top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bioinformatics [[electronic resource] ] : genomics and post-genomics / / Frédéric Dardel and François Képès ; translated by Noah Hardy
Bioinformatics [[electronic resource] ] : genomics and post-genomics / / Frédéric Dardel and François Képès ; translated by Noah Hardy
Autore Dardel Frédéric
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, c2006
Descrizione fisica 1 online resource (253 p.)
Disciplina 570.285
572.80285
Altri autori (Persone) KépèsFrançois
Soggetto topico Bioinformatics
Genomics
Soggetto genere / forma Electronic books.
ISBN 1-280-73873-1
9786610738731
0-470-02003-2
0-470-02002-4
Classificazione BIO 110f
BIO 180f
WC 7700
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Preface to the French edition; Preface to the English edition; 1: Genome sequencing; 1.1 Automatic sequencing; 1.2 Sequencing strategies; 1.3 Fragmentation strategies; 1.4 Sequence assembly; 1.5 Filling gaps; 1.6 Obstacles to reconstruction; 1.7 Utilizing a complementary 'large'1 clone library; 1.8 The first large-scale sequencing project: The Haemophilus influenzae genome; 1.9 cDNA and EST; 2: Sequence comparisons; 2.1 Introduction: Comparison as a sequence prediction method; 2.2 A sample molecule: the human androsterone receptor
2.3 Sequence homologies - functional homologies2.4 Comparison matrices; 2.5 The problem of insertions and deletions; 2.6 Optimal alignment: the dynamic programming method; 2.7 Fast heuristic methods; 2.8 Sensitivity, specificity, and confidence level; 2.9 Multiple alignments; 3: Comparative genomics; 3.1 General properties of genomes; 3.2 Genome comparisons; 3.3 Gene evolution and phylogeny: applications to annotation; 4: Genetic information and biological sequences; 4.1 Introduction: Coding levels; 4.2 Genes and the genetic code; 4.3 Expression signals; 4.4 Specific sites
4.5 Sites located on DNA4.6 Sites present on RNA; 4.7 Pattern detection methods; 5: Statistics and sequences; 5.1 Introduction; 5.2 Nucleotide base and amino acid distribution; 5.3 The biological basis of codon bias; 5.4 Using statistical bias for prediction; 5.5 Modeling DNA sequences; 5.6 Complex models; 5.7 Sequencing errors and hidden Markov models; 5.8 Hidden Markov processes: a general sequence analysis tool; 5.9 The search for genes - a difficult art; 6: Structure prediction; 6.1 The structure of RNA; 6.2 Properties of the RNA molecule; 6.3 Secondary RNA structures
6.4 Thermodynamic stability of RNA structures6.5 Finding the most stable structure; 6.6 Validation of predicted secondary structures; 6.7 Using chemical and enzymatic probing to analyze folding; 6.8 Long-distance interactions and three-dimensional structure prediction; 6.9 Protein structure; 6.10 Secondary structure prediction; 6.11 Three-dimensional modeling based on homologous protein structure; 6.12 Predicting folding; 7: Transcriptome and proteome: macromolecular networks; 7.1 Introduction; 7.2 Post-genomic methods; 7.3 Macromolecular networks; 7.4 Topology of macromolecular networks
7.5 Modularity and dynamics of macromolecular networks7.6 Inference of regulatory networks; 8: Simulation of biological processes in the genome context; 8.1 Types of simulations; 8.2 Prediction and explanation; 8.3 Simulation of molecular networks; 8.4 Generic post-genomic simulators; Index
Record Nr. UNINA-9910143739203321
Dardel Frédéric  
Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioinformatics [[electronic resource] ] : genomics and post-genomics / / Frédéric Dardel and François Képès ; translated by Noah Hardy
Bioinformatics [[electronic resource] ] : genomics and post-genomics / / Frédéric Dardel and François Képès ; translated by Noah Hardy
Autore Dardel Frédéric
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, c2006
Descrizione fisica 1 online resource (253 p.)
