top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Carbon nanomaterials for advanced energy systems : advances in materials synthesis and device applications / / edited by Wen Lu, Jong-Beom Baek, Liming Dai
Carbon nanomaterials for advanced energy systems : advances in materials synthesis and device applications / / edited by Wen Lu, Jong-Beom Baek, Liming Dai
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2015
Descrizione fisica 1 online resource (600 p.)
Disciplina 621.31/2420284
Soggetto topico Electric batteries - Materials
Energy harvesting - Materials
Fullerenes
Nanostructured materials
Carbon nanotubes
ISBN 1-118-98102-2
1-118-98101-4
Classificazione TEC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""TITLE PAGE""; ""TABLE OF CONTENTS""; ""LIST OF CONTRIBUTORS""; ""PREFACE""; ""PART I: SYNTHESIS AND CHARACTERIZATION OF CARBON NANOMATERIALS""; ""1 FULLERENES, HIGHER FULLERENES, AND THEIR HYBRIDS: SYNTHESIS, CHARACTERIZATION, AND ENVIRONMENTAL CONSIDERATIONS""; ""1.1 INTRODUCTION""; ""1.2 FULLERENE, HIGHER FULLERENES, AND NANOHYBRIDS: STRUCTURES AND HISTORICAL PERSPECTIVE""; ""1.3 SYNTHESIS AND CHARACTERIZATION""; ""1.4 ENERGY APPLICATIONS""; ""1.5 ENVIRONMENTAL CONSIDERATIONS FOR FULLERENE SYNTHESIS AND PROCESSING""; ""REFERENCES""; ""2 CARBON NANOTUBES""
""2.1 SYNTHESIS OF CARBON NANOTUBES""""2.2 CHARACTERIZATION OF NANOTUBES""; ""2.3 SUMMARY""; ""REFERENCES""; ""3 SYNTHESIS AND CHARACTERIZATION OF GRAPHENE""; ""3.1 INTRODUCTION""; ""3.2 OVERVIEW OF GRAPHENE SYNTHESIS METHODOLOGIES""; ""3.3 GRAPHENE CHARACTERIZATIONS""; ""3.4 SUMMARY AND OUTLOOK""; ""REFERENCES""; ""4 DOPING CARBON NANOMATERIALS WITH HETEROATOMS""; ""4.1 INTRODUCTION""; ""4.2 LOCAL BONDING OF THE DOPANTS""; ""4.3 SYNTHESIS OF HETERODOPED NANOCARBONS""; ""4.4 CHARACTERIZATION OF HETERODOPED NANOTUBES AND GRAPHENE""; ""4.5 POTENTIAL APPLICATIONS""; ""4.6 SUMMARY AND OUTLOOK""
""REFERENCES""""PART II: CARBON NANOMATERIALS FOR ENERGY CONVERSION""; ""5 HIGH-PERFORMANCE POLYMER SOLAR CELLS CONTAINING CARBON NANOMATERIALS""; ""5.1 INTRODUCTION""; ""5.2 CARBON NANOMATERIALS AS TRANSPARENT ELECTRODES""; ""5.3 CARBON NANOMATERIALS AS CHARGE EXTRACTION LAYERS""; ""5.4 CARBON NANOMATERIALS IN THE ACTIVE LAYER""; ""5.5 CONCLUDING REMARKS""; ""ACKNOWLEDGMENTS""; ""REFERENCES""; ""6 GRAPHENE FOR ENERGY SOLUTIONS AND ITS PRINTABLE APPLICATIONS""; ""6.1 INTRODUCTION TO GRAPHENE""; ""6.2 ENERGY HARVESTING FROM SOLAR CELLS""; ""6.3 OPV DEVICES""; ""6.4 LITHIUM-ION BATTERIES""
""6.5 SUPERCAPACITORS""""6.6 GRAPHENE INKS""; ""6.7 CONCLUSIONS""; ""REFERENCES""; ""7 QUANTUM DOT AND HETEROJUNCTION SOLAR CELLS CONTAINING CARBON NANOMATERIALS""; ""7.1 INTRODUCTION""; ""7.2 QD SOLAR CELLS CONTAINING CARBON NANOMATERIALS""; ""7.3 CARBON NANOMATERIAL/SEMICONDUCTOR HETEROJUNCTION SOLAR CELLS""; ""7.4 SUMMARY""; ""REFERENCES""; ""8 FUEL CELL CATALYSTS BASED ON CARBON NANOMATERIALS""; ""8.1 INTRODUCTION""; ""8.2 NANOCARBON-SUPPORTED CATALYSTS""; ""8.3 INTERFACE INTERACTION BETWEEN Pt CLUSTERS AND GRAPHITIC SURFACE""; ""8.4 CARBON CATALYST""; ""REFERENCES""
""PART III: CARBON NANOMATERIALS FOR ENERGY STORAGE""""9 SUPERCAPACITORS BASED ON CARBON NANOMATERIALS""; ""9.1 INTRODUCTION""; ""9.2 SUPERCAPACITOR TECHNOLOGY AND PERFORMANCE""; ""9.3 NANOPOROUS CARBON""; ""9.4 GRAPHENE AND CARBON NANOTUBES""; ""9.5 NANOSTRUCTURED CARBON COMPOSITES""; ""9.6 OTHER COMPOSITES WITH CARBON NANOMATERIALS""; ""9.7 CONCLUSIONS""; ""REFERENCES""; ""10 LITHIUM-ION BATTERIES BASED ON CARBON NANOMATERIALS""; ""10.1 INTRODUCTION""; ""10.2 IMPROVING LI-ION BATTERY ENERGY DENSITY""; ""10.3 IMPROVEMENTS TO LITHIUM-ION BATTERIES USING CARBON NANOMATERIALS""
""10.4 CARBON NANOMATERIALS AS CONDUCTIVE ADDITIVES""
Record Nr. UNINA-9910208950503321
Hoboken, New Jersey : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Carbon nanomaterials for advanced energy systems : advances in materials synthesis and device applications / / edited by Wen Lu, Jong-Beom Baek, Liming Dai
Carbon nanomaterials for advanced energy systems : advances in materials synthesis and device applications / / edited by Wen Lu, Jong-Beom Baek, Liming Dai
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2015
Descrizione fisica 1 online resource (600 p.)
Disciplina 621.31/2420284
Soggetto topico Electric batteries - Materials
Energy harvesting - Materials
Fullerenes
Nanostructured materials
Carbon nanotubes
ISBN 1-118-98102-2
1-118-98101-4
Classificazione TEC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""TITLE PAGE""; ""TABLE OF CONTENTS""; ""LIST OF CONTRIBUTORS""; ""PREFACE""; ""PART I: SYNTHESIS AND CHARACTERIZATION OF CARBON NANOMATERIALS""; ""1 FULLERENES, HIGHER FULLERENES, AND THEIR HYBRIDS: SYNTHESIS, CHARACTERIZATION, AND ENVIRONMENTAL CONSIDERATIONS""; ""1.1 INTRODUCTION""; ""1.2 FULLERENE, HIGHER FULLERENES, AND NANOHYBRIDS: STRUCTURES AND HISTORICAL PERSPECTIVE""; ""1.3 SYNTHESIS AND CHARACTERIZATION""; ""1.4 ENERGY APPLICATIONS""; ""1.5 ENVIRONMENTAL CONSIDERATIONS FOR FULLERENE SYNTHESIS AND PROCESSING""; ""REFERENCES""; ""2 CARBON NANOTUBES""
""2.1 SYNTHESIS OF CARBON NANOTUBES""""2.2 CHARACTERIZATION OF NANOTUBES""; ""2.3 SUMMARY""; ""REFERENCES""; ""3 SYNTHESIS AND CHARACTERIZATION OF GRAPHENE""; ""3.1 INTRODUCTION""; ""3.2 OVERVIEW OF GRAPHENE SYNTHESIS METHODOLOGIES""; ""3.3 GRAPHENE CHARACTERIZATIONS""; ""3.4 SUMMARY AND OUTLOOK""; ""REFERENCES""; ""4 DOPING CARBON NANOMATERIALS WITH HETEROATOMS""; ""4.1 INTRODUCTION""; ""4.2 LOCAL BONDING OF THE DOPANTS""; ""4.3 SYNTHESIS OF HETERODOPED NANOCARBONS""; ""4.4 CHARACTERIZATION OF HETERODOPED NANOTUBES AND GRAPHENE""; ""4.5 POTENTIAL APPLICATIONS""; ""4.6 SUMMARY AND OUTLOOK""
""REFERENCES""""PART II: CARBON NANOMATERIALS FOR ENERGY CONVERSION""; ""5 HIGH-PERFORMANCE POLYMER SOLAR CELLS CONTAINING CARBON NANOMATERIALS""; ""5.1 INTRODUCTION""; ""5.2 CARBON NANOMATERIALS AS TRANSPARENT ELECTRODES""; ""5.3 CARBON NANOMATERIALS AS CHARGE EXTRACTION LAYERS""; ""5.4 CARBON NANOMATERIALS IN THE ACTIVE LAYER""; ""5.5 CONCLUDING REMARKS""; ""ACKNOWLEDGMENTS""; ""REFERENCES""; ""6 GRAPHENE FOR ENERGY SOLUTIONS AND ITS PRINTABLE APPLICATIONS""; ""6.1 INTRODUCTION TO GRAPHENE""; ""6.2 ENERGY HARVESTING FROM SOLAR CELLS""; ""6.3 OPV DEVICES""; ""6.4 LITHIUM-ION BATTERIES""
""6.5 SUPERCAPACITORS""""6.6 GRAPHENE INKS""; ""6.7 CONCLUSIONS""; ""REFERENCES""; ""7 QUANTUM DOT AND HETEROJUNCTION SOLAR CELLS CONTAINING CARBON NANOMATERIALS""; ""7.1 INTRODUCTION""; ""7.2 QD SOLAR CELLS CONTAINING CARBON NANOMATERIALS""; ""7.3 CARBON NANOMATERIAL/SEMICONDUCTOR HETEROJUNCTION SOLAR CELLS""; ""7.4 SUMMARY""; ""REFERENCES""; ""8 FUEL CELL CATALYSTS BASED ON CARBON NANOMATERIALS""; ""8.1 INTRODUCTION""; ""8.2 NANOCARBON-SUPPORTED CATALYSTS""; ""8.3 INTERFACE INTERACTION BETWEEN Pt CLUSTERS AND GRAPHITIC SURFACE""; ""8.4 CARBON CATALYST""; ""REFERENCES""
""PART III: CARBON NANOMATERIALS FOR ENERGY STORAGE""""9 SUPERCAPACITORS BASED ON CARBON NANOMATERIALS""; ""9.1 INTRODUCTION""; ""9.2 SUPERCAPACITOR TECHNOLOGY AND PERFORMANCE""; ""9.3 NANOPOROUS CARBON""; ""9.4 GRAPHENE AND CARBON NANOTUBES""; ""9.5 NANOSTRUCTURED CARBON COMPOSITES""; ""9.6 OTHER COMPOSITES WITH CARBON NANOMATERIALS""; ""9.7 CONCLUSIONS""; ""REFERENCES""; ""10 LITHIUM-ION BATTERIES BASED ON CARBON NANOMATERIALS""; ""10.1 INTRODUCTION""; ""10.2 IMPROVING LI-ION BATTERY ENERGY DENSITY""; ""10.3 IMPROVEMENTS TO LITHIUM-ION BATTERIES USING CARBON NANOMATERIALS""
""10.4 CARBON NANOMATERIALS AS CONDUCTIVE ADDITIVES""
Record Nr. UNINA-9910819043903321
Hoboken, New Jersey : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Experimental micro/nanoscale thermal transport [[electronic resource] /] / Xinwei Wang
Experimental micro/nanoscale thermal transport [[electronic resource] /] / Xinwei Wang
Autore Wang Xinwei <1948->
Pubbl/distr/stampa Hoboken, New Jersey, : Wiley, 2012
Descrizione fisica 1 online resource (280 p.)
Disciplina 620.1/1596
Soggetto topico Nanostructured materials - Thermal properties
Heat - Transmission
ISBN 1-283-94122-8
1-118-31019-5
1-118-31023-3
1-118-31024-1
Classificazione TEC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EXPERIMENTAL MICRO/NANOSCALE THERMAL TRANSPORT; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 Unique Feature of Thermal Transport in Nanoscale and Nanostructured Materials; 1.1.1 Thermal Transport Constrained by Material Size; 1.1.2 Thermal Transport Constrained by Time; 1.1.3 Thermal Transport Constrained by the Size of Physical Process; 1.2 Molecular Dynamics Simulation of Thermal Transport at Micro/Nanoscales; 1.2.1 Equilibrium MD Prediction of Thermal Conductivity; 1.2.2 Nonequilibrium MD Study of Thermal Transport; 1.2.3 MD Study of Thermal Transport Constrained by Time
1.3 Boltzmann Transportation Equation for Thermal Transport Study1.4 Direct Energy Carrier Relaxation Tracking (DECRT); 1.5 Challenges in Characterizing Thermal Transport at Micro/Nanoscales; References; 2 THERMAL CHARACTERIZATION IN FREQUENCY DOMAIN; 2.1 Frequency Domain Photoacoustic (PA) Technique; 2.1.1 Physical Model; 2.1.2 Experimental Details; 2.1.3 PA Measurement of Films and Bulk Materials; 2.1.4 Uncertainty of the PA Measurement; 2.2 Frequency Domain Photothermal Radiation (PTR) Technique; 2.2.1 Experimental Details of the PTR Technique
2.2.2 PTR Measurement of Micrometer-Thick Films2.2.3 PTR with Internal Heating of Desired Locations; 2.3 Three-Omega Technique; 2.3.1 Physical Model of the 3ù Technique for One-Dimensional Structures; 2.3.2 Experimental Details; 2.3.3 Calibration of the Experiment; 2.3.4 Measurement of Micrometer-Thick Wires; 2.3.5 Effect of Radiation on Measurement Result; 2.4 Optical Heating Electrical Thermal Sensing (OHETS) Technique; 2.4.1 Experimental Principle and Physical Model; 2.4.2 Effect of Nonuniform Distribution of Laser Beam; 2.4.3 Experimental Details and Calibration
2.4.4 Measurement of Electrically Conductive Wires2.4.5 Measurement of Nonconductive Wires; 2.4.6 Effect of Au Coating on Measurement; 2.4.7 Temperature Rise in the OHETS Experiment; 2.5 Comparison Among the Techniques; References; 3 TRANSIENT TECHNOLOGIES IN THE TIME DOMAIN; 3.1 Transient Photo-Electro-Thermal (TPET) Technique; 3.1.1 Experimental Principles; 3.1.2 Physical Model Development; 3.1.3 Effect of Nonuniform Distribution and Finite Rising Time of the Laser Beam; 3.1.4 Experimental Setup; 3.1.5 Technique Validation; 3.1.6 Thermal Characterization of SWCNT Bundles and Cloth Fibers
3.2 Transient Electrothermal (TET) Technique3.2.1 Physical Principles of the TET Technique; 3.2.2 Methods for Data Analysis to Determine the Thermal Diffusivity; 3.2.3 Effect of Nonconstant Electrical Heating; 3.2.4 Experimental Details; 3.2.5 Technique Validation; 3.2.6 Measurement of SWCNT Bundles; 3.2.7 Measurement of Polyester Fibers; 3.2.8 Measurement of Micro/Submicroscale Polyacrylonitrile Wires; 3.3 Pulsed Laser-Assisted Thermal Relaxation Technique; 3.3.1 Experimental Principles; 3.3.2 Physical Model for the PLTR Technique; 3.3.3 Methods to Determine the Thermal Diffusivity
3.3.4 Experimental Setup and Technique Validation
Record Nr. UNINA-9910130601103321
Wang Xinwei <1948->  
Hoboken, New Jersey, : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Experimental micro/nanoscale thermal transport [[electronic resource] /] / Xinwei Wang
Experimental micro/nanoscale thermal transport [[electronic resource] /] / Xinwei Wang
Autore Wang Xinwei <1948->
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, New Jersey, : Wiley, 2012
Descrizione fisica 1 online resource (280 p.)
Disciplina 620.1/1596
Soggetto topico Nanostructured materials - Thermal properties
Heat - Transmission
ISBN 1-283-94122-8
1-118-31019-5
1-118-31023-3
1-118-31024-1
Classificazione TEC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EXPERIMENTAL MICRO/NANOSCALE THERMAL TRANSPORT; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 Unique Feature of Thermal Transport in Nanoscale and Nanostructured Materials; 1.1.1 Thermal Transport Constrained by Material Size; 1.1.2 Thermal Transport Constrained by Time; 1.1.3 Thermal Transport Constrained by the Size of Physical Process; 1.2 Molecular Dynamics Simulation of Thermal Transport at Micro/Nanoscales; 1.2.1 Equilibrium MD Prediction of Thermal Conductivity; 1.2.2 Nonequilibrium MD Study of Thermal Transport; 1.2.3 MD Study of Thermal Transport Constrained by Time
1.3 Boltzmann Transportation Equation for Thermal Transport Study1.4 Direct Energy Carrier Relaxation Tracking (DECRT); 1.5 Challenges in Characterizing Thermal Transport at Micro/Nanoscales; References; 2 THERMAL CHARACTERIZATION IN FREQUENCY DOMAIN; 2.1 Frequency Domain Photoacoustic (PA) Technique; 2.1.1 Physical Model; 2.1.2 Experimental Details; 2.1.3 PA Measurement of Films and Bulk Materials; 2.1.4 Uncertainty of the PA Measurement; 2.2 Frequency Domain Photothermal Radiation (PTR) Technique; 2.2.1 Experimental Details of the PTR Technique
2.2.2 PTR Measurement of Micrometer-Thick Films2.2.3 PTR with Internal Heating of Desired Locations; 2.3 Three-Omega Technique; 2.3.1 Physical Model of the 3ù Technique for One-Dimensional Structures; 2.3.2 Experimental Details; 2.3.3 Calibration of the Experiment; 2.3.4 Measurement of Micrometer-Thick Wires; 2.3.5 Effect of Radiation on Measurement Result; 2.4 Optical Heating Electrical Thermal Sensing (OHETS) Technique; 2.4.1 Experimental Principle and Physical Model; 2.4.2 Effect of Nonuniform Distribution of Laser Beam; 2.4.3 Experimental Details and Calibration
2.4.4 Measurement of Electrically Conductive Wires2.4.5 Measurement of Nonconductive Wires; 2.4.6 Effect of Au Coating on Measurement; 2.4.7 Temperature Rise in the OHETS Experiment; 2.5 Comparison Among the Techniques; References; 3 TRANSIENT TECHNOLOGIES IN THE TIME DOMAIN; 3.1 Transient Photo-Electro-Thermal (TPET) Technique; 3.1.1 Experimental Principles; 3.1.2 Physical Model Development; 3.1.3 Effect of Nonuniform Distribution and Finite Rising Time of the Laser Beam; 3.1.4 Experimental Setup; 3.1.5 Technique Validation; 3.1.6 Thermal Characterization of SWCNT Bundles and Cloth Fibers
3.2 Transient Electrothermal (TET) Technique3.2.1 Physical Principles of the TET Technique; 3.2.2 Methods for Data Analysis to Determine the Thermal Diffusivity; 3.2.3 Effect of Nonconstant Electrical Heating; 3.2.4 Experimental Details; 3.2.5 Technique Validation; 3.2.6 Measurement of SWCNT Bundles; 3.2.7 Measurement of Polyester Fibers; 3.2.8 Measurement of Micro/Submicroscale Polyacrylonitrile Wires; 3.3 Pulsed Laser-Assisted Thermal Relaxation Technique; 3.3.1 Experimental Principles; 3.3.2 Physical Model for the PLTR Technique; 3.3.3 Methods to Determine the Thermal Diffusivity
3.3.4 Experimental Setup and Technique Validation
Record Nr. UNINA-9910821649303321
Wang Xinwei <1948->  
Hoboken, New Jersey, : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Infochemistry [[electronic resource] ] : information processing at the nanoscale / / Konrad Szacilowski
Infochemistry [[electronic resource] ] : information processing at the nanoscale / / Konrad Szacilowski
Autore Szacilowski Konrad
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex ; ; Hoboken, N.J., : Wiley, 2012
Descrizione fisica 1 online resource (492 p.)
Disciplina 620/.5
Soggetto topico Molecular computers
Nanotechnology
Information theory in chemistry
ISBN 1-280-76759-6
9786613678362
0-470-71088-8
1-118-31619-3
0-470-71087-X
Classificazione TEC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Infochemistry: Information Processing at the Nanoscale; Contents; Preface; Acknowledgements; 1 Introduction to the Theory of Information; 1.1 Introduction; 1.2 Definition and Properties of Information; 1.3 Principles of Boolean Algebra; 1.4 Digital Information Processing and Logic Gates; 1.4.1 Simple Logic Gates; 1.4.2 Concatenated Logic Circuits; 1.4.3 Sequential Logic Circuits; 1.5 Ternary and Higher Logic Calculi; 1.6 Irreversible vs Reversible Logic; 1.7 Quantum Logic; References; 2 Physical and Technological Limits of Classical Electronics; 2.1 Introduction
2.2 Fundamental Limitations of Information Processing2.3 Technological Limits of Miniaturization; References; 3 Changing the Paradigm: Towards Computation with Molecules; References; 4 Low-Dimensional Metals and Semiconductors; 4.1 Dimensionality and Morphology of Nanostructures; 4.2 Electrical and Optical Properties of Nanoobjects and Nanostructures; 4.2.1 Metals; 4.2.2 Semiconductors; 4.3 Molecular Scale Engineering of Semiconducting Surfaces; 4.3.1 Semiconductor-Molecule Interactions; 4.3.2 Electronic Coupling between Semiconducting Surfaces and Adsorbates; References
5 Carbon Nanostructures5.1 Nanoforms of Carbon; 5.2 Electronic Structure and Properties of Graphene; 5.3 Carbon Nanotubes; 5.4 Conjugated and Polyaromatic Systems; 5.5 Nanocarbon and Organic Semiconductor Devices; References; 6 Photoelectrochemical Photocurrent Switching and Related Phenomena; 6.1 Photocurrent Generation and Switching in Neat Semiconductors; 6.2 Photocurrent Switching in MIM Organic Devices; 6.3 Photocurrent Switching in Semiconducting Composites; 6.4 Photocurrent Switching in Surface-Modified Semiconductors; References
7 Self-Organization and Self-Assembly in Supramolecular Systems7.1 Supramolecular Assembly: Towards Molecular Devices; 7.2 Self-Assembled Semiconducting Structures; 7.3 Self-Assembly at Solid Interfaces; 7.4 Controlling Self-Assembly of Nanoparticles; 7.5 Self-Assembly and Molecular Electronics; References; 8 Molecular-Scale Electronics; 8.1 Electron Transfer and Molecular Junctions; 8.2 Nanoscale Electromagnetism; 8.3 Molecular Rectifiers; References; 9 Molecular Logic Gates; 9.1 Introduction; 9.2 Chemically Driven Logic Gates; 9.2.1 OR Gates; 9.2.2 AND Gates; 9.2.3 XOR Gates
9.2.4 INH Gates9.2.5 IMP Gates; 9.2.6 Inverted Logic Gates (NOR, NAND, XNOR); 9.2.7 Behind Classical Boolean Scheme-Ternary Logic and Feynman Gate; 9.3 All-Optical Logic Gates; 9.4 Electrochemical Logic Systems; References; 10 Molecular Computing Systems; 10.1 Introduction; 10.2 Reconfigurable and Superimposed Molecular Logic Devices; 10.3 Concatenated Chemical Logic Systems; 10.4 Molecular-Scale Digital Communication; 10.4.1 Multiplexers and Demultiplexers; 10.4.2 Encoders and Decoders; 10.4.3 Molecular-Scale Signal Amplification; 10.5 Molecular Arithmetics: Adders and Subtractors
10.5.1 Molecular-Scale Half-Adders
Record Nr. UNINA-9910141284603321
Szacilowski Konrad  
Chichester, West Sussex ; ; Hoboken, N.J., : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Infochemistry [[electronic resource] ] : information processing at the nanoscale / / Konrad Szacilowski
Infochemistry [[electronic resource] ] : information processing at the nanoscale / / Konrad Szacilowski
Autore Szacilowski Konrad
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex ; ; Hoboken, N.J., : Wiley, 2012
Descrizione fisica 1 online resource (492 p.)
Disciplina 620/.5
Soggetto topico Molecular computers
Nanotechnology
Information theory in chemistry
ISBN 1-280-76759-6
9786613678362
0-470-71088-8
1-118-31619-3
0-470-71087-X
Classificazione TEC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Infochemistry: Information Processing at the Nanoscale; Contents; Preface; Acknowledgements; 1 Introduction to the Theory of Information; 1.1 Introduction; 1.2 Definition and Properties of Information; 1.3 Principles of Boolean Algebra; 1.4 Digital Information Processing and Logic Gates; 1.4.1 Simple Logic Gates; 1.4.2 Concatenated Logic Circuits; 1.4.3 Sequential Logic Circuits; 1.5 Ternary and Higher Logic Calculi; 1.6 Irreversible vs Reversible Logic; 1.7 Quantum Logic; References; 2 Physical and Technological Limits of Classical Electronics; 2.1 Introduction
2.2 Fundamental Limitations of Information Processing2.3 Technological Limits of Miniaturization; References; 3 Changing the Paradigm: Towards Computation with Molecules; References; 4 Low-Dimensional Metals and Semiconductors; 4.1 Dimensionality and Morphology of Nanostructures; 4.2 Electrical and Optical Properties of Nanoobjects and Nanostructures; 4.2.1 Metals; 4.2.2 Semiconductors; 4.3 Molecular Scale Engineering of Semiconducting Surfaces; 4.3.1 Semiconductor-Molecule Interactions; 4.3.2 Electronic Coupling between Semiconducting Surfaces and Adsorbates; References
5 Carbon Nanostructures5.1 Nanoforms of Carbon; 5.2 Electronic Structure and Properties of Graphene; 5.3 Carbon Nanotubes; 5.4 Conjugated and Polyaromatic Systems; 5.5 Nanocarbon and Organic Semiconductor Devices; References; 6 Photoelectrochemical Photocurrent Switching and Related Phenomena; 6.1 Photocurrent Generation and Switching in Neat Semiconductors; 6.2 Photocurrent Switching in MIM Organic Devices; 6.3 Photocurrent Switching in Semiconducting Composites; 6.4 Photocurrent Switching in Surface-Modified Semiconductors; References
7 Self-Organization and Self-Assembly in Supramolecular Systems7.1 Supramolecular Assembly: Towards Molecular Devices; 7.2 Self-Assembled Semiconducting Structures; 7.3 Self-Assembly at Solid Interfaces; 7.4 Controlling Self-Assembly of Nanoparticles; 7.5 Self-Assembly and Molecular Electronics; References; 8 Molecular-Scale Electronics; 8.1 Electron Transfer and Molecular Junctions; 8.2 Nanoscale Electromagnetism; 8.3 Molecular Rectifiers; References; 9 Molecular Logic Gates; 9.1 Introduction; 9.2 Chemically Driven Logic Gates; 9.2.1 OR Gates; 9.2.2 AND Gates; 9.2.3 XOR Gates
9.2.4 INH Gates9.2.5 IMP Gates; 9.2.6 Inverted Logic Gates (NOR, NAND, XNOR); 9.2.7 Behind Classical Boolean Scheme-Ternary Logic and Feynman Gate; 9.3 All-Optical Logic Gates; 9.4 Electrochemical Logic Systems; References; 10 Molecular Computing Systems; 10.1 Introduction; 10.2 Reconfigurable and Superimposed Molecular Logic Devices; 10.3 Concatenated Chemical Logic Systems; 10.4 Molecular-Scale Digital Communication; 10.4.1 Multiplexers and Demultiplexers; 10.4.2 Encoders and Decoders; 10.4.3 Molecular-Scale Signal Amplification; 10.5 Molecular Arithmetics: Adders and Subtractors
10.5.1 Molecular-Scale Half-Adders
Record Nr. UNINA-9910820734703321
Szacilowski Konrad  
Chichester, West Sussex ; ; Hoboken, N.J., : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
One-dimensional nanostructures [[electronic resource] ] : principles and applications / / edited by Tianyou Zhai, Jiannian Yao
One-dimensional nanostructures [[electronic resource] ] : principles and applications / / edited by Tianyou Zhai, Jiannian Yao
Autore Zhai Tianyou <1980->
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2013
Descrizione fisica 1 online resource (610 p.)
Disciplina 621.3815
Altri autori (Persone) ZhaiTianyou <1980->
YaoJiannian <1953->
Soggetto topico Nanowires
Semiconductors - Materials
One-dimensional conductors
Nanostructured materials
ISBN 1-118-31034-9
1-283-91714-9
1-118-31032-2
Classificazione TEC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ONE-DIMENSIONALNANOSTRUCTURES; CONTENTS; Foreword; Preface; Contributors; 1 One-Dimensional Semiconductor Nanostructure Growth with Templates; 1.1 Introduction; 1.2 Anodic Aluminum Oxide (AAO) as Templates; 1.2.1 Synthesis of Self-Organized AAO Membrane; 1.2.2 Synthesis of Polycrystalline Si Nanotubes; 1.2.3 AAO as Template for Si Nanowire Epitaxy; 1.3 Conclusion and Outlook; Acknowledgments; References; 2 Metal-Ligand Systems for Construction of One-Dimensional Nanostructures; 2.1 Introduction; 2.2 Microstructures Based on 1D Coordination Polymers; 2.2.1 Preparation Methods; 2.2.2 Structures
2.2.3 Shape and Size Control2.2.4 Methods for Study of Microstructures; 2.2.5 Formation Mechanisms; 2.2.6 Properties and Applications; 2.3 Bundles and Single Molecules on Surfaces Based on 1D Coordination Polymers; 2.3.1 Isolation Methods and Morphological Characterization; 2.3.2 Tools for the Studies at the Molecular Level; 2.3.3 Properties Studied at Single-Molecule Level; 2.4 Conclusion and Outlook; Acknowledgments; References; 3 Supercritical Fluid-Liquid-Solid (SFLS) Growth of Semiconductor Nanowires; 3.1 Introduction; 3.2 The SFLS Growth Mechanism
3.2.1 Supercritical Fluids as a Reaction Medium for VLS-Like Nanowire Growth3.2.2 SFLS-Grown Nanowires; 3.3 Properties and Applications of SFLS-Grown Nanowires; 3.3.1 Mechanical Properties; 3.3.2 Printed Nanowire Field-Effect Transistors; 3.3.3 Silicon-Nanowire-Based Lithium Ion Battery Anodes; 3.3.4 Semiconductor Nanowire Fabric; 3.3.5 Other Applications; 3.4 Conclusion and Outlook; Acknowledgments; References; 4 Colloidal Semiconductor Nanowires; 4.1 Introduction; 4.2 Theoretical Calculations; 4.2.1 Effective Mass Multiband Method (EMMM); 4.2.2 Empirical Pseudopotential Method (EPM)
4.2.3 Charge Patching Method (CPM)4.3 Synthesis of Colloidal Semiconductor Nanowires; 4.3.1 Oriented Attachment; 4.3.2 Template Strategy; 4.3.3 Solution-Liquid-Solid Growth; 4.4 Properties of Colloidal Semiconductor Nanowires; 4.4.1 Optical Properties of Semiconductor Nanowires; 4.4.2 Electronic Properties of Semiconductor Nanowires; 4.4.3 Magnetic Properties of Semiconductor Nanowires; 4.5 Applications of Colloidal Semiconductor Nanowires; 4.5.1 Semiconductor Nanowires for Energy Conversion; 4.5.2 Semiconductor Nanowires in Life Sciences; 4.6 Conclusion and Outlook; Acknowledgments
References5 Core-Shell Effect on Nucleation and Growth of Epitaxial Silicide in Nanowire of Silicon; 5.1 Introduction; 5.2 Core-Shell Effects on Materials; 5.3 Nucleation and Growth of Silicides in Silicon Nanowires; 5.3.1 Nanoscale Silicide Formation by Point Contact Reaction; 5.3.2 Supply Limit Reaction in Point Contact Reactions; 5.3.3 Repeating Event of Nucleation; 5.4 Core-Shell Effect on Nucleation of Nanoscale Silicides; 5.4.1 Introduction to Solid-State Nucleation; 5.4.2 Stepflow of Si Nanowire Growth at Silicide/Si Interface
5.4.3 Observation of Homogeneous Nucleation in Silicide Epitaxial Growth
Record Nr. UNINA-9910141414703321
Zhai Tianyou <1980->  
Hoboken, N.J., : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
One-dimensional nanostructures [[electronic resource] ] : principles and applications / / edited by Tianyou Zhai, Jiannian Yao
One-dimensional nanostructures [[electronic resource] ] : principles and applications / / edited by Tianyou Zhai, Jiannian Yao
Autore Zhai Tianyou <1980->
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2013
Descrizione fisica 1 online resource (610 p.)
Disciplina 621.3815
Altri autori (Persone) ZhaiTianyou <1980->
YaoJiannian <1953->
Soggetto topico Nanowires
Semiconductors - Materials
One-dimensional conductors
Nanostructured materials
ISBN 1-118-31034-9
1-283-91714-9
1-118-31032-2
Classificazione TEC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ONE-DIMENSIONALNANOSTRUCTURES; CONTENTS; Foreword; Preface; Contributors; 1 One-Dimensional Semiconductor Nanostructure Growth with Templates; 1.1 Introduction; 1.2 Anodic Aluminum Oxide (AAO) as Templates; 1.2.1 Synthesis of Self-Organized AAO Membrane; 1.2.2 Synthesis of Polycrystalline Si Nanotubes; 1.2.3 AAO as Template for Si Nanowire Epitaxy; 1.3 Conclusion and Outlook; Acknowledgments; References; 2 Metal-Ligand Systems for Construction of One-Dimensional Nanostructures; 2.1 Introduction; 2.2 Microstructures Based on 1D Coordination Polymers; 2.2.1 Preparation Methods; 2.2.2 Structures
2.2.3 Shape and Size Control2.2.4 Methods for Study of Microstructures; 2.2.5 Formation Mechanisms; 2.2.6 Properties and Applications; 2.3 Bundles and Single Molecules on Surfaces Based on 1D Coordination Polymers; 2.3.1 Isolation Methods and Morphological Characterization; 2.3.2 Tools for the Studies at the Molecular Level; 2.3.3 Properties Studied at Single-Molecule Level; 2.4 Conclusion and Outlook; Acknowledgments; References; 3 Supercritical Fluid-Liquid-Solid (SFLS) Growth of Semiconductor Nanowires; 3.1 Introduction; 3.2 The SFLS Growth Mechanism
3.2.1 Supercritical Fluids as a Reaction Medium for VLS-Like Nanowire Growth3.2.2 SFLS-Grown Nanowires; 3.3 Properties and Applications of SFLS-Grown Nanowires; 3.3.1 Mechanical Properties; 3.3.2 Printed Nanowire Field-Effect Transistors; 3.3.3 Silicon-Nanowire-Based Lithium Ion Battery Anodes; 3.3.4 Semiconductor Nanowire Fabric; 3.3.5 Other Applications; 3.4 Conclusion and Outlook; Acknowledgments; References; 4 Colloidal Semiconductor Nanowires; 4.1 Introduction; 4.2 Theoretical Calculations; 4.2.1 Effective Mass Multiband Method (EMMM); 4.2.2 Empirical Pseudopotential Method (EPM)
4.2.3 Charge Patching Method (CPM)4.3 Synthesis of Colloidal Semiconductor Nanowires; 4.3.1 Oriented Attachment; 4.3.2 Template Strategy; 4.3.3 Solution-Liquid-Solid Growth; 4.4 Properties of Colloidal Semiconductor Nanowires; 4.4.1 Optical Properties of Semiconductor Nanowires; 4.4.2 Electronic Properties of Semiconductor Nanowires; 4.4.3 Magnetic Properties of Semiconductor Nanowires; 4.5 Applications of Colloidal Semiconductor Nanowires; 4.5.1 Semiconductor Nanowires for Energy Conversion; 4.5.2 Semiconductor Nanowires in Life Sciences; 4.6 Conclusion and Outlook; Acknowledgments
References5 Core-Shell Effect on Nucleation and Growth of Epitaxial Silicide in Nanowire of Silicon; 5.1 Introduction; 5.2 Core-Shell Effects on Materials; 5.3 Nucleation and Growth of Silicides in Silicon Nanowires; 5.3.1 Nanoscale Silicide Formation by Point Contact Reaction; 5.3.2 Supply Limit Reaction in Point Contact Reactions; 5.3.3 Repeating Event of Nucleation; 5.4 Core-Shell Effect on Nucleation of Nanoscale Silicides; 5.4.1 Introduction to Solid-State Nucleation; 5.4.2 Stepflow of Si Nanowire Growth at Silicide/Si Interface
5.4.3 Observation of Homogeneous Nucleation in Silicide Epitaxial Growth
Record Nr. UNINA-9910807194203321
Zhai Tianyou <1980->  
Hoboken, N.J., : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Scanning probe microscopy for industrial applications : nanomechanical characterization / / edited by Dalia G. Yablon
Scanning probe microscopy for industrial applications : nanomechanical characterization / / edited by Dalia G. Yablon
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2014
Descrizione fisica 1 online resource (385 p.)
Disciplina 620.1/127
Altri autori (Persone) YablonDalia G. <1975->
Soggetto topico Materials - Microscopy
Scanning probe microscopy - Industrial applications
ISBN 1-118-72304-X
1-118-72311-2
1-118-72314-7
Classificazione TEC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Scanning Probe Microscopy in Industrial Applications: Nanomechanical Characterization; Copyright; Contents; Contributors List; Preface; Acknowledgments; Chapter 1 Overview of Atomic Force Microscopy; 1.1 A Word on Nomenclature; 1.2 Atomic Force Microscopy-The Appeal to Industrial R&D; 1.3 Mechanical Properties; 1.4 Overview of AFM Operation; 1.4.1 AFM Hardware; 1.4.2 Cantilevers and Probes; 1.4.3 Optical Detection System; 1.4.4 x-y-z Scanner; 1.4.5 AFM Software; 1.4.6 Calibrations; 1.4.7 Cantilever Spring Constant; 1.4.8 Tip Shape Calibration; 1.5 Nanomechanical Methods Surveyed in Book
1.6 Industries RepresentedAcknowledgments; References; Chapter 2 Understanding the Tip-Sample Contact: An Overview of Contact Mechanics from the Macro- to the Nanoscale; 2.1 Hertz Equations for Elastic Contact; 2.1.1 Introduction; 2.1.2 Hertz Equations; 2.1.3 Assumptions of Hertz model; 2.1.4 Worked Examples: Hertz Mechanics of Diamond Tips on Stiff and Compliant Substrates; 2.2 Adhesive Contacts; 2.2.1 introduction to Adhesion; 2.2.2 Basic Physics and Mathematics of Surface Interactions; 2.2.3 Derjaguin-Müller-Toporov and Johnson-Kendall-Roberts Models of Adhesion
2.2.4 More Realistic Picture of Adhesion2.2.5 Continuing the Worked Examples: Adding Adhesion to Diamond Tips on Stiff and Compliant Substrates; 2.3 Further Extensions of Continuum Contact Mechanics Models; 2.3.1 Tip Shape Differs from a Paraboloid; 2.3.2 Flattened Tip Shapes; 2.3.3 Axisymmetric Power Law Tip Shapes; 2.3.4 Anisotropic Elasticity, Viscoelastic, and Plastic Effects; 2.4 Thin Films; 2.5 Tangential Forces; 2.5.1 Three Possible Cases for a Tangentially Loaded Contact; 2.5.2 Active Debate over the Behavior of the Shear Stress; 2.5.3 Lateral Stiffness
2.6 Application of Continuum Mechanics to Nanoscale Contacts2.6.1 Unique Considerations of Nanoscale Contacts; 2.6.2 Evidence of Applicability of Continuum Contact Mechanics at the Nanoscale; Acknowledgments; APPENDIX 2A Surface Energy and Work of Adhesion; References; Chapter 3 Understanding Surface Forces Using Static and Dynamic Approach-Retraction Curves; 3.1 Tip-Sample Interaction Forces; 3.1.1 Piecewise Linear Contact; 3.1.2 Piecewise Linear Attractive-Repulsive Contact; 3.1.3 Lennard-Jones Potential; 3.1.4 Derjaguin-Müller-Toporov + van der Waals Model; 3.1.5 Viscoelastic Forces
3.1.6 Capillary Forces3.2 Static F-Z Curves; 3.2.1 Conversion of F-Z Curves into F-d Curves; 3.2.2 Examples from Literature; 3.2.3 Uncertainties and Sources of Error; 3.3 Dynamic Amplitude/Phase-Distance Curves; 3.3.1 Theory; 3.3.2 Interpreting the Virial; 3.3.3 Physics of Amplitude Reduction; 3.3.4 Attractive and Repulsive Regimes of Interaction; 3.3.5 Reconstruction of Forces; 3.4 Brief Guide to VEDA Simulations; 3.4.1 F-Z Curve Tutorial; 3.4.2 Amplitude/Phase-Distance Curves Tutorial; 3.4.3 Advanced Amplitude/Phase-Distance Curves Tutorial; 3.5 Conclusions; Glossary; References
Chapter 4 Phase Imaging
Record Nr. UNINA-9910138857103321
Hoboken, New Jersey : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Scanning probe microscopy for industrial applications : nanomechanical characterization / / edited by Dalia G. Yablon
Scanning probe microscopy for industrial applications : nanomechanical characterization / / edited by Dalia G. Yablon
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2014
Descrizione fisica 1 online resource (385 p.)
Disciplina 620.1/127
Altri autori (Persone) YablonDalia G. <1975->
Soggetto topico Materials - Microscopy
Scanning probe microscopy - Industrial applications
ISBN 1-118-72304-X
1-118-72311-2
1-118-72314-7
Classificazione TEC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Scanning Probe Microscopy in Industrial Applications: Nanomechanical Characterization; Copyright; Contents; Contributors List; Preface; Acknowledgments; Chapter 1 Overview of Atomic Force Microscopy; 1.1 A Word on Nomenclature; 1.2 Atomic Force Microscopy-The Appeal to Industrial R&D; 1.3 Mechanical Properties; 1.4 Overview of AFM Operation; 1.4.1 AFM Hardware; 1.4.2 Cantilevers and Probes; 1.4.3 Optical Detection System; 1.4.4 x-y-z Scanner; 1.4.5 AFM Software; 1.4.6 Calibrations; 1.4.7 Cantilever Spring Constant; 1.4.8 Tip Shape Calibration; 1.5 Nanomechanical Methods Surveyed in Book
1.6 Industries RepresentedAcknowledgments; References; Chapter 2 Understanding the Tip-Sample Contact: An Overview of Contact Mechanics from the Macro- to the Nanoscale; 2.1 Hertz Equations for Elastic Contact; 2.1.1 Introduction; 2.1.2 Hertz Equations; 2.1.3 Assumptions of Hertz model; 2.1.4 Worked Examples: Hertz Mechanics of Diamond Tips on Stiff and Compliant Substrates; 2.2 Adhesive Contacts; 2.2.1 introduction to Adhesion; 2.2.2 Basic Physics and Mathematics of Surface Interactions; 2.2.3 Derjaguin-Müller-Toporov and Johnson-Kendall-Roberts Models of Adhesion
2.2.4 More Realistic Picture of Adhesion2.2.5 Continuing the Worked Examples: Adding Adhesion to Diamond Tips on Stiff and Compliant Substrates; 2.3 Further Extensions of Continuum Contact Mechanics Models; 2.3.1 Tip Shape Differs from a Paraboloid; 2.3.2 Flattened Tip Shapes; 2.3.3 Axisymmetric Power Law Tip Shapes; 2.3.4 Anisotropic Elasticity, Viscoelastic, and Plastic Effects; 2.4 Thin Films; 2.5 Tangential Forces; 2.5.1 Three Possible Cases for a Tangentially Loaded Contact; 2.5.2 Active Debate over the Behavior of the Shear Stress; 2.5.3 Lateral Stiffness
2.6 Application of Continuum Mechanics to Nanoscale Contacts2.6.1 Unique Considerations of Nanoscale Contacts; 2.6.2 Evidence of Applicability of Continuum Contact Mechanics at the Nanoscale; Acknowledgments; APPENDIX 2A Surface Energy and Work of Adhesion; References; Chapter 3 Understanding Surface Forces Using Static and Dynamic Approach-Retraction Curves; 3.1 Tip-Sample Interaction Forces; 3.1.1 Piecewise Linear Contact; 3.1.2 Piecewise Linear Attractive-Repulsive Contact; 3.1.3 Lennard-Jones Potential; 3.1.4 Derjaguin-Müller-Toporov + van der Waals Model; 3.1.5 Viscoelastic Forces
3.1.6 Capillary Forces3.2 Static F-Z Curves; 3.2.1 Conversion of F-Z Curves into F-d Curves; 3.2.2 Examples from Literature; 3.2.3 Uncertainties and Sources of Error; 3.3 Dynamic Amplitude/Phase-Distance Curves; 3.3.1 Theory; 3.3.2 Interpreting the Virial; 3.3.3 Physics of Amplitude Reduction; 3.3.4 Attractive and Repulsive Regimes of Interaction; 3.3.5 Reconstruction of Forces; 3.4 Brief Guide to VEDA Simulations; 3.4.1 F-Z Curve Tutorial; 3.4.2 Amplitude/Phase-Distance Curves Tutorial; 3.4.3 Advanced Amplitude/Phase-Distance Curves Tutorial; 3.5 Conclusions; Glossary; References
Chapter 4 Phase Imaging
Record Nr. UNINA-9910809874303321
Hoboken, New Jersey : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui