Information fusion in signal and image processing [[electronic resource] ] : major probabilistic and non-probabilistic numerical approaches / / edited by Isabelle Bloch |
Autore | Bloch Isabelle |
Edizione | [1st edition] |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (297 p.) |
Disciplina |
621.382/2
621.3822 |
Altri autori (Persone) | BlochIsabelle |
Collana | ISTE |
Soggetto topico |
Signal processing
Image processing |
ISBN |
1-282-16497-X
9786612164972 0-470-61107-3 0-470-39365-3 |
Classificazione | ZN 6025 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Information Fusion in Signal and Image Processing; Table of Contents; Preface; Chapter 1. Definitions; 1.1. Introduction; 1.2. Choosing a definition; 1.3. General characteristics of the data; 1.4. Numerical/symbolic; 1.4.1. Data and information; 1.4.2. Processes; 1.4.3. Representations; 1.5. Fusion systems; 1.6. Fusion in signal and image processing and fusion in other fields; 1.7. Bibliography; Chapter 2. Fusion in Signal Processing; 2.1. Introduction; 2.2. Objectives of fusion in signal processing; 2.2.1. Estimation and calculation of a law a posteriori
2.2.2. Discriminating between several hypotheses and identifying2.2.3. Controlling and supervising a data fusion chain; 2.3. Problems and specificities of fusion in signal processing; 2.3.1. Dynamic control; 2.3.2. Quality of the information; 2.3.3. Representativeness and accuracy of learning and a priori information; 2.4. Bibliography; Chapter 3. Fusion in Image Processing; 3.1. Objectives of fusion in image processing; 3.2. Fusion situations; 3.3. Data characteristics in image fusion; 3.4. Constraints; 3.5. Numerical and symbolic aspects in image fusion; 3.6. Bibliography Chapter 4. Fusion in Robotics4.1. The necessity for fusion in robotics; 4.2. Specific features of fusion in robotics; 4.2.1. Constraints on the perception system; 4.2.2. Proprioceptive and exteroceptive sensors; 4.2.3. Interaction with the operator and symbolic interpretation; 4.2.4. Time constraints; 4.3. Characteristics of the data in robotics; 4.3.1. Calibrating and changing the frame of reference; 4.3.2. Types and levels of representation of the environment; 4.4. Data fusion mechanisms; 4.5. Bibliography; Chapter 5. Information and Knowledge Representation in Fusion Problems 5.1. Introduction5.2. Processing information in fusion; 5.3. Numerical representations of imperfect knowledge; 5.4. Symbolic representation of imperfect knowledge; 5.5. Knowledge-based systems; 5.6. Reasoning modes and inference; 5.7. Bibliography; Chapter 6. Probabilistic and Statistical Methods; 6.1. Introduction and general concepts; 6.2. Information measurements; 6.3. Modeling and estimation; 6.4. Combination in a Bayesian framework; 6.5. Combination as an estimation problem; 6.6. Decision; 6.7. Other methods in detection; 6.8. An example of Bayesian fusion in satellite imagery 6.9. Probabilistic fusion methods applied to target motion analysis6.9.1. General presentation; 6.9.2. Multi-platform target motion analysis; 6.9.3. Target motion analysis by fusion of active and passive measurements; 6.9.4. Detection of a moving target in a network of sensors; 6.10. Discussion; 6.11. Bibliography; Chapter 7. Belief Function Theory; 7.1. General concept and philosophy of the theory; 7.2. Modeling; 7.3. Estimation of mass functions; 7.3.1. Modification of probabilistic models; 7.3.2. Modification of distance models 7.3.3. A priori information on composite focal elements (disjunctions) |
Record Nr. | UNINA-9910139517903321 |
Bloch Isabelle | ||
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Information fusion in signal and image processing [[electronic resource] ] : major probabilistic and non-probabilistic numerical approaches / / edited by Isabelle Bloch |
Autore | Bloch Isabelle |
Edizione | [1st edition] |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (297 p.) |
Disciplina |
621.382/2
621.3822 |
Altri autori (Persone) | BlochIsabelle |
Collana | ISTE |
Soggetto topico |
Signal processing
Image processing |
ISBN |
1-282-16497-X
9786612164972 0-470-61107-3 0-470-39365-3 |
Classificazione | ZN 6025 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Information Fusion in Signal and Image Processing; Table of Contents; Preface; Chapter 1. Definitions; 1.1. Introduction; 1.2. Choosing a definition; 1.3. General characteristics of the data; 1.4. Numerical/symbolic; 1.4.1. Data and information; 1.4.2. Processes; 1.4.3. Representations; 1.5. Fusion systems; 1.6. Fusion in signal and image processing and fusion in other fields; 1.7. Bibliography; Chapter 2. Fusion in Signal Processing; 2.1. Introduction; 2.2. Objectives of fusion in signal processing; 2.2.1. Estimation and calculation of a law a posteriori
2.2.2. Discriminating between several hypotheses and identifying2.2.3. Controlling and supervising a data fusion chain; 2.3. Problems and specificities of fusion in signal processing; 2.3.1. Dynamic control; 2.3.2. Quality of the information; 2.3.3. Representativeness and accuracy of learning and a priori information; 2.4. Bibliography; Chapter 3. Fusion in Image Processing; 3.1. Objectives of fusion in image processing; 3.2. Fusion situations; 3.3. Data characteristics in image fusion; 3.4. Constraints; 3.5. Numerical and symbolic aspects in image fusion; 3.6. Bibliography Chapter 4. Fusion in Robotics4.1. The necessity for fusion in robotics; 4.2. Specific features of fusion in robotics; 4.2.1. Constraints on the perception system; 4.2.2. Proprioceptive and exteroceptive sensors; 4.2.3. Interaction with the operator and symbolic interpretation; 4.2.4. Time constraints; 4.3. Characteristics of the data in robotics; 4.3.1. Calibrating and changing the frame of reference; 4.3.2. Types and levels of representation of the environment; 4.4. Data fusion mechanisms; 4.5. Bibliography; Chapter 5. Information and Knowledge Representation in Fusion Problems 5.1. Introduction5.2. Processing information in fusion; 5.3. Numerical representations of imperfect knowledge; 5.4. Symbolic representation of imperfect knowledge; 5.5. Knowledge-based systems; 5.6. Reasoning modes and inference; 5.7. Bibliography; Chapter 6. Probabilistic and Statistical Methods; 6.1. Introduction and general concepts; 6.2. Information measurements; 6.3. Modeling and estimation; 6.4. Combination in a Bayesian framework; 6.5. Combination as an estimation problem; 6.6. Decision; 6.7. Other methods in detection; 6.8. An example of Bayesian fusion in satellite imagery 6.9. Probabilistic fusion methods applied to target motion analysis6.9.1. General presentation; 6.9.2. Multi-platform target motion analysis; 6.9.3. Target motion analysis by fusion of active and passive measurements; 6.9.4. Detection of a moving target in a network of sensors; 6.10. Discussion; 6.11. Bibliography; Chapter 7. Belief Function Theory; 7.1. General concept and philosophy of the theory; 7.2. Modeling; 7.3. Estimation of mass functions; 7.3.1. Modification of probabilistic models; 7.3.2. Modification of distance models 7.3.3. A priori information on composite focal elements (disjunctions) |
Record Nr. | UNINA-9910830598303321 |
Bloch Isabelle | ||
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Information fusion in signal and image processing : major probabilistic and non-probabilistic numerical approaches / / edited by Isabelle Bloch |
Edizione | [1st edition] |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (297 p.) |
Disciplina | 621.382/2 |
Altri autori (Persone) | BlochIsabelle |
Collana | ISTE |
Soggetto topico |
Signal processing
Image processing |
ISBN |
9786612164972
9781282164970 128216497X 9780470611074 0470611073 9780470393659 0470393653 |
Classificazione | ZN 6025 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Information Fusion in Signal and Image Processing; Table of Contents; Preface; Chapter 1. Definitions; 1.1. Introduction; 1.2. Choosing a definition; 1.3. General characteristics of the data; 1.4. Numerical/symbolic; 1.4.1. Data and information; 1.4.2. Processes; 1.4.3. Representations; 1.5. Fusion systems; 1.6. Fusion in signal and image processing and fusion in other fields; 1.7. Bibliography; Chapter 2. Fusion in Signal Processing; 2.1. Introduction; 2.2. Objectives of fusion in signal processing; 2.2.1. Estimation and calculation of a law a posteriori
2.2.2. Discriminating between several hypotheses and identifying2.2.3. Controlling and supervising a data fusion chain; 2.3. Problems and specificities of fusion in signal processing; 2.3.1. Dynamic control; 2.3.2. Quality of the information; 2.3.3. Representativeness and accuracy of learning and a priori information; 2.4. Bibliography; Chapter 3. Fusion in Image Processing; 3.1. Objectives of fusion in image processing; 3.2. Fusion situations; 3.3. Data characteristics in image fusion; 3.4. Constraints; 3.5. Numerical and symbolic aspects in image fusion; 3.6. Bibliography Chapter 4. Fusion in Robotics4.1. The necessity for fusion in robotics; 4.2. Specific features of fusion in robotics; 4.2.1. Constraints on the perception system; 4.2.2. Proprioceptive and exteroceptive sensors; 4.2.3. Interaction with the operator and symbolic interpretation; 4.2.4. Time constraints; 4.3. Characteristics of the data in robotics; 4.3.1. Calibrating and changing the frame of reference; 4.3.2. Types and levels of representation of the environment; 4.4. Data fusion mechanisms; 4.5. Bibliography; Chapter 5. Information and Knowledge Representation in Fusion Problems 5.1. Introduction5.2. Processing information in fusion; 5.3. Numerical representations of imperfect knowledge; 5.4. Symbolic representation of imperfect knowledge; 5.5. Knowledge-based systems; 5.6. Reasoning modes and inference; 5.7. Bibliography; Chapter 6. Probabilistic and Statistical Methods; 6.1. Introduction and general concepts; 6.2. Information measurements; 6.3. Modeling and estimation; 6.4. Combination in a Bayesian framework; 6.5. Combination as an estimation problem; 6.6. Decision; 6.7. Other methods in detection; 6.8. An example of Bayesian fusion in satellite imagery 6.9. Probabilistic fusion methods applied to target motion analysis6.9.1. General presentation; 6.9.2. Multi-platform target motion analysis; 6.9.3. Target motion analysis by fusion of active and passive measurements; 6.9.4. Detection of a moving target in a network of sensors; 6.10. Discussion; 6.11. Bibliography; Chapter 7. Belief Function Theory; 7.1. General concept and philosophy of the theory; 7.2. Modeling; 7.3. Estimation of mass functions; 7.3.1. Modification of probabilistic models; 7.3.2. Modification of distance models 7.3.3. A priori information on composite focal elements (disjunctions) |
Altri titoli varianti | Major probabilistic and non-probabilistic numerical approaches |
Record Nr. | UNINA-9910877106103321 |
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|