top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced power electronics converters : PWM converters processing ACvoltages / / Euzeli Cipriano dos Santos Jr., Edison Roberto Cabral da Silva
Advanced power electronics converters : PWM converters processing ACvoltages / / Euzeli Cipriano dos Santos Jr., Edison Roberto Cabral da Silva
Autore Santos Jr Euzeli Cipriano dos
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015]
Descrizione fisica 1 online resource (730 p.)
Disciplina 621.317
Altri autori (Persone) SilvaEdison Roberto Cabral da <1942->
Collana IEEE Press series on power engineering
Soggetto topico PWM power converters
DC-to-DC converters
Power electronics
ISBN 1-118-97205-8
1-118-88695-X
1-118-96822-0
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Advanced Power Electronics Converters PWM Converters Processing AC Voltages Summary 1 -- Chapter 1 -- Introduction 1.1 Introduction 1.2 Background 1.3 History of Power Switches and Power Converters 1.4 Applications of Power Electronics Converters 1.5 Summary 1.6 References 2 -- Chapter 2 -- Power Switches and Overview of Basic Power Converters 2.1 Introduction 2.2 Power Electronics Devices as Ideal Switches 2.2.1 Static Characteristics 2.2.2 Dynamic Characteristics 2.3 Main Real Power Semiconductors Devices 2.3.1 -- Spontaneous Conduction/Spontaneous Blocking 2.3.2 -- Controlled Conduction/Spontaneous Blocking Devices 2.3.3 -- Controlled Conduction/Controlled Blocking Devices 2.3.4 -- Spontaneous Conduction/Controlled Blocking Devices 2.4 Basic converters 2.4.1 -- Dc-dc Conversion 2.4.2 -- Dc-ac Conversion 2.4.3 -- Ac-dc Conversion 2.4.4 -- Ac-ac Conversion 2.5 Summary 2.6 References 3 -- Chapter 3 -- Power Electronics Converters Processing AC Voltage and Power Blocks Geometry 3.1 Introduction 3.2 Principles of Power Blocks Geometry (PBG) 3.3 Description of Power Blocks 3.4 Application of PBG in Multilevel Configurations 3.4.1 -- Neutral-Point-Clamped Configuration 3.4.2 -- Cascade Configuration 3.4.3 -- Flying Capacitor Configuration 3.4.4 -- Other Multilevel Configurations 3.5 Application of PBG in ac-dc-ac Configurations 3.5.1 -- Three-phase to three-phase configurations 3.5.2 -- Single-phase to single-phase configurations 3.6 Summary 3.7 References 4 -- Chapter 4 -- Neutral-Point-Clamped Configuration 4.1 Introduction 4.2 Three-level configuration 4.3 PWM Implementation (Half-Bridge Topology) 4.4 Full-bridge Topologies 4.5 Three-phase NPC Converter 4.6 Non-Conventional Arrangements by Using Three-Level Legs 4.7 Unbalanced Capacitor Voltage 4.8 Four-level Configuration 4.9 PWM Implementation (Four-level Configuration) 4.10 Full-bridge and Other Circuits (Four-level Configuration) 4.11 Five-level Configuration 4.12 Summary 4.13 References 5 -- Chapter 5 -- Cascade Configuration 5.1 Introduction 5.2 Single H-bridge Converter 5.3 PWM Implementation of a Single H-bridge Converter 5.4 Three-phase converter - one H-bridge converter per phase 5.5 Two H-bridge Converters 5.6 PWM Implementation of Two Cascade H-bridges 5.7 Three-phase converter - two Cascade H-bridges per phase 5.8 Two H-bridge Converters (Seven- and Nine-level topologies) 5.9 Three H-bridge Converters 5.10 Four H-bridge Converters and Generalization 5.11 Summary 5.12 References 6 -- Chapter 6 -- Flying-Capacitor Configuration 6.1 Introduction 6.2 Three-level configuration 6.3 PWM Implementation (Half-Bridge Topology) 6.4 Flying Capacitor Voltage Control 6.5 Full-bridge Topology 6.6 Three-phase FC Converter 6.7 Non-Conventional FC Converters with Three-level Legs 6.8 Four-level Configuration 6.9 Generalization 6.10 Summary 6.11 References 7 -- Chapter 7 -- Other Multilevel Configurations 7.1 Introduction 7.2 Nested configuration 7.3 Topology with Magnetic Element at the Output 7.4 Active-Neutral-Point-Clamped Converters 7.5 More Multilevel Converters 7.6 Summary 7.7 References 8 -- Chapter 8 -- Optimized PWM Approach 8.1 Introduction 8.2 Two-leg Converter 8.2.1 -- Model 8.2.2 -- PWM Implementation 8.2.3 -- Analog and Digital Implementation 8.2.4 -- Influence of [mu] for PWM implementation 8.3 Three-leg Converter and Three-phase Load 8.3.1 -- Model 8.3.2 -- PWM Implementation 8.3.3 -- Analog and Digital Implementation 8.3.4 -- Influence of [mu] for PWM implementation in a three-leg converter 8.3.5 -- Influence of the Three-Phase Machine Connection over Inverter Variables 8.4 Space Vector Modulation (SVPWM) 8.5 Other Configurations with CPWM 8.5.1 -- Three-leg Converter - Two-phase machine 8.5.2 -- Four-leg Converter 8.6 Non-Conventional Topologies with CPWM 8.6.1 -- Inverter with Split-Wound Coupled Inductors 8.6.2 -- Z-Source Converter 8.6.3 -- Open-end Winding Motor Drive System 8.7 Summary 8.8 References 9 -- Chapter 9 -- Control Strategies for Power Converters 9.1 Introduction 9.2 Basic Control Principles 9.3 Hysteresis control 9.3.1 Application of the hysteresis control for dc motor drive 9.3.2 Hysteresis control for regulating an ac variable 9.4 Linear control - dc variable 9.4.1 Proportional controller: RL load 9.4.2 Proportional controller: dc motor drive system 9.4.3 Proportional-Integral controller: RL load 9.4.4 Proportional-Integral controller: Dc motor 9.4.5 Proportional-Integral-Derivative controller: dc motor 9.5 Linear control - ac variable 9.6 Cascade control strategies 9.6.1 Rectifier circuit: voltage-current control 9.6.2 Motor drive: speed-current control 9.7 Summary 9.8 References 10 -- Chapter 10 -- Single-phase to Single-phase Back-to-Back Converter 10.1 Introduction 10.2 Full-Bridge Converter 10.2.1 -- Model 10.2.2 -- PWM Strategy 10.2.3 -- Control Approach 10.2.4 -- Power Analysis 10.2.5 -- Dc-link Capacitor Voltage 10.2.6 -- Capacitor Bank Design 10.3 Topology with Component Count Reduction 10.3.1 -- Model 10.3.2 -- PWM Strategy 10.3.3 -- Dc-link Voltage Requirement 10.3.4 -- Half-bridge Converter 10.4 Topologies with increased number of switches (Converters in Parallel) 10.4.1 -- Model 10.4.2 -- PWM Strategy 10.4.3 -- Control Strategy 10.5 Topologies with increased number of switches (Converters in Series) 10.6 Summary 10.7 References 11 -- Chapter 11 -- Three-phase to Three-phase and Other Backto- Back Converters 11.1 Introduction 11.2 Full-Bridge Converter 11.2.1 -- Model 11.2.2 -- PWM Strategy 11.2.3 -- Control Approach 11.3 Topology with Component Count Reduction 11.3.1 -- Model 11.3.2 -- PWM Strategy 11.3.3 -- Dc-link Voltage Requirement 11.3.4 -- Half-bridge Converter 11.4 Topologies with increased number of switches (Converters in Parallel) 11.4.1 -- Model 11.4.2 -- PWM 11.4.3 -- Control Strategy 11.5 Topologies with increased number of switches (Converters in Series) 11.6 Other Back-to-back Converters 11.7 Summary 11.8 References .
Record Nr. UNINA-9910132343403321
Santos Jr Euzeli Cipriano dos  
Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced power electronics converters : PWM converters processing ACvoltages / / Euzeli Cipriano dos Santos Jr., Edison Roberto Cabral da Silva
Advanced power electronics converters : PWM converters processing ACvoltages / / Euzeli Cipriano dos Santos Jr., Edison Roberto Cabral da Silva
Autore Santos Jr Euzeli Cipriano dos
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015]
Descrizione fisica 1 online resource (730 p.)
Disciplina 621.317
Altri autori (Persone) SilvaEdison Roberto Cabral da <1942->
Collana IEEE Press series on power engineering
Soggetto topico PWM power converters
DC-to-DC converters
Power electronics
ISBN 1-118-97205-8
1-118-88695-X
1-118-96822-0
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Advanced Power Electronics Converters PWM Converters Processing AC Voltages Summary 1 -- Chapter 1 -- Introduction 1.1 Introduction 1.2 Background 1.3 History of Power Switches and Power Converters 1.4 Applications of Power Electronics Converters 1.5 Summary 1.6 References 2 -- Chapter 2 -- Power Switches and Overview of Basic Power Converters 2.1 Introduction 2.2 Power Electronics Devices as Ideal Switches 2.2.1 Static Characteristics 2.2.2 Dynamic Characteristics 2.3 Main Real Power Semiconductors Devices 2.3.1 -- Spontaneous Conduction/Spontaneous Blocking 2.3.2 -- Controlled Conduction/Spontaneous Blocking Devices 2.3.3 -- Controlled Conduction/Controlled Blocking Devices 2.3.4 -- Spontaneous Conduction/Controlled Blocking Devices 2.4 Basic converters 2.4.1 -- Dc-dc Conversion 2.4.2 -- Dc-ac Conversion 2.4.3 -- Ac-dc Conversion 2.4.4 -- Ac-ac Conversion 2.5 Summary 2.6 References 3 -- Chapter 3 -- Power Electronics Converters Processing AC Voltage and Power Blocks Geometry 3.1 Introduction 3.2 Principles of Power Blocks Geometry (PBG) 3.3 Description of Power Blocks 3.4 Application of PBG in Multilevel Configurations 3.4.1 -- Neutral-Point-Clamped Configuration 3.4.2 -- Cascade Configuration 3.4.3 -- Flying Capacitor Configuration 3.4.4 -- Other Multilevel Configurations 3.5 Application of PBG in ac-dc-ac Configurations 3.5.1 -- Three-phase to three-phase configurations 3.5.2 -- Single-phase to single-phase configurations 3.6 Summary 3.7 References 4 -- Chapter 4 -- Neutral-Point-Clamped Configuration 4.1 Introduction 4.2 Three-level configuration 4.3 PWM Implementation (Half-Bridge Topology) 4.4 Full-bridge Topologies 4.5 Three-phase NPC Converter 4.6 Non-Conventional Arrangements by Using Three-Level Legs 4.7 Unbalanced Capacitor Voltage 4.8 Four-level Configuration 4.9 PWM Implementation (Four-level Configuration) 4.10 Full-bridge and Other Circuits (Four-level Configuration) 4.11 Five-level Configuration 4.12 Summary 4.13 References 5 -- Chapter 5 -- Cascade Configuration 5.1 Introduction 5.2 Single H-bridge Converter 5.3 PWM Implementation of a Single H-bridge Converter 5.4 Three-phase converter - one H-bridge converter per phase 5.5 Two H-bridge Converters 5.6 PWM Implementation of Two Cascade H-bridges 5.7 Three-phase converter - two Cascade H-bridges per phase 5.8 Two H-bridge Converters (Seven- and Nine-level topologies) 5.9 Three H-bridge Converters 5.10 Four H-bridge Converters and Generalization 5.11 Summary 5.12 References 6 -- Chapter 6 -- Flying-Capacitor Configuration 6.1 Introduction 6.2 Three-level configuration 6.3 PWM Implementation (Half-Bridge Topology) 6.4 Flying Capacitor Voltage Control 6.5 Full-bridge Topology 6.6 Three-phase FC Converter 6.7 Non-Conventional FC Converters with Three-level Legs 6.8 Four-level Configuration 6.9 Generalization 6.10 Summary 6.11 References 7 -- Chapter 7 -- Other Multilevel Configurations 7.1 Introduction 7.2 Nested configuration 7.3 Topology with Magnetic Element at the Output 7.4 Active-Neutral-Point-Clamped Converters 7.5 More Multilevel Converters 7.6 Summary 7.7 References 8 -- Chapter 8 -- Optimized PWM Approach 8.1 Introduction 8.2 Two-leg Converter 8.2.1 -- Model 8.2.2 -- PWM Implementation 8.2.3 -- Analog and Digital Implementation 8.2.4 -- Influence of [mu] for PWM implementation 8.3 Three-leg Converter and Three-phase Load 8.3.1 -- Model 8.3.2 -- PWM Implementation 8.3.3 -- Analog and Digital Implementation 8.3.4 -- Influence of [mu] for PWM implementation in a three-leg converter 8.3.5 -- Influence of the Three-Phase Machine Connection over Inverter Variables 8.4 Space Vector Modulation (SVPWM) 8.5 Other Configurations with CPWM 8.5.1 -- Three-leg Converter - Two-phase machine 8.5.2 -- Four-leg Converter 8.6 Non-Conventional Topologies with CPWM 8.6.1 -- Inverter with Split-Wound Coupled Inductors 8.6.2 -- Z-Source Converter 8.6.3 -- Open-end Winding Motor Drive System 8.7 Summary 8.8 References 9 -- Chapter 9 -- Control Strategies for Power Converters 9.1 Introduction 9.2 Basic Control Principles 9.3 Hysteresis control 9.3.1 Application of the hysteresis control for dc motor drive 9.3.2 Hysteresis control for regulating an ac variable 9.4 Linear control - dc variable 9.4.1 Proportional controller: RL load 9.4.2 Proportional controller: dc motor drive system 9.4.3 Proportional-Integral controller: RL load 9.4.4 Proportional-Integral controller: Dc motor 9.4.5 Proportional-Integral-Derivative controller: dc motor 9.5 Linear control - ac variable 9.6 Cascade control strategies 9.6.1 Rectifier circuit: voltage-current control 9.6.2 Motor drive: speed-current control 9.7 Summary 9.8 References 10 -- Chapter 10 -- Single-phase to Single-phase Back-to-Back Converter 10.1 Introduction 10.2 Full-Bridge Converter 10.2.1 -- Model 10.2.2 -- PWM Strategy 10.2.3 -- Control Approach 10.2.4 -- Power Analysis 10.2.5 -- Dc-link Capacitor Voltage 10.2.6 -- Capacitor Bank Design 10.3 Topology with Component Count Reduction 10.3.1 -- Model 10.3.2 -- PWM Strategy 10.3.3 -- Dc-link Voltage Requirement 10.3.4 -- Half-bridge Converter 10.4 Topologies with increased number of switches (Converters in Parallel) 10.4.1 -- Model 10.4.2 -- PWM Strategy 10.4.3 -- Control Strategy 10.5 Topologies with increased number of switches (Converters in Series) 10.6 Summary 10.7 References 11 -- Chapter 11 -- Three-phase to Three-phase and Other Backto- Back Converters 11.1 Introduction 11.2 Full-Bridge Converter 11.2.1 -- Model 11.2.2 -- PWM Strategy 11.2.3 -- Control Approach 11.3 Topology with Component Count Reduction 11.3.1 -- Model 11.3.2 -- PWM Strategy 11.3.3 -- Dc-link Voltage Requirement 11.3.4 -- Half-bridge Converter 11.4 Topologies with increased number of switches (Converters in Parallel) 11.4.1 -- Model 11.4.2 -- PWM 11.4.3 -- Control Strategy 11.5 Topologies with increased number of switches (Converters in Series) 11.6 Other Back-to-back Converters 11.7 Summary 11.8 References .
Record Nr. UNINA-9910677357403321
Santos Jr Euzeli Cipriano dos  
Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Control of electric machine drive system / / S. Sul
Control of electric machine drive system / / S. Sul
Autore Sul Seung-Ki
Pubbl/distr/stampa [S.l.] : , : Wiley, , 2011
Descrizione fisica 1 online resource (XVI, 399 p.)
Disciplina 621.46
Collana IEEE Press Series on Power Engineering
Soggetto topico Electric driving - Automatic control
ISBN 1-118-09956-7
0-470-87654-9
1-299-18610-6
0-470-87655-7
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1 Introduction -- 1.1 Introduction -- 1.2 Basics of Mechanics -- 1.3 Torque Speed Curve of Typical Mechanical Loads -- 2 Basic Structure and Modeling of Electric Machines and Power Converters -- 2.1 Structure and Modeling of DC Machine -- 2.2 Analysis of Steady-State Operation -- 2.3 Analysis of Transient State of DC Machine -- 2.4 Power Electronic Circuit to Drive DC Machine -- 2.5 Rotating Magnetic Motive Force -- 2.6 Steady-State Analysis of a Synchronous Machine -- 2.7 Linear Electric Machine -- 2.8 Capability Curve of Synchronous Machine -- 2.9 Parameter Variation of Synchronous Machine -- 2.10 Steady-State Analysis of Induction Machine -- 2.11 Generator Operation of an Induction Machine -- 2.12 Variation of Parameters of an Induction Machine -- 2.13 Classification of Induction Machines According to Speed-Torque Characteristics -- 2.14 Quasi-Transient State Analysis -- 2.15 Capability Curve of an Induction Machine -- 2.16 Comparison of AC Machine and DC Machine -- 2.17 Variable-Speed Control of Induction Machine Based on Steady-State Characteristics -- 2.18 Modeling of Power Converters -- 2.19 Parameter Conversion Using Per Unit Method -- 3 Reference Frame Transformation and Transient State Analysis of Three-Phase AC Machines -- 3.1 Complex Vector -- 3.2 d-q-n Modeling of an Induction Machine Based on Complex Space Vector -- 3.3 d-q-n Modeling of a Synchronous Machine Based on Complex Space Vector -- 4 Design of Regulators for Electric Machines and Power Converters -- 4.1 Active Damping -- 4.2 Current Regulator -- 4.3 Speed Regulator -- 4.4 Position Regulator -- 4.5 Detection of Phase Angle of AC Voltage -- 4.6 Voltage Regulator -- 5 Vector Control -- 5.1 Instantaneous Torque Control -- 5.2 Vector Control of Induction Machine -- 5.3 Rotor Flux Linkage Estimator -- 5.4 Flux Weakening Control -- 6 Position/Speed Sensorless Control of AC Machines -- 6.1 Sensorless Control of Induction Machine -- 6.2 Sensorless Control of Surface-Mounted Permanent Magnet Synchronous Machine (SMPMSM).
6.3 Sensorless Control of Interior Permanent Magnet Synchronous Machine (IPMSM) -- 6.4 Sensorless Control Employing High-Frequency Signal Injection -- 7 Practical Issues -- 7.1 Output Voltage Distortion Due to Dead Time and Its Compensation -- 7.2 Measurement of Phase Current -- 7.3 Problems Due to Digital Signal Processing of Current Regulation Loop -- Appendix A Measurement and Estimation of Parameters of Electric Machinery -- A.1 Parameter Estimation -- A.2 Parameter Estimation of Electric Machines Using Regulators of Drive System -- A.3 Estimation of Mechanical Parameters -- Appendix B d-q Modeling Using Matrix Equations -- B.1 Reference Frame and Transformation Matrix -- B.2 d-q Modeling of Induction Machine Using Transformation Matrix -- B.3 d-q Modeling of Synchronous Machine Using Transformation Matrix -- Index.
Record Nr. UNINA-9910140878803321
Sul Seung-Ki  
[S.l.] : , : Wiley, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Control of electric machine drive system / / S. Sul
Control of electric machine drive system / / S. Sul
Autore Sul Seung-Ki
Pubbl/distr/stampa [S.l.] : , : Wiley, , 2011
Descrizione fisica 1 online resource (XVI, 399 p.)
Disciplina 621.46
Collana IEEE Press Series on Power Engineering
Soggetto topico Electric driving - Automatic control
ISBN 1-118-09956-7
0-470-87654-9
1-299-18610-6
0-470-87655-7
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1 Introduction -- 1.1 Introduction -- 1.2 Basics of Mechanics -- 1.3 Torque Speed Curve of Typical Mechanical Loads -- 2 Basic Structure and Modeling of Electric Machines and Power Converters -- 2.1 Structure and Modeling of DC Machine -- 2.2 Analysis of Steady-State Operation -- 2.3 Analysis of Transient State of DC Machine -- 2.4 Power Electronic Circuit to Drive DC Machine -- 2.5 Rotating Magnetic Motive Force -- 2.6 Steady-State Analysis of a Synchronous Machine -- 2.7 Linear Electric Machine -- 2.8 Capability Curve of Synchronous Machine -- 2.9 Parameter Variation of Synchronous Machine -- 2.10 Steady-State Analysis of Induction Machine -- 2.11 Generator Operation of an Induction Machine -- 2.12 Variation of Parameters of an Induction Machine -- 2.13 Classification of Induction Machines According to Speed-Torque Characteristics -- 2.14 Quasi-Transient State Analysis -- 2.15 Capability Curve of an Induction Machine -- 2.16 Comparison of AC Machine and DC Machine -- 2.17 Variable-Speed Control of Induction Machine Based on Steady-State Characteristics -- 2.18 Modeling of Power Converters -- 2.19 Parameter Conversion Using Per Unit Method -- 3 Reference Frame Transformation and Transient State Analysis of Three-Phase AC Machines -- 3.1 Complex Vector -- 3.2 d-q-n Modeling of an Induction Machine Based on Complex Space Vector -- 3.3 d-q-n Modeling of a Synchronous Machine Based on Complex Space Vector -- 4 Design of Regulators for Electric Machines and Power Converters -- 4.1 Active Damping -- 4.2 Current Regulator -- 4.3 Speed Regulator -- 4.4 Position Regulator -- 4.5 Detection of Phase Angle of AC Voltage -- 4.6 Voltage Regulator -- 5 Vector Control -- 5.1 Instantaneous Torque Control -- 5.2 Vector Control of Induction Machine -- 5.3 Rotor Flux Linkage Estimator -- 5.4 Flux Weakening Control -- 6 Position/Speed Sensorless Control of AC Machines -- 6.1 Sensorless Control of Induction Machine -- 6.2 Sensorless Control of Surface-Mounted Permanent Magnet Synchronous Machine (SMPMSM).
6.3 Sensorless Control of Interior Permanent Magnet Synchronous Machine (IPMSM) -- 6.4 Sensorless Control Employing High-Frequency Signal Injection -- 7 Practical Issues -- 7.1 Output Voltage Distortion Due to Dead Time and Its Compensation -- 7.2 Measurement of Phase Current -- 7.3 Problems Due to Digital Signal Processing of Current Regulation Loop -- Appendix A Measurement and Estimation of Parameters of Electric Machinery -- A.1 Parameter Estimation -- A.2 Parameter Estimation of Electric Machines Using Regulators of Drive System -- A.3 Estimation of Mechanical Parameters -- Appendix B d-q Modeling Using Matrix Equations -- B.1 Reference Frame and Transformation Matrix -- B.2 d-q Modeling of Induction Machine Using Transformation Matrix -- B.3 d-q Modeling of Synchronous Machine Using Transformation Matrix -- Index.
Record Nr. UNINA-9910829875303321
Sul Seung-Ki  
[S.l.] : , : Wiley, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Control of electric machine drive system / / Seung-Ki Sul
Control of electric machine drive system / / Seung-Ki Sul
Autore Sul Seung-Ki
Pubbl/distr/stampa Hoboken, N.J., : Wiley-IEEE, c c2011
Descrizione fisica 1 online resource (XVI, 399 p.)
Disciplina 621.46
Collana IEEE Press series on power engineering
Soggetto topico Electric driving - Automatic control
ISBN 1-118-09956-7
0-470-87654-9
1-299-18610-6
0-470-87655-7
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1 Introduction -- 1.1 Introduction -- 1.2 Basics of Mechanics -- 1.3 Torque Speed Curve of Typical Mechanical Loads -- 2 Basic Structure and Modeling of Electric Machines and Power Converters -- 2.1 Structure and Modeling of DC Machine -- 2.2 Analysis of Steady-State Operation -- 2.3 Analysis of Transient State of DC Machine -- 2.4 Power Electronic Circuit to Drive DC Machine -- 2.5 Rotating Magnetic Motive Force -- 2.6 Steady-State Analysis of a Synchronous Machine -- 2.7 Linear Electric Machine -- 2.8 Capability Curve of Synchronous Machine -- 2.9 Parameter Variation of Synchronous Machine -- 2.10 Steady-State Analysis of Induction Machine -- 2.11 Generator Operation of an Induction Machine -- 2.12 Variation of Parameters of an Induction Machine -- 2.13 Classification of Induction Machines According to Speed-Torque Characteristics -- 2.14 Quasi-Transient State Analysis -- 2.15 Capability Curve of an Induction Machine -- 2.16 Comparison of AC Machine and DC Machine -- 2.17 Variable-Speed Control of Induction Machine Based on Steady-State Characteristics -- 2.18 Modeling of Power Converters -- 2.19 Parameter Conversion Using Per Unit Method -- 3 Reference Frame Transformation and Transient State Analysis of Three-Phase AC Machines -- 3.1 Complex Vector -- 3.2 d-q-n Modeling of an Induction Machine Based on Complex Space Vector -- 3.3 d-q-n Modeling of a Synchronous Machine Based on Complex Space Vector -- 4 Design of Regulators for Electric Machines and Power Converters -- 4.1 Active Damping -- 4.2 Current Regulator -- 4.3 Speed Regulator -- 4.4 Position Regulator -- 4.5 Detection of Phase Angle of AC Voltage -- 4.6 Voltage Regulator -- 5 Vector Control -- 5.1 Instantaneous Torque Control -- 5.2 Vector Control of Induction Machine -- 5.3 Rotor Flux Linkage Estimator -- 5.4 Flux Weakening Control -- 6 Position/Speed Sensorless Control of AC Machines -- 6.1 Sensorless Control of Induction Machine -- 6.2 Sensorless Control of Surface-Mounted Permanent Magnet Synchronous Machine (SMPMSM).
6.3 Sensorless Control of Interior Permanent Magnet Synchronous Machine (IPMSM) -- 6.4 Sensorless Control Employing High-Frequency Signal Injection -- 7 Practical Issues -- 7.1 Output Voltage Distortion Due to Dead Time and Its Compensation -- 7.2 Measurement of Phase Current -- 7.3 Problems Due to Digital Signal Processing of Current Regulation Loop -- Appendix A Measurement and Estimation of Parameters of Electric Machinery -- A.1 Parameter Estimation -- A.2 Parameter Estimation of Electric Machines Using Regulators of Drive System -- A.3 Estimation of Mechanical Parameters -- Appendix B d-q Modeling Using Matrix Equations -- B.1 Reference Frame and Transformation Matrix -- B.2 d-q Modeling of Induction Machine Using Transformation Matrix -- B.3 d-q Modeling of Synchronous Machine Using Transformation Matrix -- Index.
Record Nr. UNINA-9910876583703321
Sul Seung-Ki  
Hoboken, N.J., : Wiley-IEEE, c c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Design of rotating electrical machines / / Juha Pyrhönen, Tapani Jokinen, Valéria Hrabovcová
Design of rotating electrical machines / / Juha Pyrhönen, Tapani Jokinen, Valéria Hrabovcová
Autore Pyrhonen Juha
Edizione [Second edition.]
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom : , : Wiley, , 2014
Descrizione fisica 1 online resource (614 p.)
Disciplina 621.31/042
Altri autori (Persone) JokinenTapani <1937->
HrabovcováValeria
Soggetto topico Electric machinery - Design and construction
Electric generators - Design and construction
Electric motors - Design and construction
Rotational motion
ISBN 1-118-70165-8
1-118-70159-3
1-118-70162-3
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DESIGN OF ROTATING ELECTRICAL MACHINES; Contents; Preface; About the Authors; Abbreviations and Symbols; 1 Principal Laws and Methods in Electrical Machine Design; 1.1 Electromagnetic Principles; 1.2 Numerical Solution; 1.3 The Most Common Principles Applied to Analytic Calculation; 1.3.1 Flux Line Diagrams; 1.3.2 Flux Diagrams for Current-Carrying Areas; 1.4 Application of the Principle of Virtual Work in the Determination of Force and Torque; 1.5 Maxwell's Stress Tensor; Radial and Tangential Stress; 1.6 Self-Inductance and Mutual Inductance; 1.7 Per Unit Values; 1.8 Phasor Diagrams
Bibliography 2 Windings of Electrical Machines; 2.1 Basic Principles; 2.1.1 Salient-Pole Windings; 2.1.2 Slot Windings; 2.1.3 End Windings; 2.2 Phase Windings; 2.3 Three-Phase Integral Slot Stator Winding; 2.4 Voltage Phasor Diagram and Winding Factor; 2.5 Winding Analysis; 2.6 Short Pitching; 2.7 Current Linkage of a Slot Winding; 2.8 Poly-Phase Fractional Slot Windings; 2.9 Phase Systems and Zones of Windings; 2.9.1 Phase Systems; 2.9.2 Zones of Windings; 2.10 Symmetry Conditions; 2.10.1 Symmetrical Fractional Slot Windings; 2.11 Base Windings
2.11.1 First-Grade Fractional Slot Base Windings 2.11.2 Second-Grade Fractional Slot Base Windings; 2.11.3 Integral Slot Base Windings; 2.12 Fractional Slot Windings; 2.12.1 Single-Layer Fractional Slot Windings; 2.12.2 Double-Layer Fractional Slot Windings; 2.13 Single- and Double-Phase Windings; 2.14 Windings Permitting a Varying Number of Poles; 2.15 Commutator Windings; 2.15.1 Lap Winding Principles; 2.15.2 Wave Winding Principles; 2.15.3 Commutator Winding Examples, Balancing Connectors; 2.15.4 AC Commutator Windings; 2.15.5 Current Linkage of the Commutator Winding and Armature Reaction
2.16 Compensating Windings and Commutating Poles 2.17 Rotor Windings of Asynchronous Machines; 2.18 Damper Windings; Bibliography; 3 Design of Magnetic Circuits; 3.1 Air Gap and its Magnetic Voltage; 3.1.1 Air Gap and Carter Factor; 3.1.2 Air Gaps of a Salient-Pole Machine; 3.1.3 Air Gap of Nonsalient-Pole Machine; 3.2 Equivalent Core Length; 3.3 Magnetic Voltage of a Tooth and a Salient Pole; 3.3.1 Magnetic Voltage of a Tooth; 3.3.2 Magnetic Voltage of a Salient Pole; 3.4 Magnetic Voltage of Stator and Rotor Yokes; 3.5 No-Load Curve, Equivalent Air Gap and Magnetizing Current of the Machine
3.6 Magnetic Materials of a Rotating Machine 3.6.1 Characteristics of Ferromagnetic Materials; 3.6.2 Losses in Iron Circuits; 3.7 Permanent Magnets in Rotating Machines; 3.7.1 History and Development of Permanent Magnets; 3.7.2 Characteristics of Permanent Magnet Materials; 3.7.3 Operating Point of a Permanent Magnet Circuit; 3.7.4 Demagnetization of Permanent Magnets; 3.7.5 Application of Permanent Magnets in Electrical Machines; 3.8 Assembly of Iron Stacks; Bibliography; 4 Inductances; 4.1 Magnetizing Inductance; 4.2 Leakage Inductances; 4.2.1 Division of Leakage Flux Components
4.3 Calculation of Flux Leakage
Record Nr. UNINA-9910139001103321
Pyrhonen Juha  
Chichester, West Sussex, United Kingdom : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Design of rotating electrical machines / / Juha Pyrhönen, Tapani Jokinen, Valéria Hrabovcová
Design of rotating electrical machines / / Juha Pyrhönen, Tapani Jokinen, Valéria Hrabovcová
Autore Pyrhonen Juha
Edizione [Second edition.]
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom : , : Wiley, , 2014
Descrizione fisica 1 online resource (614 p.)
Disciplina 621.31/042
Altri autori (Persone) JokinenTapani <1937->
HrabovcováValeria
Soggetto topico Electric machinery - Design and construction
Electric generators - Design and construction
Electric motors - Design and construction
Rotational motion
ISBN 1-118-70165-8
1-118-70159-3
1-118-70162-3
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DESIGN OF ROTATING ELECTRICAL MACHINES; Contents; Preface; About the Authors; Abbreviations and Symbols; 1 Principal Laws and Methods in Electrical Machine Design; 1.1 Electromagnetic Principles; 1.2 Numerical Solution; 1.3 The Most Common Principles Applied to Analytic Calculation; 1.3.1 Flux Line Diagrams; 1.3.2 Flux Diagrams for Current-Carrying Areas; 1.4 Application of the Principle of Virtual Work in the Determination of Force and Torque; 1.5 Maxwell's Stress Tensor; Radial and Tangential Stress; 1.6 Self-Inductance and Mutual Inductance; 1.7 Per Unit Values; 1.8 Phasor Diagrams
Bibliography 2 Windings of Electrical Machines; 2.1 Basic Principles; 2.1.1 Salient-Pole Windings; 2.1.2 Slot Windings; 2.1.3 End Windings; 2.2 Phase Windings; 2.3 Three-Phase Integral Slot Stator Winding; 2.4 Voltage Phasor Diagram and Winding Factor; 2.5 Winding Analysis; 2.6 Short Pitching; 2.7 Current Linkage of a Slot Winding; 2.8 Poly-Phase Fractional Slot Windings; 2.9 Phase Systems and Zones of Windings; 2.9.1 Phase Systems; 2.9.2 Zones of Windings; 2.10 Symmetry Conditions; 2.10.1 Symmetrical Fractional Slot Windings; 2.11 Base Windings
2.11.1 First-Grade Fractional Slot Base Windings 2.11.2 Second-Grade Fractional Slot Base Windings; 2.11.3 Integral Slot Base Windings; 2.12 Fractional Slot Windings; 2.12.1 Single-Layer Fractional Slot Windings; 2.12.2 Double-Layer Fractional Slot Windings; 2.13 Single- and Double-Phase Windings; 2.14 Windings Permitting a Varying Number of Poles; 2.15 Commutator Windings; 2.15.1 Lap Winding Principles; 2.15.2 Wave Winding Principles; 2.15.3 Commutator Winding Examples, Balancing Connectors; 2.15.4 AC Commutator Windings; 2.15.5 Current Linkage of the Commutator Winding and Armature Reaction
2.16 Compensating Windings and Commutating Poles 2.17 Rotor Windings of Asynchronous Machines; 2.18 Damper Windings; Bibliography; 3 Design of Magnetic Circuits; 3.1 Air Gap and its Magnetic Voltage; 3.1.1 Air Gap and Carter Factor; 3.1.2 Air Gaps of a Salient-Pole Machine; 3.1.3 Air Gap of Nonsalient-Pole Machine; 3.2 Equivalent Core Length; 3.3 Magnetic Voltage of a Tooth and a Salient Pole; 3.3.1 Magnetic Voltage of a Tooth; 3.3.2 Magnetic Voltage of a Salient Pole; 3.4 Magnetic Voltage of Stator and Rotor Yokes; 3.5 No-Load Curve, Equivalent Air Gap and Magnetizing Current of the Machine
3.6 Magnetic Materials of a Rotating Machine 3.6.1 Characteristics of Ferromagnetic Materials; 3.6.2 Losses in Iron Circuits; 3.7 Permanent Magnets in Rotating Machines; 3.7.1 History and Development of Permanent Magnets; 3.7.2 Characteristics of Permanent Magnet Materials; 3.7.3 Operating Point of a Permanent Magnet Circuit; 3.7.4 Demagnetization of Permanent Magnets; 3.7.5 Application of Permanent Magnets in Electrical Machines; 3.8 Assembly of Iron Stacks; Bibliography; 4 Inductances; 4.1 Magnetizing Inductance; 4.2 Leakage Inductances; 4.2.1 Division of Leakage Flux Components
4.3 Calculation of Flux Leakage
Record Nr. UNINA-9910825366503321
Pyrhonen Juha  
Chichester, West Sussex, United Kingdom : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Doubly fed induction machine : modeling and control for wind energy generation applications / / by Gonzalo Abad ... [et al.]
Doubly fed induction machine : modeling and control for wind energy generation applications / / by Gonzalo Abad ... [et al.]
Pubbl/distr/stampa Oxford : , : Wiley-Blackwell, , 2011
Descrizione fisica 1 online resource (641 p.)
Disciplina 621.31/6
Altri autori (Persone) AbadG <1976-> (Gonzalo)
Collana IEEE Press series on power engineering
Soggetto topico Induction generators - Mathematical models
Induction generators - Automatic control
Wind turbines - Equipment and supplies
ISBN 1-283-28275-5
9786613282750
1-118-10494-3
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xiii -- 1 Introduction to A Wind Energy Generation System 1 -- 1.1 Introduction 1 -- 1.2 Basic Concepts of a Fixed Speed Wind Turbine (FSWT) 2 -- 1.2.1 Basic Wind Turbine Description 2 -- 1.2.2 Power Control of Wind Turbines 5 -- 1.2.3 Wind Turbine Aerodynamics 7 -- 1.2.4 Example of a Commercial Wind Turbine 9 -- 1.3 Variable Speed Wind Turbines (VSWTs) 10 -- 1.3.1 Modeling of Variable Speed Wind Turbine 11 -- 1.3.2 Control of a Variable Speed Wind Turbine 15 -- 1.3.3 Electrical System of a Variable Speed Wind Turbine 22 -- 1.4 Wind Energy Generation System Based on DFIM VSWT 25 -- 1.4.1 Electrical Configuration of a VSWT Based on the DFIM 25 -- 1.4.2 Electrical Configuration of a Wind Farm 33 -- 1.4.3 WEGS Control Structure 34 -- 1.5 Grid Code Requirements 39 -- 1.5.1 Frequency and Voltage Operating Range 40 -- 1.5.2 Reactive Power and Voltage Control Capability 41 -- 1.5.3 Power Control 43 -- 1.5.4 Power System Stabilizer Function 45 -- 1.5.5 Low Voltage Ride Through (LVRT) 46 -- 1.6 Voltage Dips and LVRT 46 -- 1.6.1 Electric Power System 47 -- 1.6.2 Voltage Dips 50 -- 1.6.3 Spanish Verification Procedure 55 -- 1.7 VSWT Based on DFIM Manufacturers 57 -- 1.7.1 Industrial Solutions: Wind Turbine Manufacturers 57 -- 1.7.2 Modeling a 2.4 MW Wind Turbine 72 -- 1.7.3 Steady State Generator and Power Converter Sizing 79 -- 1.8 Introduction to the Next Chapters 83 -- Bibliography 85 -- 2 Back-to-Back Power Electronic Converter 87 -- 2.1 Introduction 87 -- 2.2 Back-to-Back Converter based on Two-Level VSC Topology 88 -- 2.2.1 Grid Side System 89 -- 2.2.2 Rotor Side Converter and dv/dt Filter 96 -- 2.2.3 DC Link 99 -- 2.2.4 Pulse Generation of the Controlled Switches 101 -- 2.3 Multilevel VSC Topologies 114 -- 2.3.1 Three-Level Neutral Point Clamped VSC Topology (3L-NPC) 116 -- 2.4 Control of Grid Side System 133 -- 2.4.1 Steady State Model of the Grid Side System 133 -- 2.4.2 Dynamic Modeling of the Grid Side System 139 -- 2.4.3 Vector Control of the Grid Side System 143.
2.5 Summary 152 -- References 153 -- 3 Steady State of the Doubly Fed Induction Machine 155 -- 3.1 Introduction 155 -- 3.2 Equivalent Electric Circuit at Steady State 156 -- 3.2.1 Basic Concepts on DFIM 156 -- 3.2.2 Steady State Equivalent Circuit 158 -- 3.2.3 Phasor Diagram 163 -- 3.3 Operation Modes Attending to Speed and Power Flows 165 -- 3.3.1 Basic Active Power Relations 165 -- 3.3.2 Torque Expressions 168 -- 3.3.3 Reactive Power Expressions 170 -- 3.3.4 Approximated Relations Between Active Powers, Torque, and Speeds 170 -- 3.3.5 Four Quadrant Modes of Operation 171 -- 3.4 Per Unit Transformation 173 -- 3.4.1 Base Values 175 -- 3.4.2 Per Unit Transformation of Magnitudes and Parameters 176 -- 3.4.3 Steady State Equations of the DFIM in p.u 177 -- 3.4.4 Example 3.1: Parameters of a 2 MW DFIM 179 -- 3.4.5 Example 3.2: Parameters of Different Power DFIM 180 -- 3.4.6 Example 3.3: Phasor Diagram of a 2 MW DFIM and p.u. Analysis 181 -- 3.5 Steady State Curves: Performance Evaluation 184 -- 3.5.1 Rotor Voltage Variation: Frequency, Amplitude, and Phase Shift 185 -- 3.5.2 Rotor Voltage Variation: Constant Voltage-Frequency (V-F) Ratio 192 -- 3.5.3 Rotor Voltage Variation: Control of Stator Reactive Power and Torque 195 -- 3.6 Design Requirements for the DFIM in Wind Energy Generation Applications 202 -- 3.7 Summary 207 -- References 208 -- 4 Dynamic Modeling of the Doubly Fed Induction Machine 209 -- 4.1 Introduction 209 -- 4.2 Dynamic Modeling of the DFIM 210 -- 4.2.1 ab Model 212 -- 4.2.2 dq Model 214 -- 4.2.3 State-Space Representation of ab Model 216 -- 4.2.4 State-Space Representation of dq Model 229 -- 4.2.5 Relation Between the Steady State Model and the Dynamic Model 234 -- 4.3 Summary 238 -- References 238 -- 5 Testing the DFIM 241 -- 5.1 Introduction 241 -- 5.2 Off-Line Estimation of DFIM Model Parameters 242 -- 5.2.1 Considerations About the Model Parameters of the DFIM 243 -- 5.2.2 Stator and Rotor Resistances Estimation by VSC 245 -- 5.2.3 Leakage Inductances Estimation by VSC 250.
5.2.4 Magnetizing Inductance and Iron Losses Estimation with No-Load Test by VSC 256 -- 5.3 Summary 262 -- References 262 -- 6 Analysis of the DFIM Under Voltage Dips 265 -- 6.1 Introduction 265 -- 6.2 Electromagnetic Force Induced in the Rotor 266 -- 6.3 Normal Operation 267 -- 6.4 Three-Phase Voltage Dips 268 -- 6.4.1 Total Voltage Dip, Rotor Open-Circuited 268 -- 6.4.2 Partial Voltage Dip, Rotor Open-Circuited 273 -- 6.5 Asymmetrical Voltage Dips 278 -- 6.5.1 Fundamentals of the Symmetrical Component Method 278 -- 6.5.2 Symmetrical Components Applied to the DFIM 281 -- 6.5.3 Single-Phase Dip 283 -- 6.5.4 Phase-to-Phase Dip 286 -- 6.6 Influence of the Rotor Currents 290 -- 6.6.1 Influence of the Rotor Current in a Total Three-Phase Voltage Dip 291 -- 6.6.2 Rotor Voltage in a General Case 294 -- 6.7 DFIM Equivalent Model During Voltage Dips 297 -- 6.7.1 Equivalent Model in Case of Linearity 297 -- 6.7.2 Equivalent Model in Case of Nonlinearity 299 -- 6.7.3 Model of the Grid 300 -- 6.8 Summary 300 -- References 301 -- 7 Vector Control Strategies for Grid-Connected DFIM Wind Turbines 303 -- 7.1 Introduction 303 -- 7.2 Vector Control 304 -- 7.2.1 Calculation of the Current References 305 -- 7.2.2 Limitation of the Current References 307 -- 7.2.3 Current Control Loops 308 -- 7.2.4 Reference Frame Orientations 311 -- 7.2.5 Complete Control System 313 -- 7.3 Small Signal Stability of the Vector Control 314 -- 7.3.1 Influence of the Reference Frame Orientation 314 -- 7.3.2 Influence of the Tuning of the Regulators 320 -- 7.4 Vector Control Behavior Under Unbalanced Conditions 327 -- 7.4.1 Reference Frame Orientation 328 -- 7.4.2 Saturation of the Rotor Converter 328 -- 7.4.3 Oscillations in the Stator Current and in the Electromagnetic Torque 328 -- 7.5 Vector Control Behavior Under Voltage Dips 331 -- 7.5.1 Small Dips 333 -- 7.5.2 Severe Dips 336 -- 7.6 Control Solutions for Grid Disturbances 340 -- 7.6.1 Demagnetizing Current 340 -- 7.6.2 Dual Control Techniques 346 -- 7.7 Summary 358.
References 360 -- 8 Direct Control of the Doubly Fed Induction Machine 363 -- 8.1 Introduction 363 -- 8.2 Direct Torque Control (DTC) of the Doubly Fed Induction Machine 364 -- 8.2.1 Basic Control Principle 365 -- 8.2.2 Control Block Diagram 371 -- 8.2.3 Example 8.1: Direct Torque Control of a 2 MW DFIM 377 -- 8.2.4 Study of Rotor Voltage Vector Effect in the DFIM 379 -- 8.2.5 Example 8.2: Spectrum Analysis in Direct Torque Control of a 2 MW DFIM 384 -- 8.2.6 Rotor Flux Amplitude Reference Generation 386 -- 8.3 Direct Power Control (DPC) of the Doubly Fed Induction Machine 387 -- 8.3.1 Basic Control Principle 387 -- 8.3.2 Control Block Diagram 390 -- 8.3.3 Example 8.3: Direct Power Control of a 2 MW DFIM 395 -- 8.3.4 Study of Rotor Voltage Vector Effect in the DFIM 395 -- 8.4 Predictive Direct Torque Control (P-DTC) of the Doubly Fed Induction Machine at Constant Switching Frequency 399 -- 8.4.1 Basic Control Principle 399 -- 8.4.2 Control Block Diagram 402 -- 8.4.3 Example 8.4: Predictive Direct Torque Control of 15kW and 2 MW DFIMs at 800 Hz Constant -- Switching Frequency 411 -- 8.4.4 Example 8.5: Predictive Direct Torque Control of a 15kW DFIM at 4 kHz Constant Switching Frequency 415 -- 8.5 Predictive Direct Power Control (P-DPC) of the Doubly Fed Induction Machine at Constant Switching Frequency 416 -- 8.5.1 Basic Control Principle 417 -- 8.5.2 Control Block Diagram 419 -- 8.5.3 Example 8.6: Predictive Direct Power Control of a 15 kW DFIM at 1 kHz Constant Switching Frequency 424 -- 8.6 Multilevel Converter Based Predictive Direct Power and Direct Torque Control of the Doubly Fed Induction Machine at Constant Switching Frequency 425 -- 8.6.1 Introduction 425 -- 8.6.2 Three-Level NPC VSC Based DPC of the DFIM 428 -- 8.6.3 Three-Level NPC VSC Based DTC of the DFIM 447 -- 8.7 Control Solutions for Grid Voltage Disturbances, Based on Direct Control Techniques 451 -- 8.7.1 Introduction 451 -- 8.7.2 Control for Unbalanced Voltage Based on DPC 452 -- 8.7.3 Control for Unbalanced Voltage Based on DTC 460.
8.7.4 Control for Voltage Dips Based on DTC 467 -- 8.8 Summary 473 -- References 474 -- 9 Hardware Solutions for LVRT 479 -- 9.1 Introduction 479 -- 9.2 Grid Codes Related to LVRT 479 -- 9.3 Crowbar 481 -- 9.3.1 Design of an Active Crowbar 484 -- 9.3.2 Behavior Under Three-Phase Dips 486 -- 9.3.3 Behavior Under Asymmetrical Dips 488 -- 9.3.4 Combination of Crowbar and Software Solutions 490 -- 9.4 Braking Chopper 492 -- 9.4.1 Performance of a Braking Chopper Installed Alone 492 -- 9.4.2 Combination of Crowbar and Braking Chopper 493 -- 9.5 Other Protection Techniques 495 -- 9.5.1 Replacement Loads 495 -- 9.5.2 Wind Farm Solutions 496 -- 9.6 Summary 497 -- References 498 -- 10 Complementary Control Issues: Estimator Structures and Start-Up of Grid-Connected DFIM 501 -- 10.1 Introduction 501 -- 10.2 Estimator and Observer Structures 502 -- 10.2.1 General Considerations 502 -- 10.2.2 Stator Active and Reactive Power Estimation for Rotor Side DPC 503 -- 10.2.3 Stator Flux Estimator from Stator Voltage for Rotor Side Vector Control 503 -- 10.2.4 Stator Flux Synchronization from Stator Voltage for Rotor Side Vector Control 506 -- 10.2.5 Stator and Rotor Fluxes Estimation for Rotor Side DPC, DTC, and Vector Control 507 -- 10.2.6 Stator and Rotor Flux Full Order Observer 508 -- 10.3 Start-up of the Doubly Fed Induction Machine Based Wind Turbine 512 -- 10.3.1 Encoder Calibration 514 -- 10.3.2 Synchronization with the Grid 518 -- 10.3.3 Sequential Start-up of the DFIM Based Wind Turbine 523 -- 10.4 Summary 534 -- References 535 -- 11 Stand-Alone DFIM Based Generation Systems 537 -- 11.1 Introduction 537 -- 11.1.1 Requirements of Stand-alone DFIM Based System 537 -- 11.1.2 Characteristics of DFIM Supported by DC Coupled Storage 540 -- 11.1.3 Selection of Filtering Capacitors 541 -- 11.2 Mathematical Description of the Stand-Alone DFIM System 544 -- 11.2.1 Model of Stand-alone DFIM 544 -- 11.2.2 Model of Stand-alone DFIM Fed from Current Source 549 -- 11.2.3 Polar Frame Model of Stand-alone DFIM 551.
11.2.4 Polar Frame Model of Stand-alone DFIM Fed from Current Source 554 -- 11.3 Stator Voltage Control 558 -- 11.3.1 Amplitude and Frequency Control by the Use of PLL 558 -- 11.3.2 Voltage Asymmetry Correction During Unbalanced Load Supply 567 -- 11.3.3 Voltage Harmonics Reduction During Nonlinear Load Supply 569 -- 11.4 Synchronization Before Grid Connection By Superior PLL 573 -- 11.5 Summary 576 -- References 577 -- 12 New Trends on Wind Energy Generation 579 -- 12.1 Introduction 579 -- 12.2 Future Challenges for Wind Energy Generation: What must be Innovated 580 -- 12.2.1 Wind Farm Location 580 -- 12.2.2 Power, Efficiency, and Reliability Increase 582 -- 12.2.3 Electric Grid Integration 583 -- 12.2.4 Environmental Concerns 583 -- 12.3 Technological Trends: How They Can be Achieved 584 -- 12.3.1 Mechanical Structure of the Wind Turbine 585 -- 12.3.2 Power Train Technology 586 -- 12.4 Summary 599 -- References 600 -- Appendix 603 -- A.1 Space Vector Representation 603 -- A.1.1 Space Vector Notation 603 -- A.1.2 Transformations to Different Reference Frames 606 -- A.1.3 Power Expressions 609 -- A.2 Dynamic Modeling of the DFIM Considering the Iron Losses 610 -- A.2.1 ab Model 611 -- A.2.2 dq Model 614 -- A.2.3 State-Space Representation of ab Model 616 -- References 618 -- Index 619 -- The IEEE Press Series on Power Engineering.
Record Nr. UNINA-9910141242703321
Oxford : , : Wiley-Blackwell, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Doubly fed induction machine : modeling and control for wind energy generation applications / / by Gonzalo Abad ... [et al.]
Doubly fed induction machine : modeling and control for wind energy generation applications / / by Gonzalo Abad ... [et al.]
Pubbl/distr/stampa Oxford : , : Wiley-Blackwell, , 2011
Descrizione fisica 1 online resource (641 p.)
Disciplina 621.31/6
Altri autori (Persone) AbadG <1976-> (Gonzalo)
Collana IEEE Press series on power engineering
Soggetto topico Induction generators - Mathematical models
Induction generators - Automatic control
Wind turbines - Equipment and supplies
ISBN 1-283-28275-5
9786613282750
1-118-10494-3
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xiii -- 1 Introduction to A Wind Energy Generation System 1 -- 1.1 Introduction 1 -- 1.2 Basic Concepts of a Fixed Speed Wind Turbine (FSWT) 2 -- 1.2.1 Basic Wind Turbine Description 2 -- 1.2.2 Power Control of Wind Turbines 5 -- 1.2.3 Wind Turbine Aerodynamics 7 -- 1.2.4 Example of a Commercial Wind Turbine 9 -- 1.3 Variable Speed Wind Turbines (VSWTs) 10 -- 1.3.1 Modeling of Variable Speed Wind Turbine 11 -- 1.3.2 Control of a Variable Speed Wind Turbine 15 -- 1.3.3 Electrical System of a Variable Speed Wind Turbine 22 -- 1.4 Wind Energy Generation System Based on DFIM VSWT 25 -- 1.4.1 Electrical Configuration of a VSWT Based on the DFIM 25 -- 1.4.2 Electrical Configuration of a Wind Farm 33 -- 1.4.3 WEGS Control Structure 34 -- 1.5 Grid Code Requirements 39 -- 1.5.1 Frequency and Voltage Operating Range 40 -- 1.5.2 Reactive Power and Voltage Control Capability 41 -- 1.5.3 Power Control 43 -- 1.5.4 Power System Stabilizer Function 45 -- 1.5.5 Low Voltage Ride Through (LVRT) 46 -- 1.6 Voltage Dips and LVRT 46 -- 1.6.1 Electric Power System 47 -- 1.6.2 Voltage Dips 50 -- 1.6.3 Spanish Verification Procedure 55 -- 1.7 VSWT Based on DFIM Manufacturers 57 -- 1.7.1 Industrial Solutions: Wind Turbine Manufacturers 57 -- 1.7.2 Modeling a 2.4 MW Wind Turbine 72 -- 1.7.3 Steady State Generator and Power Converter Sizing 79 -- 1.8 Introduction to the Next Chapters 83 -- Bibliography 85 -- 2 Back-to-Back Power Electronic Converter 87 -- 2.1 Introduction 87 -- 2.2 Back-to-Back Converter based on Two-Level VSC Topology 88 -- 2.2.1 Grid Side System 89 -- 2.2.2 Rotor Side Converter and dv/dt Filter 96 -- 2.2.3 DC Link 99 -- 2.2.4 Pulse Generation of the Controlled Switches 101 -- 2.3 Multilevel VSC Topologies 114 -- 2.3.1 Three-Level Neutral Point Clamped VSC Topology (3L-NPC) 116 -- 2.4 Control of Grid Side System 133 -- 2.4.1 Steady State Model of the Grid Side System 133 -- 2.4.2 Dynamic Modeling of the Grid Side System 139 -- 2.4.3 Vector Control of the Grid Side System 143.
2.5 Summary 152 -- References 153 -- 3 Steady State of the Doubly Fed Induction Machine 155 -- 3.1 Introduction 155 -- 3.2 Equivalent Electric Circuit at Steady State 156 -- 3.2.1 Basic Concepts on DFIM 156 -- 3.2.2 Steady State Equivalent Circuit 158 -- 3.2.3 Phasor Diagram 163 -- 3.3 Operation Modes Attending to Speed and Power Flows 165 -- 3.3.1 Basic Active Power Relations 165 -- 3.3.2 Torque Expressions 168 -- 3.3.3 Reactive Power Expressions 170 -- 3.3.4 Approximated Relations Between Active Powers, Torque, and Speeds 170 -- 3.3.5 Four Quadrant Modes of Operation 171 -- 3.4 Per Unit Transformation 173 -- 3.4.1 Base Values 175 -- 3.4.2 Per Unit Transformation of Magnitudes and Parameters 176 -- 3.4.3 Steady State Equations of the DFIM in p.u 177 -- 3.4.4 Example 3.1: Parameters of a 2 MW DFIM 179 -- 3.4.5 Example 3.2: Parameters of Different Power DFIM 180 -- 3.4.6 Example 3.3: Phasor Diagram of a 2 MW DFIM and p.u. Analysis 181 -- 3.5 Steady State Curves: Performance Evaluation 184 -- 3.5.1 Rotor Voltage Variation: Frequency, Amplitude, and Phase Shift 185 -- 3.5.2 Rotor Voltage Variation: Constant Voltage-Frequency (V-F) Ratio 192 -- 3.5.3 Rotor Voltage Variation: Control of Stator Reactive Power and Torque 195 -- 3.6 Design Requirements for the DFIM in Wind Energy Generation Applications 202 -- 3.7 Summary 207 -- References 208 -- 4 Dynamic Modeling of the Doubly Fed Induction Machine 209 -- 4.1 Introduction 209 -- 4.2 Dynamic Modeling of the DFIM 210 -- 4.2.1 ab Model 212 -- 4.2.2 dq Model 214 -- 4.2.3 State-Space Representation of ab Model 216 -- 4.2.4 State-Space Representation of dq Model 229 -- 4.2.5 Relation Between the Steady State Model and the Dynamic Model 234 -- 4.3 Summary 238 -- References 238 -- 5 Testing the DFIM 241 -- 5.1 Introduction 241 -- 5.2 Off-Line Estimation of DFIM Model Parameters 242 -- 5.2.1 Considerations About the Model Parameters of the DFIM 243 -- 5.2.2 Stator and Rotor Resistances Estimation by VSC 245 -- 5.2.3 Leakage Inductances Estimation by VSC 250.
5.2.4 Magnetizing Inductance and Iron Losses Estimation with No-Load Test by VSC 256 -- 5.3 Summary 262 -- References 262 -- 6 Analysis of the DFIM Under Voltage Dips 265 -- 6.1 Introduction 265 -- 6.2 Electromagnetic Force Induced in the Rotor 266 -- 6.3 Normal Operation 267 -- 6.4 Three-Phase Voltage Dips 268 -- 6.4.1 Total Voltage Dip, Rotor Open-Circuited 268 -- 6.4.2 Partial Voltage Dip, Rotor Open-Circuited 273 -- 6.5 Asymmetrical Voltage Dips 278 -- 6.5.1 Fundamentals of the Symmetrical Component Method 278 -- 6.5.2 Symmetrical Components Applied to the DFIM 281 -- 6.5.3 Single-Phase Dip 283 -- 6.5.4 Phase-to-Phase Dip 286 -- 6.6 Influence of the Rotor Currents 290 -- 6.6.1 Influence of the Rotor Current in a Total Three-Phase Voltage Dip 291 -- 6.6.2 Rotor Voltage in a General Case 294 -- 6.7 DFIM Equivalent Model During Voltage Dips 297 -- 6.7.1 Equivalent Model in Case of Linearity 297 -- 6.7.2 Equivalent Model in Case of Nonlinearity 299 -- 6.7.3 Model of the Grid 300 -- 6.8 Summary 300 -- References 301 -- 7 Vector Control Strategies for Grid-Connected DFIM Wind Turbines 303 -- 7.1 Introduction 303 -- 7.2 Vector Control 304 -- 7.2.1 Calculation of the Current References 305 -- 7.2.2 Limitation of the Current References 307 -- 7.2.3 Current Control Loops 308 -- 7.2.4 Reference Frame Orientations 311 -- 7.2.5 Complete Control System 313 -- 7.3 Small Signal Stability of the Vector Control 314 -- 7.3.1 Influence of the Reference Frame Orientation 314 -- 7.3.2 Influence of the Tuning of the Regulators 320 -- 7.4 Vector Control Behavior Under Unbalanced Conditions 327 -- 7.4.1 Reference Frame Orientation 328 -- 7.4.2 Saturation of the Rotor Converter 328 -- 7.4.3 Oscillations in the Stator Current and in the Electromagnetic Torque 328 -- 7.5 Vector Control Behavior Under Voltage Dips 331 -- 7.5.1 Small Dips 333 -- 7.5.2 Severe Dips 336 -- 7.6 Control Solutions for Grid Disturbances 340 -- 7.6.1 Demagnetizing Current 340 -- 7.6.2 Dual Control Techniques 346 -- 7.7 Summary 358.
References 360 -- 8 Direct Control of the Doubly Fed Induction Machine 363 -- 8.1 Introduction 363 -- 8.2 Direct Torque Control (DTC) of the Doubly Fed Induction Machine 364 -- 8.2.1 Basic Control Principle 365 -- 8.2.2 Control Block Diagram 371 -- 8.2.3 Example 8.1: Direct Torque Control of a 2 MW DFIM 377 -- 8.2.4 Study of Rotor Voltage Vector Effect in the DFIM 379 -- 8.2.5 Example 8.2: Spectrum Analysis in Direct Torque Control of a 2 MW DFIM 384 -- 8.2.6 Rotor Flux Amplitude Reference Generation 386 -- 8.3 Direct Power Control (DPC) of the Doubly Fed Induction Machine 387 -- 8.3.1 Basic Control Principle 387 -- 8.3.2 Control Block Diagram 390 -- 8.3.3 Example 8.3: Direct Power Control of a 2 MW DFIM 395 -- 8.3.4 Study of Rotor Voltage Vector Effect in the DFIM 395 -- 8.4 Predictive Direct Torque Control (P-DTC) of the Doubly Fed Induction Machine at Constant Switching Frequency 399 -- 8.4.1 Basic Control Principle 399 -- 8.4.2 Control Block Diagram 402 -- 8.4.3 Example 8.4: Predictive Direct Torque Control of 15kW and 2 MW DFIMs at 800 Hz Constant -- Switching Frequency 411 -- 8.4.4 Example 8.5: Predictive Direct Torque Control of a 15kW DFIM at 4 kHz Constant Switching Frequency 415 -- 8.5 Predictive Direct Power Control (P-DPC) of the Doubly Fed Induction Machine at Constant Switching Frequency 416 -- 8.5.1 Basic Control Principle 417 -- 8.5.2 Control Block Diagram 419 -- 8.5.3 Example 8.6: Predictive Direct Power Control of a 15 kW DFIM at 1 kHz Constant Switching Frequency 424 -- 8.6 Multilevel Converter Based Predictive Direct Power and Direct Torque Control of the Doubly Fed Induction Machine at Constant Switching Frequency 425 -- 8.6.1 Introduction 425 -- 8.6.2 Three-Level NPC VSC Based DPC of the DFIM 428 -- 8.6.3 Three-Level NPC VSC Based DTC of the DFIM 447 -- 8.7 Control Solutions for Grid Voltage Disturbances, Based on Direct Control Techniques 451 -- 8.7.1 Introduction 451 -- 8.7.2 Control for Unbalanced Voltage Based on DPC 452 -- 8.7.3 Control for Unbalanced Voltage Based on DTC 460.
8.7.4 Control for Voltage Dips Based on DTC 467 -- 8.8 Summary 473 -- References 474 -- 9 Hardware Solutions for LVRT 479 -- 9.1 Introduction 479 -- 9.2 Grid Codes Related to LVRT 479 -- 9.3 Crowbar 481 -- 9.3.1 Design of an Active Crowbar 484 -- 9.3.2 Behavior Under Three-Phase Dips 486 -- 9.3.3 Behavior Under Asymmetrical Dips 488 -- 9.3.4 Combination of Crowbar and Software Solutions 490 -- 9.4 Braking Chopper 492 -- 9.4.1 Performance of a Braking Chopper Installed Alone 492 -- 9.4.2 Combination of Crowbar and Braking Chopper 493 -- 9.5 Other Protection Techniques 495 -- 9.5.1 Replacement Loads 495 -- 9.5.2 Wind Farm Solutions 496 -- 9.6 Summary 497 -- References 498 -- 10 Complementary Control Issues: Estimator Structures and Start-Up of Grid-Connected DFIM 501 -- 10.1 Introduction 501 -- 10.2 Estimator and Observer Structures 502 -- 10.2.1 General Considerations 502 -- 10.2.2 Stator Active and Reactive Power Estimation for Rotor Side DPC 503 -- 10.2.3 Stator Flux Estimator from Stator Voltage for Rotor Side Vector Control 503 -- 10.2.4 Stator Flux Synchronization from Stator Voltage for Rotor Side Vector Control 506 -- 10.2.5 Stator and Rotor Fluxes Estimation for Rotor Side DPC, DTC, and Vector Control 507 -- 10.2.6 Stator and Rotor Flux Full Order Observer 508 -- 10.3 Start-up of the Doubly Fed Induction Machine Based Wind Turbine 512 -- 10.3.1 Encoder Calibration 514 -- 10.3.2 Synchronization with the Grid 518 -- 10.3.3 Sequential Start-up of the DFIM Based Wind Turbine 523 -- 10.4 Summary 534 -- References 535 -- 11 Stand-Alone DFIM Based Generation Systems 537 -- 11.1 Introduction 537 -- 11.1.1 Requirements of Stand-alone DFIM Based System 537 -- 11.1.2 Characteristics of DFIM Supported by DC Coupled Storage 540 -- 11.1.3 Selection of Filtering Capacitors 541 -- 11.2 Mathematical Description of the Stand-Alone DFIM System 544 -- 11.2.1 Model of Stand-alone DFIM 544 -- 11.2.2 Model of Stand-alone DFIM Fed from Current Source 549 -- 11.2.3 Polar Frame Model of Stand-alone DFIM 551.
11.2.4 Polar Frame Model of Stand-alone DFIM Fed from Current Source 554 -- 11.3 Stator Voltage Control 558 -- 11.3.1 Amplitude and Frequency Control by the Use of PLL 558 -- 11.3.2 Voltage Asymmetry Correction During Unbalanced Load Supply 567 -- 11.3.3 Voltage Harmonics Reduction During Nonlinear Load Supply 569 -- 11.4 Synchronization Before Grid Connection By Superior PLL 573 -- 11.5 Summary 576 -- References 577 -- 12 New Trends on Wind Energy Generation 579 -- 12.1 Introduction 579 -- 12.2 Future Challenges for Wind Energy Generation: What must be Innovated 580 -- 12.2.1 Wind Farm Location 580 -- 12.2.2 Power, Efficiency, and Reliability Increase 582 -- 12.2.3 Electric Grid Integration 583 -- 12.2.4 Environmental Concerns 583 -- 12.3 Technological Trends: How They Can be Achieved 584 -- 12.3.1 Mechanical Structure of the Wind Turbine 585 -- 12.3.2 Power Train Technology 586 -- 12.4 Summary 599 -- References 600 -- Appendix 603 -- A.1 Space Vector Representation 603 -- A.1.1 Space Vector Notation 603 -- A.1.2 Transformations to Different Reference Frames 606 -- A.1.3 Power Expressions 609 -- A.2 Dynamic Modeling of the DFIM Considering the Iron Losses 610 -- A.2.1 ab Model 611 -- A.2.2 dq Model 614 -- A.2.3 State-Space Representation of ab Model 616 -- References 618 -- Index 619 -- The IEEE Press Series on Power Engineering.
Record Nr. UNINA-9910831048303321
Oxford : , : Wiley-Blackwell, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Doubly fed induction machine : modeling and control for wind energy generation applications / / G. Abad ... [et al.]
Doubly fed induction machine : modeling and control for wind energy generation applications / / G. Abad ... [et al.]
Pubbl/distr/stampa Hoboken, NJ, : IEEE Press, c2011
Descrizione fisica 1 online resource (641 p.)
Disciplina 621.31/6
Altri autori (Persone) AbadG <1976-> (Gonzalo)
Collana IEEE Press series on power engineering
Soggetto topico Induction generators - Mathematical models
Induction generators - Automatic control
Wind turbines - Equipment and supplies
ISBN 1-283-28275-5
9786613282750
1-118-10494-3
Classificazione TEC031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xiii -- 1 Introduction to A Wind Energy Generation System 1 -- 1.1 Introduction 1 -- 1.2 Basic Concepts of a Fixed Speed Wind Turbine (FSWT) 2 -- 1.2.1 Basic Wind Turbine Description 2 -- 1.2.2 Power Control of Wind Turbines 5 -- 1.2.3 Wind Turbine Aerodynamics 7 -- 1.2.4 Example of a Commercial Wind Turbine 9 -- 1.3 Variable Speed Wind Turbines (VSWTs) 10 -- 1.3.1 Modeling of Variable Speed Wind Turbine 11 -- 1.3.2 Control of a Variable Speed Wind Turbine 15 -- 1.3.3 Electrical System of a Variable Speed Wind Turbine 22 -- 1.4 Wind Energy Generation System Based on DFIM VSWT 25 -- 1.4.1 Electrical Configuration of a VSWT Based on the DFIM 25 -- 1.4.2 Electrical Configuration of a Wind Farm 33 -- 1.4.3 WEGS Control Structure 34 -- 1.5 Grid Code Requirements 39 -- 1.5.1 Frequency and Voltage Operating Range 40 -- 1.5.2 Reactive Power and Voltage Control Capability 41 -- 1.5.3 Power Control 43 -- 1.5.4 Power System Stabilizer Function 45 -- 1.5.5 Low Voltage Ride Through (LVRT) 46 -- 1.6 Voltage Dips and LVRT 46 -- 1.6.1 Electric Power System 47 -- 1.6.2 Voltage Dips 50 -- 1.6.3 Spanish Verification Procedure 55 -- 1.7 VSWT Based on DFIM Manufacturers 57 -- 1.7.1 Industrial Solutions: Wind Turbine Manufacturers 57 -- 1.7.2 Modeling a 2.4 MW Wind Turbine 72 -- 1.7.3 Steady State Generator and Power Converter Sizing 79 -- 1.8 Introduction to the Next Chapters 83 -- Bibliography 85 -- 2 Back-to-Back Power Electronic Converter 87 -- 2.1 Introduction 87 -- 2.2 Back-to-Back Converter based on Two-Level VSC Topology 88 -- 2.2.1 Grid Side System 89 -- 2.2.2 Rotor Side Converter and dv/dt Filter 96 -- 2.2.3 DC Link 99 -- 2.2.4 Pulse Generation of the Controlled Switches 101 -- 2.3 Multilevel VSC Topologies 114 -- 2.3.1 Three-Level Neutral Point Clamped VSC Topology (3L-NPC) 116 -- 2.4 Control of Grid Side System 133 -- 2.4.1 Steady State Model of the Grid Side System 133 -- 2.4.2 Dynamic Modeling of the Grid Side System 139 -- 2.4.3 Vector Control of the Grid Side System 143.
2.5 Summary 152 -- References 153 -- 3 Steady State of the Doubly Fed Induction Machine 155 -- 3.1 Introduction 155 -- 3.2 Equivalent Electric Circuit at Steady State 156 -- 3.2.1 Basic Concepts on DFIM 156 -- 3.2.2 Steady State Equivalent Circuit 158 -- 3.2.3 Phasor Diagram 163 -- 3.3 Operation Modes Attending to Speed and Power Flows 165 -- 3.3.1 Basic Active Power Relations 165 -- 3.3.2 Torque Expressions 168 -- 3.3.3 Reactive Power Expressions 170 -- 3.3.4 Approximated Relations Between Active Powers, Torque, and Speeds 170 -- 3.3.5 Four Quadrant Modes of Operation 171 -- 3.4 Per Unit Transformation 173 -- 3.4.1 Base Values 175 -- 3.4.2 Per Unit Transformation of Magnitudes and Parameters 176 -- 3.4.3 Steady State Equations of the DFIM in p.u 177 -- 3.4.4 Example 3.1: Parameters of a 2 MW DFIM 179 -- 3.4.5 Example 3.2: Parameters of Different Power DFIM 180 -- 3.4.6 Example 3.3: Phasor Diagram of a 2 MW DFIM and p.u. Analysis 181 -- 3.5 Steady State Curves: Performance Evaluation 184 -- 3.5.1 Rotor Voltage Variation: Frequency, Amplitude, and Phase Shift 185 -- 3.5.2 Rotor Voltage Variation: Constant Voltage-Frequency (V-F) Ratio 192 -- 3.5.3 Rotor Voltage Variation: Control of Stator Reactive Power and Torque 195 -- 3.6 Design Requirements for the DFIM in Wind Energy Generation Applications 202 -- 3.7 Summary 207 -- References 208 -- 4 Dynamic Modeling of the Doubly Fed Induction Machine 209 -- 4.1 Introduction 209 -- 4.2 Dynamic Modeling of the DFIM 210 -- 4.2.1 ab Model 212 -- 4.2.2 dq Model 214 -- 4.2.3 State-Space Representation of ab Model 216 -- 4.2.4 State-Space Representation of dq Model 229 -- 4.2.5 Relation Between the Steady State Model and the Dynamic Model 234 -- 4.3 Summary 238 -- References 238 -- 5 Testing the DFIM 241 -- 5.1 Introduction 241 -- 5.2 Off-Line Estimation of DFIM Model Parameters 242 -- 5.2.1 Considerations About the Model Parameters of the DFIM 243 -- 5.2.2 Stator and Rotor Resistances Estimation by VSC 245 -- 5.2.3 Leakage Inductances Estimation by VSC 250.
5.2.4 Magnetizing Inductance and Iron Losses Estimation with No-Load Test by VSC 256 -- 5.3 Summary 262 -- References 262 -- 6 Analysis of the DFIM Under Voltage Dips 265 -- 6.1 Introduction 265 -- 6.2 Electromagnetic Force Induced in the Rotor 266 -- 6.3 Normal Operation 267 -- 6.4 Three-Phase Voltage Dips 268 -- 6.4.1 Total Voltage Dip, Rotor Open-Circuited 268 -- 6.4.2 Partial Voltage Dip, Rotor Open-Circuited 273 -- 6.5 Asymmetrical Voltage Dips 278 -- 6.5.1 Fundamentals of the Symmetrical Component Method 278 -- 6.5.2 Symmetrical Components Applied to the DFIM 281 -- 6.5.3 Single-Phase Dip 283 -- 6.5.4 Phase-to-Phase Dip 286 -- 6.6 Influence of the Rotor Currents 290 -- 6.6.1 Influence of the Rotor Current in a Total Three-Phase Voltage Dip 291 -- 6.6.2 Rotor Voltage in a General Case 294 -- 6.7 DFIM Equivalent Model During Voltage Dips 297 -- 6.7.1 Equivalent Model in Case of Linearity 297 -- 6.7.2 Equivalent Model in Case of Nonlinearity 299 -- 6.7.3 Model of the Grid 300 -- 6.8 Summary 300 -- References 301 -- 7 Vector Control Strategies for Grid-Connected DFIM Wind Turbines 303 -- 7.1 Introduction 303 -- 7.2 Vector Control 304 -- 7.2.1 Calculation of the Current References 305 -- 7.2.2 Limitation of the Current References 307 -- 7.2.3 Current Control Loops 308 -- 7.2.4 Reference Frame Orientations 311 -- 7.2.5 Complete Control System 313 -- 7.3 Small Signal Stability of the Vector Control 314 -- 7.3.1 Influence of the Reference Frame Orientation 314 -- 7.3.2 Influence of the Tuning of the Regulators 320 -- 7.4 Vector Control Behavior Under Unbalanced Conditions 327 -- 7.4.1 Reference Frame Orientation 328 -- 7.4.2 Saturation of the Rotor Converter 328 -- 7.4.3 Oscillations in the Stator Current and in the Electromagnetic Torque 328 -- 7.5 Vector Control Behavior Under Voltage Dips 331 -- 7.5.1 Small Dips 333 -- 7.5.2 Severe Dips 336 -- 7.6 Control Solutions for Grid Disturbances 340 -- 7.6.1 Demagnetizing Current 340 -- 7.6.2 Dual Control Techniques 346 -- 7.7 Summary 358.
References 360 -- 8 Direct Control of the Doubly Fed Induction Machine 363 -- 8.1 Introduction 363 -- 8.2 Direct Torque Control (DTC) of the Doubly Fed Induction Machine 364 -- 8.2.1 Basic Control Principle 365 -- 8.2.2 Control Block Diagram 371 -- 8.2.3 Example 8.1: Direct Torque Control of a 2 MW DFIM 377 -- 8.2.4 Study of Rotor Voltage Vector Effect in the DFIM 379 -- 8.2.5 Example 8.2: Spectrum Analysis in Direct Torque Control of a 2 MW DFIM 384 -- 8.2.6 Rotor Flux Amplitude Reference Generation 386 -- 8.3 Direct Power Control (DPC) of the Doubly Fed Induction Machine 387 -- 8.3.1 Basic Control Principle 387 -- 8.3.2 Control Block Diagram 390 -- 8.3.3 Example 8.3: Direct Power Control of a 2 MW DFIM 395 -- 8.3.4 Study of Rotor Voltage Vector Effect in the DFIM 395 -- 8.4 Predictive Direct Torque Control (P-DTC) of the Doubly Fed Induction Machine at Constant Switching Frequency 399 -- 8.4.1 Basic Control Principle 399 -- 8.4.2 Control Block Diagram 402 -- 8.4.3 Example 8.4: Predictive Direct Torque Control of 15kW and 2 MW DFIMs at 800 Hz Constant -- Switching Frequency 411 -- 8.4.4 Example 8.5: Predictive Direct Torque Control of a 15kW DFIM at 4 kHz Constant Switching Frequency 415 -- 8.5 Predictive Direct Power Control (P-DPC) of the Doubly Fed Induction Machine at Constant Switching Frequency 416 -- 8.5.1 Basic Control Principle 417 -- 8.5.2 Control Block Diagram 419 -- 8.5.3 Example 8.6: Predictive Direct Power Control of a 15 kW DFIM at 1 kHz Constant Switching Frequency 424 -- 8.6 Multilevel Converter Based Predictive Direct Power and Direct Torque Control of the Doubly Fed Induction Machine at Constant Switching Frequency 425 -- 8.6.1 Introduction 425 -- 8.6.2 Three-Level NPC VSC Based DPC of the DFIM 428 -- 8.6.3 Three-Level NPC VSC Based DTC of the DFIM 447 -- 8.7 Control Solutions for Grid Voltage Disturbances, Based on Direct Control Techniques 451 -- 8.7.1 Introduction 451 -- 8.7.2 Control for Unbalanced Voltage Based on DPC 452 -- 8.7.3 Control for Unbalanced Voltage Based on DTC 460.
8.7.4 Control for Voltage Dips Based on DTC 467 -- 8.8 Summary 473 -- References 474 -- 9 Hardware Solutions for LVRT 479 -- 9.1 Introduction 479 -- 9.2 Grid Codes Related to LVRT 479 -- 9.3 Crowbar 481 -- 9.3.1 Design of an Active Crowbar 484 -- 9.3.2 Behavior Under Three-Phase Dips 486 -- 9.3.3 Behavior Under Asymmetrical Dips 488 -- 9.3.4 Combination of Crowbar and Software Solutions 490 -- 9.4 Braking Chopper 492 -- 9.4.1 Performance of a Braking Chopper Installed Alone 492 -- 9.4.2 Combination of Crowbar and Braking Chopper 493 -- 9.5 Other Protection Techniques 495 -- 9.5.1 Replacement Loads 495 -- 9.5.2 Wind Farm Solutions 496 -- 9.6 Summary 497 -- References 498 -- 10 Complementary Control Issues: Estimator Structures and Start-Up of Grid-Connected DFIM 501 -- 10.1 Introduction 501 -- 10.2 Estimator and Observer Structures 502 -- 10.2.1 General Considerations 502 -- 10.2.2 Stator Active and Reactive Power Estimation for Rotor Side DPC 503 -- 10.2.3 Stator Flux Estimator from Stator Voltage for Rotor Side Vector Control 503 -- 10.2.4 Stator Flux Synchronization from Stator Voltage for Rotor Side Vector Control 506 -- 10.2.5 Stator and Rotor Fluxes Estimation for Rotor Side DPC, DTC, and Vector Control 507 -- 10.2.6 Stator and Rotor Flux Full Order Observer 508 -- 10.3 Start-up of the Doubly Fed Induction Machine Based Wind Turbine 512 -- 10.3.1 Encoder Calibration 514 -- 10.3.2 Synchronization with the Grid 518 -- 10.3.3 Sequential Start-up of the DFIM Based Wind Turbine 523 -- 10.4 Summary 534 -- References 535 -- 11 Stand-Alone DFIM Based Generation Systems 537 -- 11.1 Introduction 537 -- 11.1.1 Requirements of Stand-alone DFIM Based System 537 -- 11.1.2 Characteristics of DFIM Supported by DC Coupled Storage 540 -- 11.1.3 Selection of Filtering Capacitors 541 -- 11.2 Mathematical Description of the Stand-Alone DFIM System 544 -- 11.2.1 Model of Stand-alone DFIM 544 -- 11.2.2 Model of Stand-alone DFIM Fed from Current Source 549 -- 11.2.3 Polar Frame Model of Stand-alone DFIM 551.
11.2.4 Polar Frame Model of Stand-alone DFIM Fed from Current Source 554 -- 11.3 Stator Voltage Control 558 -- 11.3.1 Amplitude and Frequency Control by the Use of PLL 558 -- 11.3.2 Voltage Asymmetry Correction During Unbalanced Load Supply 567 -- 11.3.3 Voltage Harmonics Reduction During Nonlinear Load Supply 569 -- 11.4 Synchronization Before Grid Connection By Superior PLL 573 -- 11.5 Summary 576 -- References 577 -- 12 New Trends on Wind Energy Generation 579 -- 12.1 Introduction 579 -- 12.2 Future Challenges for Wind Energy Generation: What must be Innovated 580 -- 12.2.1 Wind Farm Location 580 -- 12.2.2 Power, Efficiency, and Reliability Increase 582 -- 12.2.3 Electric Grid Integration 583 -- 12.2.4 Environmental Concerns 583 -- 12.3 Technological Trends: How They Can be Achieved 584 -- 12.3.1 Mechanical Structure of the Wind Turbine 585 -- 12.3.2 Power Train Technology 586 -- 12.4 Summary 599 -- References 600 -- Appendix 603 -- A.1 Space Vector Representation 603 -- A.1.1 Space Vector Notation 603 -- A.1.2 Transformations to Different Reference Frames 606 -- A.1.3 Power Expressions 609 -- A.2 Dynamic Modeling of the DFIM Considering the Iron Losses 610 -- A.2.1 ab Model 611 -- A.2.2 dq Model 614 -- A.2.3 State-Space Representation of ab Model 616 -- References 618 -- Index 619 -- The IEEE Press Series on Power Engineering.
Record Nr. UNINA-9910877810503321
Hoboken, NJ, : IEEE Press, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui