top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Density functional theory [[electronic resource] ] : a practical introduction / / David S. Sholl and Jan Steckel
Density functional theory [[electronic resource] ] : a practical introduction / / David S. Sholl and Jan Steckel
Autore Sholl David S
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2009
Descrizione fisica 1 online resource (252 p.)
Disciplina 530.14/4
Altri autori (Persone) SteckelJanice A
Soggetto topico Density functionals
Mathematical physics
Quantum chemistry
ISBN 1-118-21104-9
1-282-13728-X
9786612137280
0-470-44771-0
0-470-44770-2
Classificazione UL 2000
VE 5650
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DENSITY FUNCTIONAL THEORY; CONTENTS; Preface; 1 What Is Density Functional Theory?; 1.1 How to Approach This Book; 1.2 Examples of DFT in Action; 1.2.1 Ammonia Synthesis by Heterogeneous Catalysis; 1.2.2 Embrittlement of Metals by Trace Impurities; 1.2.3 Materials Properties for Modeling Planetary Formation; 1.3 The Schrödinger Equation; 1.4 Density Functional Theory-From Wave Functions to Electron Density; 1.5 Exchange-Correlation Functional; 1.6 The Quantum Chemistry Tourist; 1.6.1 Localized and Spatially Extended Functions; 1.6.2 Wave-Function-Based Methods; 1.6.3 Hartree-Fock Method
1.6.4 Beyond Hartree-Fock1.7 What Can DFT Not Do?; 1.8 Density Functional Theory in Other Fields; 1.9 How to Approach This Book (Revisited); References; Further Reading; 2 DFT Calculations for Simple Solids; 2.1 Periodic Structures, Supercells, and Lattice Parameters; 2.2 Face-Centered Cubic Materials; 2.3 Hexagonal Close-Packed Materials; 2.4 Crystal Structure Prediction; 2.5 Phase Transformations; Exercises; Further Reading; Appendix Calculation Details; 3 Nuts and Bolts of DFT Calculations; 3.1 Reciprocal Space and k Points; 3.1.1 Plane Waves and the Brillouin Zone
3.1.2 Integrals in k Space3.1.3 Choosing k Points in the Brillouin Zone; 3.1.4 Metals-Special Cases in k Space; 3.1.5 Summary of k Space; 3.2 Energy Cutoffs; 3.2.1 Pseudopotentials; 3.3 Numerical Optimization; 3.3.1 Optimization in One Dimension; 3.3.2 Optimization in More than One Dimension; 3.3.3 What Do I Really Need to Know about Optimization?; 3.4 DFT Total Energies-An Iterative Optimization Problem; 3.5 Geometry Optimization; 3.5.1 Internal Degrees of Freedom; 3.5.2 Geometry Optimization with Constrained Atoms; 3.5.3 Optimizing Supercell Volume and Shape; Exercises; References
Further ReadingAppendix Calculation Details; 4 DFT Calculations for Surfaces of Solids; 4.1 Importance of Surfaces; 4.2 Periodic Boundary Conditions and Slab Models; 4.3 Choosing k Points for Surface Calculations; 4.4 Classification of Surfaces by Miller Indices; 4.5 Surface Relaxation; 4.6 Calculation of Surface Energies; 4.7 Symmetric and Asymmetric Slab Models; 4.8 Surface Reconstruction; 4.9 Adsorbates on Surfaces; 4.9.1 Accuracy of Adsorption Energies; 4.10 Effects of Surface Coverage; Exercises; References; Further Reading; Appendix Calculation Details
5 DFT Calculations of Vibrational Frequencies5.1 Isolated Molecules; 5.2 Vibrations of a Collection of Atoms; 5.3 Molecules on Surfaces; 5.4 Zero-Point Energies; 5.5 Phonons and Delocalized Modes; Exercises; Reference; Further Reading; Appendix Calculation Details; 6 Calculating Rates of Chemical Processes Using Transition State Theory; 6.1 One-Dimensional Example; 6.2 Multidimensional Transition State Theory; 6.3 Finding Transition States; 6.3.1 Elastic Band Method; 6.3.2 Nudged Elastic Band Method; 6.3.3 Initializing NEB Calculations; 6.4 Finding the Right Transition States
6.5 Connecting Individual Rates to Overall Dynamics
Record Nr. UNINA-9910146412203321
Sholl David S  
Hoboken, N.J., : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Density functional theory [[electronic resource] ] : a practical introduction / / David S. Sholl and Jan Steckel
Density functional theory [[electronic resource] ] : a practical introduction / / David S. Sholl and Jan Steckel
Autore Sholl David S
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2009
Descrizione fisica 1 online resource (252 p.)
Disciplina 530.14/4
Altri autori (Persone) SteckelJanice A
Soggetto topico Density functionals
Mathematical physics
Quantum chemistry
ISBN 1-118-21104-9
1-282-13728-X
9786612137280
0-470-44771-0
0-470-44770-2
Classificazione UL 2000
VE 5650
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DENSITY FUNCTIONAL THEORY; CONTENTS; Preface; 1 What Is Density Functional Theory?; 1.1 How to Approach This Book; 1.2 Examples of DFT in Action; 1.2.1 Ammonia Synthesis by Heterogeneous Catalysis; 1.2.2 Embrittlement of Metals by Trace Impurities; 1.2.3 Materials Properties for Modeling Planetary Formation; 1.3 The Schrödinger Equation; 1.4 Density Functional Theory-From Wave Functions to Electron Density; 1.5 Exchange-Correlation Functional; 1.6 The Quantum Chemistry Tourist; 1.6.1 Localized and Spatially Extended Functions; 1.6.2 Wave-Function-Based Methods; 1.6.3 Hartree-Fock Method
1.6.4 Beyond Hartree-Fock1.7 What Can DFT Not Do?; 1.8 Density Functional Theory in Other Fields; 1.9 How to Approach This Book (Revisited); References; Further Reading; 2 DFT Calculations for Simple Solids; 2.1 Periodic Structures, Supercells, and Lattice Parameters; 2.2 Face-Centered Cubic Materials; 2.3 Hexagonal Close-Packed Materials; 2.4 Crystal Structure Prediction; 2.5 Phase Transformations; Exercises; Further Reading; Appendix Calculation Details; 3 Nuts and Bolts of DFT Calculations; 3.1 Reciprocal Space and k Points; 3.1.1 Plane Waves and the Brillouin Zone
3.1.2 Integrals in k Space3.1.3 Choosing k Points in the Brillouin Zone; 3.1.4 Metals-Special Cases in k Space; 3.1.5 Summary of k Space; 3.2 Energy Cutoffs; 3.2.1 Pseudopotentials; 3.3 Numerical Optimization; 3.3.1 Optimization in One Dimension; 3.3.2 Optimization in More than One Dimension; 3.3.3 What Do I Really Need to Know about Optimization?; 3.4 DFT Total Energies-An Iterative Optimization Problem; 3.5 Geometry Optimization; 3.5.1 Internal Degrees of Freedom; 3.5.2 Geometry Optimization with Constrained Atoms; 3.5.3 Optimizing Supercell Volume and Shape; Exercises; References
Further ReadingAppendix Calculation Details; 4 DFT Calculations for Surfaces of Solids; 4.1 Importance of Surfaces; 4.2 Periodic Boundary Conditions and Slab Models; 4.3 Choosing k Points for Surface Calculations; 4.4 Classification of Surfaces by Miller Indices; 4.5 Surface Relaxation; 4.6 Calculation of Surface Energies; 4.7 Symmetric and Asymmetric Slab Models; 4.8 Surface Reconstruction; 4.9 Adsorbates on Surfaces; 4.9.1 Accuracy of Adsorption Energies; 4.10 Effects of Surface Coverage; Exercises; References; Further Reading; Appendix Calculation Details
5 DFT Calculations of Vibrational Frequencies5.1 Isolated Molecules; 5.2 Vibrations of a Collection of Atoms; 5.3 Molecules on Surfaces; 5.4 Zero-Point Energies; 5.5 Phonons and Delocalized Modes; Exercises; Reference; Further Reading; Appendix Calculation Details; 6 Calculating Rates of Chemical Processes Using Transition State Theory; 6.1 One-Dimensional Example; 6.2 Multidimensional Transition State Theory; 6.3 Finding Transition States; 6.3.1 Elastic Band Method; 6.3.2 Nudged Elastic Band Method; 6.3.3 Initializing NEB Calculations; 6.4 Finding the Right Transition States
6.5 Connecting Individual Rates to Overall Dynamics
Record Nr. UNINA-9910822436203321
Sholl David S  
Hoboken, N.J., : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Time-dependent density-functional theory [[electronic resource] ] : concepts and applications / / Carsten Ullrich
Time-dependent density-functional theory [[electronic resource] ] : concepts and applications / / Carsten Ullrich
Autore Ullrich Carsten
Pubbl/distr/stampa Oxford, : Oxford University Press, c2012
Descrizione fisica 1 online resource (541 p.)
Disciplina 541.28
Collana Oxford graduate texts
Soggetto topico Density functionals
Mathematical physics
ISBN 0-19-162744-5
0-19-884193-0
1-283-42682-X
0-19-162691-0
9786613426826
Classificazione UL 2000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; List of abbreviations; 1 Introduction; 1.1 A survey of time-dependent phenomena; 1.2 Preview of and guide to this book; 2 Review of ground-state density-functional theory; 2.1 The formal framework of DFT; 2.2 Exact properties; 2.3 Approximate functionals; PART I: THE BASIC FORMALISM OF TDDFT; 3 Fundamental existence theorems; 3.1 Time-dependent many-body systems; 3.2 The Runge-Gross theorem; 3.3 The van Leeuwen theorem; 4 The time-dependent Kohn-Sham scheme; 4.1 The time-dependent Kohn-Sham equation; 4.2 Spin-dependent systems; 4.3 The adiabatic approximation
4.4 The meaning of self-consistency in DFT and TDDFT4.5 Numerical time propagation; 5 Time-dependent observables; 5.1 Explicit density functionals; 5.2 Implicit density functionals; 5.3 The time-dependent energy; 6 Properties of the time-dependent xc potential; 6.1 What is the universal xc functional?; 6.2 Some exact conditions; 6.3 Galilean invariance and the harmonic potential theorem; 6.4 Memory and causality; 6.5 Initial-state dependence; 6.6 Time-dependent variational principles; 6.7 Discontinuity upon change of particle number; PART II: LINEAR RESPONSE AND EXCITATION ENERGIES
7 The formal framework of linear-response TDDFT7.1 General linear-response theory; 7.2 Spectroscopic observables; 7.3 Linear density response in TDDFT; 7.4 Warm-up exercise: TDDFT for two-level systems; 7.5 Calculation of excitation energies: the Casida equation; 7.6 The Tamm-Dancoff approximation and other simplifications; 7.7 Excitation energies with time-dependent Hartree-Fock theory; 8 The frequency-dependent xc kernel; 8.1 Exact properties; 8.2 Approximations; 8.3 The xc kernels of the homogeneous electron liquid; 9 Applications to atomic and molecular systems
9.1 Excitation energies of small systems: basic trends and features9.2 Molecular excited-state properties with TDDFT: an overview; 9.3 Double excitations; 9.4 Charge-transfer excitations; 9.5 The Sternheimer equation; 9.6 Optical spectra via time propagation schemes; PART III: FURTHER DEVELOPMENTS; 10 Time-dependent current-DFT; 10.1 The adiabatic approximation and beyond; 10.2 The failure of nonadiabatic local approximations in TDDFT; 10.3 The formal framework of TDCDFT; 10.4 The VK functional; 10.5 Applications of TDCDFT in the linear-response regime
10.6 Memory effects: elasticity and dissipation11 The time-dependent optimized effective potential; 11.1 The static OEP approach for orbital functionals; 11.2 The TDOEP scheme; 11.3 TDOEP in the linear regime; 12 Extended systems; 12.1 Electronic structure and excitations of periodic solids; 12.2 Spectroscopy of density fluctuations: plasmons; 12.3 Optical absorption and excitons; 12.4 TDCDFT in periodic systems; 13 TDDFT and many-body theory; 13.1 Perturbation theory along the adiabatic connection; 13.2 Nonequilibrium Green's functions and the Keldysh action
13.3 xc kernels from many-body theory
Record Nr. UNINA-9910792254203321
Ullrich Carsten  
Oxford, : Oxford University Press, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Time-dependent density-functional theory : concepts and applications / / Carsten Ullrich
Time-dependent density-functional theory : concepts and applications / / Carsten Ullrich
Autore Ullrich Carsten
Edizione [1st ed.]
Pubbl/distr/stampa Oxford, : Oxford University Press, c2012
Descrizione fisica 1 online resource (541 p.)
Disciplina 541.28
Collana Oxford graduate texts
Soggetto topico Density functionals
Mathematical physics
ISBN 0-19-162744-5
0-19-884193-0
1-283-42682-X
0-19-162691-0
9786613426826
Classificazione UL 2000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; List of abbreviations; 1 Introduction; 1.1 A survey of time-dependent phenomena; 1.2 Preview of and guide to this book; 2 Review of ground-state density-functional theory; 2.1 The formal framework of DFT; 2.2 Exact properties; 2.3 Approximate functionals; PART I: THE BASIC FORMALISM OF TDDFT; 3 Fundamental existence theorems; 3.1 Time-dependent many-body systems; 3.2 The Runge-Gross theorem; 3.3 The van Leeuwen theorem; 4 The time-dependent Kohn-Sham scheme; 4.1 The time-dependent Kohn-Sham equation; 4.2 Spin-dependent systems; 4.3 The adiabatic approximation
4.4 The meaning of self-consistency in DFT and TDDFT4.5 Numerical time propagation; 5 Time-dependent observables; 5.1 Explicit density functionals; 5.2 Implicit density functionals; 5.3 The time-dependent energy; 6 Properties of the time-dependent xc potential; 6.1 What is the universal xc functional?; 6.2 Some exact conditions; 6.3 Galilean invariance and the harmonic potential theorem; 6.4 Memory and causality; 6.5 Initial-state dependence; 6.6 Time-dependent variational principles; 6.7 Discontinuity upon change of particle number; PART II: LINEAR RESPONSE AND EXCITATION ENERGIES
7 The formal framework of linear-response TDDFT7.1 General linear-response theory; 7.2 Spectroscopic observables; 7.3 Linear density response in TDDFT; 7.4 Warm-up exercise: TDDFT for two-level systems; 7.5 Calculation of excitation energies: the Casida equation; 7.6 The Tamm-Dancoff approximation and other simplifications; 7.7 Excitation energies with time-dependent Hartree-Fock theory; 8 The frequency-dependent xc kernel; 8.1 Exact properties; 8.2 Approximations; 8.3 The xc kernels of the homogeneous electron liquid; 9 Applications to atomic and molecular systems
9.1 Excitation energies of small systems: basic trends and features9.2 Molecular excited-state properties with TDDFT: an overview; 9.3 Double excitations; 9.4 Charge-transfer excitations; 9.5 The Sternheimer equation; 9.6 Optical spectra via time propagation schemes; PART III: FURTHER DEVELOPMENTS; 10 Time-dependent current-DFT; 10.1 The adiabatic approximation and beyond; 10.2 The failure of nonadiabatic local approximations in TDDFT; 10.3 The formal framework of TDCDFT; 10.4 The VK functional; 10.5 Applications of TDCDFT in the linear-response regime
10.6 Memory effects: elasticity and dissipation11 The time-dependent optimized effective potential; 11.1 The static OEP approach for orbital functionals; 11.2 The TDOEP scheme; 11.3 TDOEP in the linear regime; 12 Extended systems; 12.1 Electronic structure and excitations of periodic solids; 12.2 Spectroscopy of density fluctuations: plasmons; 12.3 Optical absorption and excitons; 12.4 TDCDFT in periodic systems; 13 TDDFT and many-body theory; 13.1 Perturbation theory along the adiabatic connection; 13.2 Nonequilibrium Green's functions and the Keldysh action
13.3 xc kernels from many-body theory
Record Nr. UNINA-9910818579003321
Ullrich Carsten  
Oxford, : Oxford University Press, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui