Fiber optic communications : fundamentals and applications / / Shiva Kumar and M. Jamal Deen |
Autore | Kumar Shiv, Dr. |
Pubbl/distr/stampa | Chichester, [England] : , : Wiley, , 2014 |
Descrizione fisica | 1 online resource (573 p.) |
Disciplina | 621.36/92 |
Soggetto topico |
Optical fiber communication
Fiber optics |
ISBN |
1-118-68343-9
1-118-68420-6 |
Classificazione | TEC030000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright; Contents; Preface; Acknowledgments; Chapter 1 Electromagnetics and Optics; 1.1 Introduction; 1.2 Coulomb's Law and Electric Field Intensity; 1.3 Ampere's Law and Magnetic Field Intensity; 1.4 Faraday's Law; 1.4.1 Meaning of Curl; 1.4.2 Ampere's Law in Differential Form; 1.5 Maxwell's Equations; 1.5.1 Maxwell's Equation in a Source-Free Region; 1.5.2 Electromagnetic Wave; 1.5.3 Free-Space Propagation; 1.5.4 Propagation in a Dielectric Medium; 1.6 1-Dimensional Wave Equation; 1.6.1 1-Dimensional Plane Wave; 1.6.2 Complex Notation; 1.7 Power Flow and Poynting Vector
1.8 3-Dimensional Wave Equation 1.9 Reflection and Refraction; 1.9.1 Refraction; 1.10 Phase Velocity and Group Velocity; 1.11 Polarization of Light; Exercises; Further Reading; References; Chapter 2 Optical Fiber Transmission; 2.1 Introduction; 2.2 Fiber Structure; 2.3 Ray Propagation in Fibers; 2.3.1 Numerical Aperture; 2.3.2 Multi-Mode and Single-Mode Fibers; 2.3.3 Dispersion in Multi-Mode Fibers; 2.3.4 Graded-Index Multi-Mode Fibers; 2.4 Modes of a Step-Index Optical Fiber*; 2.4.1 Guided Modes; 2.4.2 Mode Cutoff; 2.4.3 Effective Index; 2.4.4 2-Dimensional Planar Waveguide Analogy 2.4.5 Radiation Modes 2.4.6 Excitation of Guided Modes; 2.5 Pulse Propagation in Single-Mode Fibers; 2.5.1 Power and the dBm Unit; 2.6 Comparison between Multi-Mode and Single-Mode Fibers; 2.7 Single-Mode Fiber Design Considerations; 2.7.1 Cutoff Wavelength; 2.7.2 Fiber Loss; 2.7.3 Fiber Dispersion; 2.7.4 Dispersion Slope; 2.7.5 Polarization Mode Dispersion; 2.7.6 Spot Size; 2.8 Dispersion-Compensating Fibers (DCFs); 2.9 Additional Examples; Exercises; Further Reading; References; Chapter 3 Lasers; 3.1 Introduction; 3.2 Basic Concepts; 3.3 Conditions for Laser Oscillations; 3.4 Laser Examples 3.4.1 Ruby Laser 3.4.2 Semiconductor Lasers; 3.5 Wave-Particle Duality; 3.6 Laser Rate Equations; 3.7 Review of Semiconductor Physics; 3.7.1 The PN Junctions; 3.7.2 Spontaneous and Stimulated Emission at the PN Junction; 3.7.3 Direct and Indirect Band-Gap Semiconductors; 3.8 Semiconductor Laser Diode; 3.8.1 Heterojunction Lasers; 3.8.2 Radiative and Non-Radiative Recombination; 3.8.3 Laser Rate Equations; 3.8.4 Steady-State Solutions of Rate Equations; 3.8.5 Distributed-Feedback Lasers; 3.9 Additional Examples; Exercises; Further Reading; References Chapter 4 Optical Modulators and Modulation Schemes 4.1 Introduction; 4.2 Line Coder; 4.3 Pulse Shaping; 4.4 Power Spectral Density; 4.4.1 Polar Signals; 4.4.2 Unipolar Signals; 4.5 Digital Modulation Schemes; 4.5.1 Amplitude-Shift Keying; 4.5.2 Phase-Shift Keying; 4.5.3 Frequency-Shift Keying; 4.5.4 Differential Phase-Shift Keying; 4.6 Optical Modulators; 4.6.1 Direct Modulation; 4.6.2 External Modulators; 4.7 Optical Realization of Modulation Schemes; 4.7.1 Amplitude-Shift Keying; 4.7.2 Phase-Shift Keying; 4.7.3 Differential Phase-Shift Keying; 4.7.4 Frequency-Shift Keying 4.8 Partial Response Signals* |
Record Nr. | UNINA-9910132202803321 |
Kumar Shiv, Dr. | ||
Chichester, [England] : , : Wiley, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fiber optic communications : fundamentals and applications / / Shiva Kumar and M. Jamal Deen |
Autore | Kumar Shiv, Dr. |
Pubbl/distr/stampa | Chichester, [England] : , : Wiley, , 2014 |
Descrizione fisica | 1 online resource (573 p.) |
Disciplina | 621.36/92 |
Soggetto topico |
Optical fiber communication
Fiber optics |
ISBN |
1-118-68343-9
1-118-68420-6 |
Classificazione | TEC030000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright; Contents; Preface; Acknowledgments; Chapter 1 Electromagnetics and Optics; 1.1 Introduction; 1.2 Coulomb's Law and Electric Field Intensity; 1.3 Ampere's Law and Magnetic Field Intensity; 1.4 Faraday's Law; 1.4.1 Meaning of Curl; 1.4.2 Ampere's Law in Differential Form; 1.5 Maxwell's Equations; 1.5.1 Maxwell's Equation in a Source-Free Region; 1.5.2 Electromagnetic Wave; 1.5.3 Free-Space Propagation; 1.5.4 Propagation in a Dielectric Medium; 1.6 1-Dimensional Wave Equation; 1.6.1 1-Dimensional Plane Wave; 1.6.2 Complex Notation; 1.7 Power Flow and Poynting Vector
1.8 3-Dimensional Wave Equation 1.9 Reflection and Refraction; 1.9.1 Refraction; 1.10 Phase Velocity and Group Velocity; 1.11 Polarization of Light; Exercises; Further Reading; References; Chapter 2 Optical Fiber Transmission; 2.1 Introduction; 2.2 Fiber Structure; 2.3 Ray Propagation in Fibers; 2.3.1 Numerical Aperture; 2.3.2 Multi-Mode and Single-Mode Fibers; 2.3.3 Dispersion in Multi-Mode Fibers; 2.3.4 Graded-Index Multi-Mode Fibers; 2.4 Modes of a Step-Index Optical Fiber*; 2.4.1 Guided Modes; 2.4.2 Mode Cutoff; 2.4.3 Effective Index; 2.4.4 2-Dimensional Planar Waveguide Analogy 2.4.5 Radiation Modes 2.4.6 Excitation of Guided Modes; 2.5 Pulse Propagation in Single-Mode Fibers; 2.5.1 Power and the dBm Unit; 2.6 Comparison between Multi-Mode and Single-Mode Fibers; 2.7 Single-Mode Fiber Design Considerations; 2.7.1 Cutoff Wavelength; 2.7.2 Fiber Loss; 2.7.3 Fiber Dispersion; 2.7.4 Dispersion Slope; 2.7.5 Polarization Mode Dispersion; 2.7.6 Spot Size; 2.8 Dispersion-Compensating Fibers (DCFs); 2.9 Additional Examples; Exercises; Further Reading; References; Chapter 3 Lasers; 3.1 Introduction; 3.2 Basic Concepts; 3.3 Conditions for Laser Oscillations; 3.4 Laser Examples 3.4.1 Ruby Laser 3.4.2 Semiconductor Lasers; 3.5 Wave-Particle Duality; 3.6 Laser Rate Equations; 3.7 Review of Semiconductor Physics; 3.7.1 The PN Junctions; 3.7.2 Spontaneous and Stimulated Emission at the PN Junction; 3.7.3 Direct and Indirect Band-Gap Semiconductors; 3.8 Semiconductor Laser Diode; 3.8.1 Heterojunction Lasers; 3.8.2 Radiative and Non-Radiative Recombination; 3.8.3 Laser Rate Equations; 3.8.4 Steady-State Solutions of Rate Equations; 3.8.5 Distributed-Feedback Lasers; 3.9 Additional Examples; Exercises; Further Reading; References Chapter 4 Optical Modulators and Modulation Schemes 4.1 Introduction; 4.2 Line Coder; 4.3 Pulse Shaping; 4.4 Power Spectral Density; 4.4.1 Polar Signals; 4.4.2 Unipolar Signals; 4.5 Digital Modulation Schemes; 4.5.1 Amplitude-Shift Keying; 4.5.2 Phase-Shift Keying; 4.5.3 Frequency-Shift Keying; 4.5.4 Differential Phase-Shift Keying; 4.6 Optical Modulators; 4.6.1 Direct Modulation; 4.6.2 External Modulators; 4.7 Optical Realization of Modulation Schemes; 4.7.1 Amplitude-Shift Keying; 4.7.2 Phase-Shift Keying; 4.7.3 Differential Phase-Shift Keying; 4.7.4 Frequency-Shift Keying 4.8 Partial Response Signals* |
Record Nr. | UNINA-9910814790803321 |
Kumar Shiv, Dr. | ||
Chichester, [England] : , : Wiley, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Illumination engineering : design with nonimaging optics / / John Koshel |
Autore | Koshel R. John |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley-IEEE Press, , 2013 |
Descrizione fisica | 1 online resource (326 p.) |
Disciplina | 621.36 |
Soggetto topico |
Optical engineering
Lighting |
ISBN |
1-118-46249-1
1-118-46245-9 |
Classificazione | TEC030000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
PREFACE xiii -- CONTRIBUTORS xvii -- GLOSSARY xix -- CHAPTER 1 INTRODUCTION AND TERMINOLOGY 1 -- 1.1 What Is Illumination? 1 -- 1.2 A Brief History of Illumination Optics 2 -- 1.3 Units 4 -- 1.3.1 Radiometric Quantities 4 -- 1.3.2 Photometric Quantities 6 -- 1.4 Intensity 9 -- 1.5 Illuminance and Irradiance 10 -- 1.6 Luminance and Radiance 11 -- 1.6.1 Lambertian 13 -- 1.6.2 Isotropic 14 -- 1.7 Important Factors in Illumination Design 15 -- 1.7.1 Transfer Effi ciency 15 -- 1.7.2 Uniformity of Illumination Distribution 16 -- 1.8 Standard Optics Used in Illumination Engineering 17 -- 1.8.1 Refractive Optics 18 -- 1.8.2 Refl ective Optics 20 -- 1.8.3 TIR Optics 22 -- 1.8.4 Scattering Optics 24 -- 1.8.5 Hybrid Optics 24 -- 1.9 The Process of Illumination System Design 25 -- 1.10 Is Illumination Engineering Hard? 28 -- 1.11 Format for Succeeding Chapters 29 -- References 30 -- CHAPTER 2 ETENDUE 31 -- 2.1 Etendue 32 -- 2.2 Conservation of Etendue 33 -- 2.2.1 Proof of Conservation of Radiance and Etendue 34 -- 2.2.2 Proof of Conservation of Generalized Etendue 36 -- 2.2.3 Conservation of Etendue from the Laws of Thermodynamics 40 -- 2.3 Other Expressions for Etendue 41 -- 2.3.1 Radiance, Luminance, and Brightness 41 -- 2.3.2 Throughput 42 -- 2.3.3 Extent 43 -- 2.3.4 Lagrange Invariant 43 -- 2.3.5 Abbe Sine Condition 43 -- 2.3.6 Confi guration or Shape Factor 44 -- 2.4 Design Examples Using Etendue 45 -- 2.4.1 Lambertian, Spatially Uniform Disk Emitter 45 -- 2.4.2 Isotropic, Spatially Uniform Disk Emitter 48 -- 2.4.3 Isotropic, Spatially Nonuniform Disk Emitter 50 -- 2.4.4 Tubular Emitter 52 -- 2.5 Concentration Ratio 59 -- 2.6 Rotational Skew Invariant 61 -- 2.6.1 Proof of Skew Invariance 61 -- 2.6.2 Refi ned Tubular Emitter Example 63 -- 2.7 Etendue Discussion 67 -- References 68 -- CHAPTER 3 SQUEEZING THE ETENDUE 71 -- 3.1 Introduction 71 -- 3.2 Etendue Squeezers versus Etendue Rotators 71 -- 3.2.1 Etendue Rotating Mappings 74 -- 3.2.2 Etendue Squeezing Mappings 77.
3.3 Introductory Example of Etendue Squeezer 79 -- 3.3.1 Increasing the Number of Lenticular Elements 80 -- 3.4 Canonical Etendue-Squeezing with Afocal Lenslet Arrays 82 -- 3.4.1 Squeezing a Collimated Beam 82 -- 3.4.2 Other Afocal Designs 83 -- 3.4.3 Etendue-Squeezing Lenslet Arrays with Other Squeeze-Factors 85 -- 3.5 Application to a Two Freeform Mirror Condenser 88 -- 3.6 Etendue Squeezing in Optical Manifolds 95 -- 3.7 Conclusions 95 -- Appendix 3.A Galilean Afocal System 96 -- Appendix 3.B Keplerian Afocal System 98 -- References 99 -- CHAPTER 4 SMS 3D DESIGN METHOD 101 -- 4.1 Introduction 101 -- 4.2 State of the Art of Freeform Optical Design Methods 101 -- 4.3. SMS 3D Statement of the Optical Problem 103 -- 4.4 SMS Chains 104 -- 4.4.1 SMS Chain Generation 105 -- 4.4.2 Conditions 106 -- 4.5 SMS Surfaces 106 -- 4.5.1 SMS Ribs 107 -- 4.5.2 SMS Skinning 108 -- 4.5.3 Choosing the Seed Rib 109 -- 4.6 Design Examples 109 -- 4.6.1 SMS Design with a Prescribed Seed Rib 110 -- 4.6.2 SMS Design with an SMS Spine as Seed Rib 111 -- 4.6.3 Design of a Lens (RR) with Thin Edge 115 -- 4.6.4 Design of an XX Condenser for a Cylindrical Source 117 -- 4.6.5 Freeform XR for Photovoltaics Applications 129 -- 4.6.5.1 The XR Design Procedure 131 -- 4.6.5.2 Results of Ray Tracing Analysis 135 -- 4.7 Conclusions 140 -- References 144 -- CHAPTER 5 SOLAR CONCENTRATORS 147 -- 5.1 Concentrated Solar Radiation 147 -- 5.2 Acceptance Angle 148 -- 5.3 Imaging and Nonimaging Concentrators 156 -- 5.4 Limit Case of Infi nitesimal Etendue: Aplanatic Optics 164 -- 5.5 3D Miñano-Benitez Design Method Applied to High Solar Concentration 171 -- 5.6 Kohler Integration in One Direction 180 -- 5.7 Kohler Integration in Two Directions 195 -- 5.8 Appendix 5.A Acceptance Angle of Square Concentrators 201 -- 5.9 Appendix 5.B Polychromatic Effi ciency 204 -- Acknowledgments 207 -- References 207 -- CHAPTER 6 LIGHTPIPE DESIGN 209 -- 6.1 Background and Terminology 209 -- 6.1.1 What is a Lightpipe 209. 6.1.2 Lightpipe History 210 -- 6.2 Lightpipe System Elements 211 -- 6.2.1 Source/Coupling 211 -- 6.2.2 Distribution/Transport 211 -- 6.2.3 Delivery/Output 212 -- 6.3 Lightpipe Ray Tracing 212 -- 6.3.1 TIR 212 -- 6.3.2 Ray Propagation 212 -- 6.4 Charting 213 -- 6.5 Bends 214 -- 6.5.1 Bent Lightpipe: Circular Bend 214 -- 6.5.1.1 Setup and Background 214 -- 6.5.2 Bend Index for No Leakage 215 -- 6.5.3 Refl ection at the Output Face 216 -- 6.5.4 Refl ected Flux for a Specifi c Bend 217 -- 6.5.5 Loss Because of an Increase in NA 218 -- 6.5.6 Other Bends 219 -- 6.6 Mixing Rods 220 -- 6.6.1 Overview 220 -- 6.6.2 Why Some Shapes Provide Uniformity 221 -- 6.6.3 Design Factors Infl uencing Uniformity 223 -- 6.6.3.1 Length 223 -- 6.6.3.2 Solid versus Hollow 223 -- 6.6.3.3 Periodic Distributions 224 -- 6.6.3.4 Coherence 224 -- 6.6.3.5 Angular Uniformity 224 -- 6.6.3.6 Circular Mixer with Ripples 225 -- 6.6.4 RGB LEDs 226 -- 6.6.4.1 RGB LEDs with Square Mixers 226 -- 6.6.4.2 RGB LEDs with Circular Mixers 227 -- 6.6.5 Tapered Mixers 228 -- 6.6.5.1 Length 229 -- 6.6.5.2 Straight Taper Plus Lens 229 -- 6.6.5.3 Angular Uniformity 231 -- 6.6.5.4 Straight + Diffuser + Taper 232 -- 6.7 Backlights 233 -- 6.7.1 Introduction 233 -- 6.7.2 Backlight Overview 234 -- 6.7.3 Optimization 235 -- 6.7.4 Parameterization 235 -- 6.7.4.1 Vary Number 236 -- 6.7.4.2 Vary Size 236 -- 6.7.5 Peak Density 237 -- 6.7.6 Merit Function 237 -- 6.7.7 Algorithm 238 -- 6.7.8 Examples 239 -- 6.7.8.1 Peaked Target Distribution 239 -- 6.7.8.2 Border Extractors 240 -- 6.7.8.3 Input Surface Texturing 241 -- 6.7.8.4 Variable Depth Extractors 242 -- 6.7.8.5 Inverted 3D Texture Structure 242 -- 6.7.8.6 Key Pads 244 -- 6.8 Nonuniform Lightpipe Shapes 245 -- 6.9 Rod Luminaire 246 -- Acknowledgments 247 -- References 247 -- CHAPTER 7 SAMPLING, OPTIMIZATION, AND TOLERANCING 251 -- 7.1 Introduction 251 -- 7.2 Design Tricks 253 -- 7.2.1 Monte Carlo Processes 254 -- 7.2.1.1 Monte Carlo Sources 254 -- 7.2.1.2 Monte Carlo Ray Tracing 255. 7.2.2 Reverse Ray Tracing 257 -- 7.2.3 Importance Sampling 260 -- 7.2.4 Far-Field Irradiance 263 -- 7.3 Ray Sampling Theory 266 -- 7.3.1 Transfer Effi ciency Determination 266 -- 7.3.2 Distribution Determination: Rose Model 268 -- 7.4 Optimization 272 -- 7.4.1 Geometrical Complexity 273 -- 7.4.1.1 CAD Geometry 274 -- 7.4.1.2 Variables and Parameterization 275 -- 7.4.1.3 Object Overlap, Interference, Linking, and Mapping 277 -- 7.4.2 Merit Function Designation and Calculation 280 -- 7.4.3 Optimization Methods 281 -- 7.4.4 Fractional Optimization with Example: LED Collimator 282 -- 7.5 Tolerancing 289 -- 7.5.1 Types of Errors 290 -- 7.5.2 System Error Sensitivity Analysis: LED Die Position Offset 290 -- 7.5.3 Process Error Case Study: Injection Molding 291 -- References 297 -- INDEX 299. |
Record Nr. | UNINA-9910141360703321 |
Koshel R. John | ||
Hoboken, New Jersey : , : Wiley-IEEE Press, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Illumination engineering : design with nonimaging optics / / John Koshel |
Autore | Koshel R. John |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley-IEEE Press, , 2013 |
Descrizione fisica | 1 online resource (326 p.) |
Disciplina | 621.36 |
Soggetto topico |
Optical engineering
Lighting |
ISBN |
1-118-46249-1
1-118-46245-9 |
Classificazione | TEC030000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
PREFACE xiii -- CONTRIBUTORS xvii -- GLOSSARY xix -- CHAPTER 1 INTRODUCTION AND TERMINOLOGY 1 -- 1.1 What Is Illumination? 1 -- 1.2 A Brief History of Illumination Optics 2 -- 1.3 Units 4 -- 1.3.1 Radiometric Quantities 4 -- 1.3.2 Photometric Quantities 6 -- 1.4 Intensity 9 -- 1.5 Illuminance and Irradiance 10 -- 1.6 Luminance and Radiance 11 -- 1.6.1 Lambertian 13 -- 1.6.2 Isotropic 14 -- 1.7 Important Factors in Illumination Design 15 -- 1.7.1 Transfer Effi ciency 15 -- 1.7.2 Uniformity of Illumination Distribution 16 -- 1.8 Standard Optics Used in Illumination Engineering 17 -- 1.8.1 Refractive Optics 18 -- 1.8.2 Refl ective Optics 20 -- 1.8.3 TIR Optics 22 -- 1.8.4 Scattering Optics 24 -- 1.8.5 Hybrid Optics 24 -- 1.9 The Process of Illumination System Design 25 -- 1.10 Is Illumination Engineering Hard? 28 -- 1.11 Format for Succeeding Chapters 29 -- References 30 -- CHAPTER 2 ETENDUE 31 -- 2.1 Etendue 32 -- 2.2 Conservation of Etendue 33 -- 2.2.1 Proof of Conservation of Radiance and Etendue 34 -- 2.2.2 Proof of Conservation of Generalized Etendue 36 -- 2.2.3 Conservation of Etendue from the Laws of Thermodynamics 40 -- 2.3 Other Expressions for Etendue 41 -- 2.3.1 Radiance, Luminance, and Brightness 41 -- 2.3.2 Throughput 42 -- 2.3.3 Extent 43 -- 2.3.4 Lagrange Invariant 43 -- 2.3.5 Abbe Sine Condition 43 -- 2.3.6 Confi guration or Shape Factor 44 -- 2.4 Design Examples Using Etendue 45 -- 2.4.1 Lambertian, Spatially Uniform Disk Emitter 45 -- 2.4.2 Isotropic, Spatially Uniform Disk Emitter 48 -- 2.4.3 Isotropic, Spatially Nonuniform Disk Emitter 50 -- 2.4.4 Tubular Emitter 52 -- 2.5 Concentration Ratio 59 -- 2.6 Rotational Skew Invariant 61 -- 2.6.1 Proof of Skew Invariance 61 -- 2.6.2 Refi ned Tubular Emitter Example 63 -- 2.7 Etendue Discussion 67 -- References 68 -- CHAPTER 3 SQUEEZING THE ETENDUE 71 -- 3.1 Introduction 71 -- 3.2 Etendue Squeezers versus Etendue Rotators 71 -- 3.2.1 Etendue Rotating Mappings 74 -- 3.2.2 Etendue Squeezing Mappings 77.
3.3 Introductory Example of Etendue Squeezer 79 -- 3.3.1 Increasing the Number of Lenticular Elements 80 -- 3.4 Canonical Etendue-Squeezing with Afocal Lenslet Arrays 82 -- 3.4.1 Squeezing a Collimated Beam 82 -- 3.4.2 Other Afocal Designs 83 -- 3.4.3 Etendue-Squeezing Lenslet Arrays with Other Squeeze-Factors 85 -- 3.5 Application to a Two Freeform Mirror Condenser 88 -- 3.6 Etendue Squeezing in Optical Manifolds 95 -- 3.7 Conclusions 95 -- Appendix 3.A Galilean Afocal System 96 -- Appendix 3.B Keplerian Afocal System 98 -- References 99 -- CHAPTER 4 SMS 3D DESIGN METHOD 101 -- 4.1 Introduction 101 -- 4.2 State of the Art of Freeform Optical Design Methods 101 -- 4.3. SMS 3D Statement of the Optical Problem 103 -- 4.4 SMS Chains 104 -- 4.4.1 SMS Chain Generation 105 -- 4.4.2 Conditions 106 -- 4.5 SMS Surfaces 106 -- 4.5.1 SMS Ribs 107 -- 4.5.2 SMS Skinning 108 -- 4.5.3 Choosing the Seed Rib 109 -- 4.6 Design Examples 109 -- 4.6.1 SMS Design with a Prescribed Seed Rib 110 -- 4.6.2 SMS Design with an SMS Spine as Seed Rib 111 -- 4.6.3 Design of a Lens (RR) with Thin Edge 115 -- 4.6.4 Design of an XX Condenser for a Cylindrical Source 117 -- 4.6.5 Freeform XR for Photovoltaics Applications 129 -- 4.6.5.1 The XR Design Procedure 131 -- 4.6.5.2 Results of Ray Tracing Analysis 135 -- 4.7 Conclusions 140 -- References 144 -- CHAPTER 5 SOLAR CONCENTRATORS 147 -- 5.1 Concentrated Solar Radiation 147 -- 5.2 Acceptance Angle 148 -- 5.3 Imaging and Nonimaging Concentrators 156 -- 5.4 Limit Case of Infi nitesimal Etendue: Aplanatic Optics 164 -- 5.5 3D Miñano-Benitez Design Method Applied to High Solar Concentration 171 -- 5.6 Kohler Integration in One Direction 180 -- 5.7 Kohler Integration in Two Directions 195 -- 5.8 Appendix 5.A Acceptance Angle of Square Concentrators 201 -- 5.9 Appendix 5.B Polychromatic Effi ciency 204 -- Acknowledgments 207 -- References 207 -- CHAPTER 6 LIGHTPIPE DESIGN 209 -- 6.1 Background and Terminology 209 -- 6.1.1 What is a Lightpipe 209. 6.1.2 Lightpipe History 210 -- 6.2 Lightpipe System Elements 211 -- 6.2.1 Source/Coupling 211 -- 6.2.2 Distribution/Transport 211 -- 6.2.3 Delivery/Output 212 -- 6.3 Lightpipe Ray Tracing 212 -- 6.3.1 TIR 212 -- 6.3.2 Ray Propagation 212 -- 6.4 Charting 213 -- 6.5 Bends 214 -- 6.5.1 Bent Lightpipe: Circular Bend 214 -- 6.5.1.1 Setup and Background 214 -- 6.5.2 Bend Index for No Leakage 215 -- 6.5.3 Refl ection at the Output Face 216 -- 6.5.4 Refl ected Flux for a Specifi c Bend 217 -- 6.5.5 Loss Because of an Increase in NA 218 -- 6.5.6 Other Bends 219 -- 6.6 Mixing Rods 220 -- 6.6.1 Overview 220 -- 6.6.2 Why Some Shapes Provide Uniformity 221 -- 6.6.3 Design Factors Infl uencing Uniformity 223 -- 6.6.3.1 Length 223 -- 6.6.3.2 Solid versus Hollow 223 -- 6.6.3.3 Periodic Distributions 224 -- 6.6.3.4 Coherence 224 -- 6.6.3.5 Angular Uniformity 224 -- 6.6.3.6 Circular Mixer with Ripples 225 -- 6.6.4 RGB LEDs 226 -- 6.6.4.1 RGB LEDs with Square Mixers 226 -- 6.6.4.2 RGB LEDs with Circular Mixers 227 -- 6.6.5 Tapered Mixers 228 -- 6.6.5.1 Length 229 -- 6.6.5.2 Straight Taper Plus Lens 229 -- 6.6.5.3 Angular Uniformity 231 -- 6.6.5.4 Straight + Diffuser + Taper 232 -- 6.7 Backlights 233 -- 6.7.1 Introduction 233 -- 6.7.2 Backlight Overview 234 -- 6.7.3 Optimization 235 -- 6.7.4 Parameterization 235 -- 6.7.4.1 Vary Number 236 -- 6.7.4.2 Vary Size 236 -- 6.7.5 Peak Density 237 -- 6.7.6 Merit Function 237 -- 6.7.7 Algorithm 238 -- 6.7.8 Examples 239 -- 6.7.8.1 Peaked Target Distribution 239 -- 6.7.8.2 Border Extractors 240 -- 6.7.8.3 Input Surface Texturing 241 -- 6.7.8.4 Variable Depth Extractors 242 -- 6.7.8.5 Inverted 3D Texture Structure 242 -- 6.7.8.6 Key Pads 244 -- 6.8 Nonuniform Lightpipe Shapes 245 -- 6.9 Rod Luminaire 246 -- Acknowledgments 247 -- References 247 -- CHAPTER 7 SAMPLING, OPTIMIZATION, AND TOLERANCING 251 -- 7.1 Introduction 251 -- 7.2 Design Tricks 253 -- 7.2.1 Monte Carlo Processes 254 -- 7.2.1.1 Monte Carlo Sources 254 -- 7.2.1.2 Monte Carlo Ray Tracing 255. 7.2.2 Reverse Ray Tracing 257 -- 7.2.3 Importance Sampling 260 -- 7.2.4 Far-Field Irradiance 263 -- 7.3 Ray Sampling Theory 266 -- 7.3.1 Transfer Effi ciency Determination 266 -- 7.3.2 Distribution Determination: Rose Model 268 -- 7.4 Optimization 272 -- 7.4.1 Geometrical Complexity 273 -- 7.4.1.1 CAD Geometry 274 -- 7.4.1.2 Variables and Parameterization 275 -- 7.4.1.3 Object Overlap, Interference, Linking, and Mapping 277 -- 7.4.2 Merit Function Designation and Calculation 280 -- 7.4.3 Optimization Methods 281 -- 7.4.4 Fractional Optimization with Example: LED Collimator 282 -- 7.5 Tolerancing 289 -- 7.5.1 Types of Errors 290 -- 7.5.2 System Error Sensitivity Analysis: LED Die Position Offset 290 -- 7.5.3 Process Error Case Study: Injection Molding 291 -- References 297 -- INDEX 299. |
Record Nr. | UNINA-9910830756703321 |
Koshel R. John | ||
Hoboken, New Jersey : , : Wiley-IEEE Press, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Illumination engineering : design with nonimaging optics / / R. John Koshel |
Autore | Koshel R. John |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-IEEE Press, 2013 |
Descrizione fisica | 1 online resource (326 p.) |
Disciplina | 621.36 |
Soggetto topico |
Optical engineering
Lighting |
ISBN |
1-118-46249-1
1-118-46245-9 |
Classificazione | TEC030000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
PREFACE xiii -- CONTRIBUTORS xvii -- GLOSSARY xix -- CHAPTER 1 INTRODUCTION AND TERMINOLOGY 1 -- 1.1 What Is Illumination? 1 -- 1.2 A Brief History of Illumination Optics 2 -- 1.3 Units 4 -- 1.3.1 Radiometric Quantities 4 -- 1.3.2 Photometric Quantities 6 -- 1.4 Intensity 9 -- 1.5 Illuminance and Irradiance 10 -- 1.6 Luminance and Radiance 11 -- 1.6.1 Lambertian 13 -- 1.6.2 Isotropic 14 -- 1.7 Important Factors in Illumination Design 15 -- 1.7.1 Transfer Effi ciency 15 -- 1.7.2 Uniformity of Illumination Distribution 16 -- 1.8 Standard Optics Used in Illumination Engineering 17 -- 1.8.1 Refractive Optics 18 -- 1.8.2 Refl ective Optics 20 -- 1.8.3 TIR Optics 22 -- 1.8.4 Scattering Optics 24 -- 1.8.5 Hybrid Optics 24 -- 1.9 The Process of Illumination System Design 25 -- 1.10 Is Illumination Engineering Hard? 28 -- 1.11 Format for Succeeding Chapters 29 -- References 30 -- CHAPTER 2 ETENDUE 31 -- 2.1 Etendue 32 -- 2.2 Conservation of Etendue 33 -- 2.2.1 Proof of Conservation of Radiance and Etendue 34 -- 2.2.2 Proof of Conservation of Generalized Etendue 36 -- 2.2.3 Conservation of Etendue from the Laws of Thermodynamics 40 -- 2.3 Other Expressions for Etendue 41 -- 2.3.1 Radiance, Luminance, and Brightness 41 -- 2.3.2 Throughput 42 -- 2.3.3 Extent 43 -- 2.3.4 Lagrange Invariant 43 -- 2.3.5 Abbe Sine Condition 43 -- 2.3.6 Confi guration or Shape Factor 44 -- 2.4 Design Examples Using Etendue 45 -- 2.4.1 Lambertian, Spatially Uniform Disk Emitter 45 -- 2.4.2 Isotropic, Spatially Uniform Disk Emitter 48 -- 2.4.3 Isotropic, Spatially Nonuniform Disk Emitter 50 -- 2.4.4 Tubular Emitter 52 -- 2.5 Concentration Ratio 59 -- 2.6 Rotational Skew Invariant 61 -- 2.6.1 Proof of Skew Invariance 61 -- 2.6.2 Refi ned Tubular Emitter Example 63 -- 2.7 Etendue Discussion 67 -- References 68 -- CHAPTER 3 SQUEEZING THE ETENDUE 71 -- 3.1 Introduction 71 -- 3.2 Etendue Squeezers versus Etendue Rotators 71 -- 3.2.1 Etendue Rotating Mappings 74 -- 3.2.2 Etendue Squeezing Mappings 77.
3.3 Introductory Example of Etendue Squeezer 79 -- 3.3.1 Increasing the Number of Lenticular Elements 80 -- 3.4 Canonical Etendue-Squeezing with Afocal Lenslet Arrays 82 -- 3.4.1 Squeezing a Collimated Beam 82 -- 3.4.2 Other Afocal Designs 83 -- 3.4.3 Etendue-Squeezing Lenslet Arrays with Other Squeeze-Factors 85 -- 3.5 Application to a Two Freeform Mirror Condenser 88 -- 3.6 Etendue Squeezing in Optical Manifolds 95 -- 3.7 Conclusions 95 -- Appendix 3.A Galilean Afocal System 96 -- Appendix 3.B Keplerian Afocal System 98 -- References 99 -- CHAPTER 4 SMS 3D DESIGN METHOD 101 -- 4.1 Introduction 101 -- 4.2 State of the Art of Freeform Optical Design Methods 101 -- 4.3. SMS 3D Statement of the Optical Problem 103 -- 4.4 SMS Chains 104 -- 4.4.1 SMS Chain Generation 105 -- 4.4.2 Conditions 106 -- 4.5 SMS Surfaces 106 -- 4.5.1 SMS Ribs 107 -- 4.5.2 SMS Skinning 108 -- 4.5.3 Choosing the Seed Rib 109 -- 4.6 Design Examples 109 -- 4.6.1 SMS Design with a Prescribed Seed Rib 110 -- 4.6.2 SMS Design with an SMS Spine as Seed Rib 111 -- 4.6.3 Design of a Lens (RR) with Thin Edge 115 -- 4.6.4 Design of an XX Condenser for a Cylindrical Source 117 -- 4.6.5 Freeform XR for Photovoltaics Applications 129 -- 4.6.5.1 The XR Design Procedure 131 -- 4.6.5.2 Results of Ray Tracing Analysis 135 -- 4.7 Conclusions 140 -- References 144 -- CHAPTER 5 SOLAR CONCENTRATORS 147 -- 5.1 Concentrated Solar Radiation 147 -- 5.2 Acceptance Angle 148 -- 5.3 Imaging and Nonimaging Concentrators 156 -- 5.4 Limit Case of Infi nitesimal Etendue: Aplanatic Optics 164 -- 5.5 3D Miñano-Benitez Design Method Applied to High Solar Concentration 171 -- 5.6 Kohler Integration in One Direction 180 -- 5.7 Kohler Integration in Two Directions 195 -- 5.8 Appendix 5.A Acceptance Angle of Square Concentrators 201 -- 5.9 Appendix 5.B Polychromatic Effi ciency 204 -- Acknowledgments 207 -- References 207 -- CHAPTER 6 LIGHTPIPE DESIGN 209 -- 6.1 Background and Terminology 209 -- 6.1.1 What is a Lightpipe 209. 6.1.2 Lightpipe History 210 -- 6.2 Lightpipe System Elements 211 -- 6.2.1 Source/Coupling 211 -- 6.2.2 Distribution/Transport 211 -- 6.2.3 Delivery/Output 212 -- 6.3 Lightpipe Ray Tracing 212 -- 6.3.1 TIR 212 -- 6.3.2 Ray Propagation 212 -- 6.4 Charting 213 -- 6.5 Bends 214 -- 6.5.1 Bent Lightpipe: Circular Bend 214 -- 6.5.1.1 Setup and Background 214 -- 6.5.2 Bend Index for No Leakage 215 -- 6.5.3 Refl ection at the Output Face 216 -- 6.5.4 Refl ected Flux for a Specifi c Bend 217 -- 6.5.5 Loss Because of an Increase in NA 218 -- 6.5.6 Other Bends 219 -- 6.6 Mixing Rods 220 -- 6.6.1 Overview 220 -- 6.6.2 Why Some Shapes Provide Uniformity 221 -- 6.6.3 Design Factors Infl uencing Uniformity 223 -- 6.6.3.1 Length 223 -- 6.6.3.2 Solid versus Hollow 223 -- 6.6.3.3 Periodic Distributions 224 -- 6.6.3.4 Coherence 224 -- 6.6.3.5 Angular Uniformity 224 -- 6.6.3.6 Circular Mixer with Ripples 225 -- 6.6.4 RGB LEDs 226 -- 6.6.4.1 RGB LEDs with Square Mixers 226 -- 6.6.4.2 RGB LEDs with Circular Mixers 227 -- 6.6.5 Tapered Mixers 228 -- 6.6.5.1 Length 229 -- 6.6.5.2 Straight Taper Plus Lens 229 -- 6.6.5.3 Angular Uniformity 231 -- 6.6.5.4 Straight + Diffuser + Taper 232 -- 6.7 Backlights 233 -- 6.7.1 Introduction 233 -- 6.7.2 Backlight Overview 234 -- 6.7.3 Optimization 235 -- 6.7.4 Parameterization 235 -- 6.7.4.1 Vary Number 236 -- 6.7.4.2 Vary Size 236 -- 6.7.5 Peak Density 237 -- 6.7.6 Merit Function 237 -- 6.7.7 Algorithm 238 -- 6.7.8 Examples 239 -- 6.7.8.1 Peaked Target Distribution 239 -- 6.7.8.2 Border Extractors 240 -- 6.7.8.3 Input Surface Texturing 241 -- 6.7.8.4 Variable Depth Extractors 242 -- 6.7.8.5 Inverted 3D Texture Structure 242 -- 6.7.8.6 Key Pads 244 -- 6.8 Nonuniform Lightpipe Shapes 245 -- 6.9 Rod Luminaire 246 -- Acknowledgments 247 -- References 247 -- CHAPTER 7 SAMPLING, OPTIMIZATION, AND TOLERANCING 251 -- 7.1 Introduction 251 -- 7.2 Design Tricks 253 -- 7.2.1 Monte Carlo Processes 254 -- 7.2.1.1 Monte Carlo Sources 254 -- 7.2.1.2 Monte Carlo Ray Tracing 255. 7.2.2 Reverse Ray Tracing 257 -- 7.2.3 Importance Sampling 260 -- 7.2.4 Far-Field Irradiance 263 -- 7.3 Ray Sampling Theory 266 -- 7.3.1 Transfer Effi ciency Determination 266 -- 7.3.2 Distribution Determination: Rose Model 268 -- 7.4 Optimization 272 -- 7.4.1 Geometrical Complexity 273 -- 7.4.1.1 CAD Geometry 274 -- 7.4.1.2 Variables and Parameterization 275 -- 7.4.1.3 Object Overlap, Interference, Linking, and Mapping 277 -- 7.4.2 Merit Function Designation and Calculation 280 -- 7.4.3 Optimization Methods 281 -- 7.4.4 Fractional Optimization with Example: LED Collimator 282 -- 7.5 Tolerancing 289 -- 7.5.1 Types of Errors 290 -- 7.5.2 System Error Sensitivity Analysis: LED Die Position Offset 290 -- 7.5.3 Process Error Case Study: Injection Molding 291 -- References 297 -- INDEX 299. |
Record Nr. | UNINA-9910877548603321 |
Koshel R. John | ||
Hoboken, N.J., : Wiley-IEEE Press, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanostructured and subwavelength waveguides [[electronic resource] ] : fundamentals and applications / / Maksim Skorobogatiy |
Autore | Skorobogatiy Maksim <1974-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2012 |
Descrizione fisica | 1 online resource (336 p.) |
Disciplina | 621.3815/2 |
Collana | Wiley series in materials for electronic and optoelectronic applications |
Soggetto topico |
Optical wave guides
Optoelectronic devices Nanostructured materials |
ISBN |
1-283-91720-3
1-118-34317-4 1-118-34322-0 1-118-34324-7 |
Classificazione | TEC030000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Nanostructuredand SubwavelengthWaveguides; Contents; Series Preface; Preface; 1 Introduction; 1.1 Contents and Organisation of the Book; 1.2 Step-Index Subwavelength Waveguides Made of Isotropic Materials; 1.3 Field Enhancement in the Low Refractive Index Discontinuity Waveguides; 1.4 Porous Waveguides and Fibres; 1.5 Multifilament Core Fibres; 1.6 Nanostructured Waveguides and Effective Medium Approximation; 1.7 Waveguides Made of Anisotropic Materials; 1.8 Metals and Polar Materials; 1.9 Surface Polariton Waves on Planar and Curved Interfaces; 1.9.1 Surface Waves on Planar Interfaces
1.9.2 Surface Waves on Wires1.9.3 Plasmons Guided by Metal Slab Waveguides; 1.9.4 Plasmons Guided by Metal Slot Waveguides; 1.10 Metal/Dielectric Metamaterials and Waveguides Made of Them; 1.11 Extending Effective Medium Approximation to Shorter Wavelengths; 2 Hamiltonian Formulation of Maxwell Equations for the Modes of Anisotropic Waveguides; 2.1 Eigenstates of a Waveguide in Hamiltonian Formulation; 2.2 Orthogonality Relation between the Modes of a Waveguide Made of Lossless Dielectrics; 2.3 Expressions for the Modal Phase Velocity; 2.4 Expressions for the Modal Group Velocity 2.5 Orthogonality Relation between the Modes of a Waveguide Made of Lossy Dielectrics2.6 Excitation of the Waveguide Modes; 2.6.1 Least Squares Method; 2.6.2 Using Flux Operator as an Orthogonal Dot Product; 2.6.3 Coupling into a Waveguide with Lossless Dielectric Profile; 2.6.4 Coupling into a Waveguide with Lossy Dielectric Profile; 3 Wave Propagation in Planar Anisotropic Multilayers, Transfer Matrix Formulation; 3.1 Planewave Solution for Uniform Anisotropic Dielectrics; 3.2 Transfer Matrix Technique for Multilayers Made from Uniform Anisotropic Dielectrics; 3.2.1 TE Multilayer Stack 3.2.2 TM Multilayer Stack3.3 Reflections at the Interface between Isotropic and Anisotropic Dielectrics; 4 Slab Waveguides Made from Isotropic Dielectric Materials. Example of Subwavelength Planar Waveguides; 4.1 Finding Modes of a Slab Waveguide Using Transfer Matrix Theory; 4.2 Exact Solution for the Dispersion Relation of Modes of a Slab Waveguide; 4.3 Fundamental Mode Dispersion Relation in the Long-Wavelength Limit; 4.4 Fundamental Mode Dispersion Relation in the Short-Wavelength Limit; 4.5 Waveguides with Low Refractive-Index Contrast; 4.6 Single-Mode Guidance Criterion 4.7 Dispersion Relations of the Higher-Order Modes in the Vicinity of their Cutoff Frequencies4.8 Modal Losses Due to Material Absorption; 4.8.1 Waveguides Featuring Low Loss-Dispersion; 4.8.2 Modal Losses in a Waveguide with Lossless Cladding; 4.8.3 Modal Losses in a Waveguide with Low Refractive-Index Contrast; 4.9 Coupling into a Subwavelength Slab Waveguide Using a 2D Gaussian Beam; 4.9.1 TE Polarisation; 4.9.2 TM Polarisation; 4.10 Size of a Waveguide Mode; 4.10.1 Modal Size of the Fundamental Modes of a Slab Waveguide in the Long-Wavelength Limit 4.10.2 Modal Size of the Fundamental Modes of a Slab Waveguide in the Short-Wavelength Limit |
Record Nr. | UNINA-9910141254703321 |
Skorobogatiy Maksim <1974-> | ||
Hoboken, N.J., : Wiley, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanostructured and subwavelength waveguides : fundamentals and applications / / Maksim Skorobogatiy |
Autore | Skorobogatiy Maksim <1974-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2012 |
Descrizione fisica | 1 online resource (336 p.) |
Disciplina | 621.3815/2 |
Collana | Wiley series in materials for electronic and optoelectronic applications |
Soggetto topico |
Optical wave guides
Optoelectronic devices Nanostructured materials |
ISBN |
1-283-91720-3
1-118-34317-4 1-118-34322-0 1-118-34324-7 |
Classificazione | TEC030000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Nanostructuredand SubwavelengthWaveguides; Contents; Series Preface; Preface; 1 Introduction; 1.1 Contents and Organisation of the Book; 1.2 Step-Index Subwavelength Waveguides Made of Isotropic Materials; 1.3 Field Enhancement in the Low Refractive Index Discontinuity Waveguides; 1.4 Porous Waveguides and Fibres; 1.5 Multifilament Core Fibres; 1.6 Nanostructured Waveguides and Effective Medium Approximation; 1.7 Waveguides Made of Anisotropic Materials; 1.8 Metals and Polar Materials; 1.9 Surface Polariton Waves on Planar and Curved Interfaces; 1.9.1 Surface Waves on Planar Interfaces
1.9.2 Surface Waves on Wires1.9.3 Plasmons Guided by Metal Slab Waveguides; 1.9.4 Plasmons Guided by Metal Slot Waveguides; 1.10 Metal/Dielectric Metamaterials and Waveguides Made of Them; 1.11 Extending Effective Medium Approximation to Shorter Wavelengths; 2 Hamiltonian Formulation of Maxwell Equations for the Modes of Anisotropic Waveguides; 2.1 Eigenstates of a Waveguide in Hamiltonian Formulation; 2.2 Orthogonality Relation between the Modes of a Waveguide Made of Lossless Dielectrics; 2.3 Expressions for the Modal Phase Velocity; 2.4 Expressions for the Modal Group Velocity 2.5 Orthogonality Relation between the Modes of a Waveguide Made of Lossy Dielectrics2.6 Excitation of the Waveguide Modes; 2.6.1 Least Squares Method; 2.6.2 Using Flux Operator as an Orthogonal Dot Product; 2.6.3 Coupling into a Waveguide with Lossless Dielectric Profile; 2.6.4 Coupling into a Waveguide with Lossy Dielectric Profile; 3 Wave Propagation in Planar Anisotropic Multilayers, Transfer Matrix Formulation; 3.1 Planewave Solution for Uniform Anisotropic Dielectrics; 3.2 Transfer Matrix Technique for Multilayers Made from Uniform Anisotropic Dielectrics; 3.2.1 TE Multilayer Stack 3.2.2 TM Multilayer Stack3.3 Reflections at the Interface between Isotropic and Anisotropic Dielectrics; 4 Slab Waveguides Made from Isotropic Dielectric Materials. Example of Subwavelength Planar Waveguides; 4.1 Finding Modes of a Slab Waveguide Using Transfer Matrix Theory; 4.2 Exact Solution for the Dispersion Relation of Modes of a Slab Waveguide; 4.3 Fundamental Mode Dispersion Relation in the Long-Wavelength Limit; 4.4 Fundamental Mode Dispersion Relation in the Short-Wavelength Limit; 4.5 Waveguides with Low Refractive-Index Contrast; 4.6 Single-Mode Guidance Criterion 4.7 Dispersion Relations of the Higher-Order Modes in the Vicinity of their Cutoff Frequencies4.8 Modal Losses Due to Material Absorption; 4.8.1 Waveguides Featuring Low Loss-Dispersion; 4.8.2 Modal Losses in a Waveguide with Lossless Cladding; 4.8.3 Modal Losses in a Waveguide with Low Refractive-Index Contrast; 4.9 Coupling into a Subwavelength Slab Waveguide Using a 2D Gaussian Beam; 4.9.1 TE Polarisation; 4.9.2 TM Polarisation; 4.10 Size of a Waveguide Mode; 4.10.1 Modal Size of the Fundamental Modes of a Slab Waveguide in the Long-Wavelength Limit 4.10.2 Modal Size of the Fundamental Modes of a Slab Waveguide in the Short-Wavelength Limit |
Record Nr. | UNINA-9910812621703321 |
Skorobogatiy Maksim <1974-> | ||
Hoboken, N.J., : Wiley, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|