Disciplina 570.285
572.80285
Altri autori (Persone) KépèsFrançois
Soggetto topico Bioinformatics
Genomics
ISBN 1-280-73873-1
9786610738731
0-470-02003-2
0-470-02002-4
Classificazione BIO 110f
BIO 180f
WC 7700
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Preface to the French edition; Preface to the English edition; 1: Genome sequencing; 1.1 Automatic sequencing; 1.2 Sequencing strategies; 1.3 Fragmentation strategies; 1.4 Sequence assembly; 1.5 Filling gaps; 1.6 Obstacles to reconstruction; 1.7 Utilizing a complementary 'large'1 clone library; 1.8 The first large-scale sequencing project: The Haemophilus influenzae genome; 1.9 cDNA and EST; 2: Sequence comparisons; 2.1 Introduction: Comparison as a sequence prediction method; 2.2 A sample molecule: the human androsterone receptor
2.3 Sequence homologies - functional homologies2.4 Comparison matrices; 2.5 The problem of insertions and deletions; 2.6 Optimal alignment: the dynamic programming method; 2.7 Fast heuristic methods; 2.8 Sensitivity, specificity, and confidence level; 2.9 Multiple alignments; 3: Comparative genomics; 3.1 General properties of genomes; 3.2 Genome comparisons; 3.3 Gene evolution and phylogeny: applications to annotation; 4: Genetic information and biological sequences; 4.1 Introduction: Coding levels; 4.2 Genes and the genetic code; 4.3 Expression signals; 4.4 Specific sites
4.5 Sites located on DNA4.6 Sites present on RNA; 4.7 Pattern detection methods; 5: Statistics and sequences; 5.1 Introduction; 5.2 Nucleotide base and amino acid distribution; 5.3 The biological basis of codon bias; 5.4 Using statistical bias for prediction; 5.5 Modeling DNA sequences; 5.6 Complex models; 5.7 Sequencing errors and hidden Markov models; 5.8 Hidden Markov processes: a general sequence analysis tool; 5.9 The search for genes - a difficult art; 6: Structure prediction; 6.1 The structure of RNA; 6.2 Properties of the RNA molecule; 6.3 Secondary RNA structures
6.4 Thermodynamic stability of RNA structures6.5 Finding the most stable structure; 6.6 Validation of predicted secondary structures; 6.7 Using chemical and enzymatic probing to analyze folding; 6.8 Long-distance interactions and three-dimensional structure prediction; 6.9 Protein structure; 6.10 Secondary structure prediction; 6.11 Three-dimensional modeling based on homologous protein structure; 6.12 Predicting folding; 7: Transcriptome and proteome: macromolecular networks; 7.1 Introduction; 7.2 Post-genomic methods; 7.3 Macromolecular networks; 7.4 Topology of macromolecular networks
7.5 Modularity and dynamics of macromolecular networks7.6 Inference of regulatory networks; 8: Simulation of biological processes in the genome context; 8.1 Types of simulations; 8.2 Prediction and explanation; 8.3 Simulation of molecular networks; 8.4 Generic post-genomic simulators; Index
Record Nr. UNINA-9910831026903321
Dardel Frédéric  
Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioinformatics : genomics and post-genomics / / Frederic Dardel and Francois Kepes ; translated by Noah Hardy
Bioinformatics : genomics and post-genomics / / Frederic Dardel and Francois Kepes ; translated by Noah Hardy
Autore Dardel Frédéric
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, c2006
Descrizione fisica 1 online resource (253 p.)
Disciplina 570.285
572.80285
Altri autori (Persone) KépèsFrançois
Soggetto topico Bioinformatics
Genomics
ISBN 9786610738731
9781280738739
1280738731
9780470020036
0470020032
9780470020029
0470020024
Classificazione BIO 110f
BIO 180f
WC 7700
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Preface to the French edition; Preface to the English edition; 1: Genome sequencing; 1.1 Automatic sequencing; 1.2 Sequencing strategies; 1.3 Fragmentation strategies; 1.4 Sequence assembly; 1.5 Filling gaps; 1.6 Obstacles to reconstruction; 1.7 Utilizing a complementary 'large'1 clone library; 1.8 The first large-scale sequencing project: The Haemophilus influenzae genome; 1.9 cDNA and EST; 2: Sequence comparisons; 2.1 Introduction: Comparison as a sequence prediction method; 2.2 A sample molecule: the human androsterone receptor
2.3 Sequence homologies - functional homologies2.4 Comparison matrices; 2.5 The problem of insertions and deletions; 2.6 Optimal alignment: the dynamic programming method; 2.7 Fast heuristic methods; 2.8 Sensitivity, specificity, and confidence level; 2.9 Multiple alignments; 3: Comparative genomics; 3.1 General properties of genomes; 3.2 Genome comparisons; 3.3 Gene evolution and phylogeny: applications to annotation; 4: Genetic information and biological sequences; 4.1 Introduction: Coding levels; 4.2 Genes and the genetic code; 4.3 Expression signals; 4.4 Specific sites
4.5 Sites located on DNA4.6 Sites present on RNA; 4.7 Pattern detection methods; 5: Statistics and sequences; 5.1 Introduction; 5.2 Nucleotide base and amino acid distribution; 5.3 The biological basis of codon bias; 5.4 Using statistical bias for prediction; 5.5 Modeling DNA sequences; 5.6 Complex models; 5.7 Sequencing errors and hidden Markov models; 5.8 Hidden Markov processes: a general sequence analysis tool; 5.9 The search for genes - a difficult art; 6: Structure prediction; 6.1 The structure of RNA; 6.2 Properties of the RNA molecule; 6.3 Secondary RNA structures
6.4 Thermodynamic stability of RNA structures6.5 Finding the most stable structure; 6.6 Validation of predicted secondary structures; 6.7 Using chemical and enzymatic probing to analyze folding; 6.8 Long-distance interactions and three-dimensional structure prediction; 6.9 Protein structure; 6.10 Secondary structure prediction; 6.11 Three-dimensional modeling based on homologous protein structure; 6.12 Predicting folding; 7: Transcriptome and proteome: macromolecular networks; 7.1 Introduction; 7.2 Post-genomic methods; 7.3 Macromolecular networks; 7.4 Topology of macromolecular networks
7.5 Modularity and dynamics of macromolecular networks7.6 Inference of regulatory networks; 8: Simulation of biological processes in the genome context; 8.1 Types of simulations; 8.2 Prediction and explanation; 8.3 Simulation of molecular networks; 8.4 Generic post-genomic simulators; Index
Record Nr. UNINA-9911020348503321
Dardel Frédéric  
Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics [[electronic resource] ] : 8th European Conference, EvoBIO 2010, Istanbul, Turkey, April 7-9, 2010, Proceedings / / edited by Clara Pizzuti, Marylyn D. Ritchie, Mario Giacobini
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics [[electronic resource] ] : 8th European Conference, EvoBIO 2010, Istanbul, Turkey, April 7-9, 2010, Proceedings / / edited by Clara Pizzuti, Marylyn D. Ritchie, Mario Giacobini
Edizione [1st ed. 2010.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2010
Descrizione fisica 1 online resource (XII, 249 p. 63 illus.)
Disciplina 006.3
Collana Theoretical Computer Science and General Issues
Soggetto topico Bioinformatics
Algorithms
Database management
Artificial intelligence
Computer science
Artificial intelligence—Data processing
Computational and Systems Biology
Database Management
Artificial Intelligence
Theory of Computation
Data Science
ISBN 1-280-38605-3
9786613563972
3-642-12211-6
Classificazione BIO 110f
DAT 708f
MAT 919f
SS 4800
WC 7700
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Variable Genetic Operator Search for the Molecular Docking Problem -- Variable Genetic Operator Search for the Molecular Docking Problem -- Role of Centrality in Network-Based Prioritization of Disease Genes -- Parallel Multi-Objective Approaches for Inferring Phylogenies -- An Evolutionary Model Based on Hill-Climbing Search Operators for Protein Structure Prediction -- Finding Gapped Motifs by a Novel Evolutionary Algorithm -- Top-Down Induction of Phylogenetic Trees -- A Model Free Method to Generate Human Genetics Datasets with Complex Gene-Disease Relationships -- Grammatical Evolution of Neural Networks for Discovering Epistasis among Quantitative Trait Loci -- Grammatical Evolution Decision Trees for Detecting Gene-Gene Interactions -- Identification of Individualized Feature Combinations for Survival Prediction in Breast Cancer: A Comparison of Machine Learning Techniques -- Correlation–Based Scatter Search for Discovering Biclusters from Gene Expression Data -- A Local Search Appproach for Transmembrane Segment and Signal Peptide Discrimination -- A Replica Exchange Monte Carlo Algorithm for the Optimization of Secondary Structure Packing in Proteins -- Improving Multi-Relief for Detecting Specificity Residues from Multiple Sequence Alignments -- Using Probabilistic Dependencies Improves the Search of Conductance-Based Compartmental Neuron Models -- Posters -- The Informative Extremes: Using Both Nearest and Farthest Individuals Can Improve Relief Algorithms in the Domain of Human Genetics -- Artificial Immune Systems for Epistasis Analysis in Human Genetics -- Metaheuristics for Strain Optimization Using Transcriptional Information Enriched Metabolic Models -- Using Rotation Forest for Protein Fold Prediction Problem: An Empirical Study -- Towards Automatic Detecting of Overlapping Genes - Clustered BLAST Analysis of Viral Genomes -- Investigating Populational Evolutionary Algorithms to Add Vertical Meaning in Phylogenetic Trees.
Record Nr. UNISA-996465893203316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2010
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics : 8th European Conference, EvoBIO 2010, Istanbul, Turkey, April 7-9, 2010, Proceedings / / edited by Clara Pizzuti, Marylyn D. Ritchie, Mario Giacobini
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics : 8th European Conference, EvoBIO 2010, Istanbul, Turkey, April 7-9, 2010, Proceedings / / edited by Clara Pizzuti, Marylyn D. Ritchie, Mario Giacobini
Edizione [1st ed. 2010.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2010
Descrizione fisica 1 online resource (XII, 249 p. 63 illus.)
Disciplina 006.3
Altri autori (Persone) PizzutiClara
RitchieMarylyn DeRiggi
GiacobiniMario
Collana Theoretical Computer Science and General Issues
Soggetto topico Bioinformatics
Algorithms
Database management
Artificial intelligence
Computer science
Artificial intelligence - Data processing
Computational and Systems Biology
Database Management
Artificial Intelligence
Theory of Computation
Data Science
ISBN 1-280-38605-3
9786613563972
3-642-12211-6
Classificazione BIO 110f
DAT 708f
MAT 919f
SS 4800
WC 7700
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Variable Genetic Operator Search for the Molecular Docking Problem -- Variable Genetic Operator Search for the Molecular Docking Problem -- Role of Centrality in Network-Based Prioritization of Disease Genes -- Parallel Multi-Objective Approaches for Inferring Phylogenies -- An Evolutionary Model Based on Hill-Climbing Search Operators for Protein Structure Prediction -- Finding Gapped Motifs by a Novel Evolutionary Algorithm -- Top-Down Induction of Phylogenetic Trees -- A Model Free Method to Generate Human Genetics Datasets with Complex Gene-Disease Relationships -- Grammatical Evolution of Neural Networks for Discovering Epistasis among Quantitative Trait Loci -- Grammatical Evolution Decision Trees for Detecting Gene-Gene Interactions -- Identification of Individualized Feature Combinations for Survival Prediction in Breast Cancer: A Comparison of Machine Learning Techniques -- Correlation–Based Scatter Search for Discovering Biclusters from Gene Expression Data -- A Local Search Appproach for Transmembrane Segment and Signal Peptide Discrimination -- A Replica Exchange Monte Carlo Algorithm for the Optimization of Secondary Structure Packing in Proteins -- Improving Multi-Relief for Detecting Specificity Residues from Multiple Sequence Alignments -- Using Probabilistic Dependencies Improves the Search of Conductance-Based Compartmental Neuron Models -- Posters -- The Informative Extremes: Using Both Nearest and Farthest Individuals Can Improve Relief Algorithms in the Domain of Human Genetics -- Artificial Immune Systems for Epistasis Analysis in Human Genetics -- Metaheuristics for Strain Optimization Using Transcriptional Information Enriched Metabolic Models -- Using Rotation Forest for Protein Fold Prediction Problem: An Empirical Study -- Towards Automatic Detecting ofOverlapping Genes - Clustered BLAST Analysis of Viral Genomes -- Investigating Populational Evolutionary Algorithms to Add Vertical Meaning in Phylogenetic Trees.
Record Nr. UNINA-9910768441203321
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Functional and Phylogenetic Ecology in R / / by Nathan G. Swenson
Functional and Phylogenetic Ecology in R / / by Nathan G. Swenson
Autore Swenson Nathan G.
Edizione [1st ed. 2014.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 2014
Descrizione fisica 1 online resource (217 p.)
Disciplina 577.0285
Collana Use R!
Soggetto topico Statistics
Ecology
Evolution (Biology)
R (Computer program language)
Statistics and Computing/Statistics Programs
Evolutionary Biology
ISBN 1-4614-9542-3
Classificazione WC 7700
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Introduction -- Phylogenetic Data in R -- Phylogenetic Diversity -- Functional Diversity -- Phylogenetic & Functional Beta Diversity -- Null Models -- Comparative Methods & Phylogenetic Signal -- Partitioning the Phylogenetic, Functional, Environmental and Spatial Components of Community Diversity -- Integrating R with Other Phylogenetic and Functional Trait Analytical Software -- References -- Index.
Record Nr. UNINA-9910300149403321
Swenson Nathan G.  
New York, NY : , : Springer New York : , : Imprint : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine learning for protein subcellular localization prediction / / Shibiao Wan, Man-Wai Mak
Machine learning for protein subcellular localization prediction / / Shibiao Wan, Man-Wai Mak
Autore Wan Shibiao
Pubbl/distr/stampa Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , 2015
Descrizione fisica 1 online resource (210 p.)
Disciplina 572/.696
Soggetto topico Proteins - Physiological transport - Data processing
Machine learning
Probabilities - Data processing
Soggetto genere / forma Electronic books.
ISBN 1-5015-0150-X
1-5015-0152-6
Classificazione WC 7700
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Preface -- Contents -- List of Abbreviations -- 1. Introduction -- 2. Overview of subcellular localization prediction -- 3. Legitimacy of using gene ontology information -- 4. Single-location protein subcellular localization -- 5. From single- to multi-location -- 6. Mining deeper on GO for protein subcellular localization -- 7. Ensemble random projection for large-scale predictions -- 8. Experimental setup -- 9. Results and analysis -- 10. Properties of the proposed predictors -- 11. Conclusions and future directions -- A. Webservers for protein subcellular localization -- B. Support vector machines -- C. Proof of no bias in LOOCV -- D. Derivatives for penalized logistic regression -- Bibliography -- Index
Record Nr. UNINA-9910460442103321
Wan Shibiao  
Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine learning for protein subcellular localization prediction / / Shibiao Wan, Man-Wai Mak
Machine learning for protein subcellular localization prediction / / Shibiao Wan, Man-Wai Mak
Autore Wan Shibiao
Pubbl/distr/stampa Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , 2015
Descrizione fisica 1 online resource (210 p.)
Disciplina 572/.696
Soggetto topico Proteins - Physiological transport - Data processing
Machine learning
Probabilities - Data processing
Soggetto non controllato Bioinformatics
Computer Science
Proteomics
ISBN 1-5015-0150-X
1-5015-0152-6
Classificazione WC 7700
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Preface -- Contents -- List of Abbreviations -- 1. Introduction -- 2. Overview of subcellular localization prediction -- 3. Legitimacy of using gene ontology information -- 4. Single-location protein subcellular localization -- 5. From single- to multi-location -- 6. Mining deeper on GO for protein subcellular localization -- 7. Ensemble random projection for large-scale predictions -- 8. Experimental setup -- 9. Results and analysis -- 10. Properties of the proposed predictors -- 11. Conclusions and future directions -- A. Webservers for protein subcellular localization -- B. Support vector machines -- C. Proof of no bias in LOOCV -- D. Derivatives for penalized logistic regression -- Bibliography -- Index
Record Nr. UNINA-9910797139603321
Wan Shibiao  
Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine learning for protein subcellular localization prediction / / Shibiao Wan, Man-Wai Mak
Machine learning for protein subcellular localization prediction / / Shibiao Wan, Man-Wai Mak
Autore Wan Shibiao
Pubbl/distr/stampa Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , 2015
Descrizione fisica 1 online resource (210 p.)
Disciplina 572/.696
Soggetto topico Proteins - Physiological transport - Data processing
Machine learning
Probabilities - Data processing
Soggetto non controllato Bioinformatics
Computer Science
Proteomics
ISBN 1-5015-0150-X
1-5015-0152-6
Classificazione WC 7700
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Preface -- Contents -- List of Abbreviations -- 1. Introduction -- 2. Overview of subcellular localization prediction -- 3. Legitimacy of using gene ontology information -- 4. Single-location protein subcellular localization -- 5. From single- to multi-location -- 6. Mining deeper on GO for protein subcellular localization -- 7. Ensemble random projection for large-scale predictions -- 8. Experimental setup -- 9. Results and analysis -- 10. Properties of the proposed predictors -- 11. Conclusions and future directions -- A. Webservers for protein subcellular localization -- B. Support vector machines -- C. Proof of no bias in LOOCV -- D. Derivatives for penalized logistic regression -- Bibliography -- Index
Record Nr. UNINA-9910819391103321
Wan Shibiao  
Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui