predictive Equations Based on the Pulse-Transfer Function; 3.2.1 Repeated Substitution of the Process Model Equation; 3.2.2 Prediction by Solving the Diophantine Equation; 3.2.3 Prediction if the Additive Noise Is Autoregressive; 3.2.4 Prediction in the Presence of a Measurable Disturbance; 3.2.5 Prediction if the Additive Noise Is Nonautoregressive; 3.2.6 Matrix Calculation Method; 3.3 Predictive Equations of the State Space Model; 3.4 Summary; References; 4 Predictive On-Off Control
4.1 Classical On-Off Control by Means of Relay Characteristics 4.2 Predictive Set Point Control; 4.2.1 Cost Function Minimization by a Selection Strategy; 4.2.2 Cost Function Minimization by a Genetic Algorithm; 4.2.3 Simulation and Comparison of the Predictive Set Point Control Algorithms; 4.3 Predictive Start-Up Control at a Reference Signal Change; 4.4 Predictive Gap Control; 4.4.1 Quadratic Cost Function Minimization by the Selection Strategy or the Genetic Algorithm; 4.4.2 Quasi Continuous-Time Optimization; 4.4.3 Minimizing a Limit-Violation-Time-Point-Dependent Cost Function
4.4.4 Online Start-Up Strategy
Record Nr. UNINA-9910825812503321
Haber Robert <1948->  
Weinheim, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui